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Classical Planning

classical planning:

input: initial state, goal, possible actions

output: action sequence achieving the goal (plan)

properties: deterministic, fully-observable
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A Simple Domain
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A Simple Domain
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drive(#1, a, b)

precondition: at(#1, a), adj(a, b)

effects: at(#1, b),¬at(#1, a)
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A Simple Domain
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precondition: at(T , L1), adj(L1, L2)

effects: at(T , L2),¬at(T , L1)
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Grounding

planners use propositional tasks

solution: ground actions that can be reached from initial state

very hard to compute this exact set

overapproximate ground actions

drive(T, L1, L2)

precondition: at(T , L1), adj(L1, L2)

effects: at(T , L2),¬at(T , L1)
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Grounding Datalog

adj(a, b).

adj(b, a).
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adj(c , b).

at(#1, b).

at(#2, c).

drive(T, L1, L2)← at(T , L1), adj(L1, L2).

at(T , L2)← drive(T, L1, L2).
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Common Issue

in general, action schemas have too many parameters

more than 30 in many domains

hard to ground all at the same time

idea: split grounding of atoms and actions
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Removing “Action Predicates”

drive(T, L1, L2)← at(T , L1), adj(L1, L2).

at(T , L2)← drive(T, L1, L2).
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Removing “Action Predicates”

at(T , L2)← at(T , L1), adj(L1, L2).
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Reconstructing “Action Predicates” – Iterated Solving

facts:

adj(a, b). adj(b, a). adj(b, c). adj(c, b).

at(#1, a). at(#1, b). at(#1, c).

at(#2, a). at(#2, b). at(#2, c).

rules:

1 {first-param(X ) : at(X , L1)} 1.
1 {second-param(Y ) : at(T ,Y ), adj(Y , L2)} 1.
1 {third-param(Z ) : adj(L1,Z )} 1.

⊥ ←first-param(X ), second-param(Y ),¬at(X ,Y ).

⊥ ←second-param(Y ), third-param(Z ),¬adj(Y ,Z ).

grounding via iterated solving:

for each action schema, create an ASP program

each stable model is an instantiation of the action schema
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Results with Iterated Solving
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Conclusion

summary:

grounding planning tasks → grounding Datalog

improved by decoupling action predicates

better performance than off-the-shelf grounders


