
1/1

Grounding Planning Tasks Using
Tree Decompositions and Iterated Solving

Augusto B. Corrêa, Markus Hecher, Malte Helmert,
Davide Mario Longo, Florian Pommerening, Stefan Woltran

University of Basel, Switzerland
Massachusetts Institute of Technology, USA

TU Wien, Institute of Logic and Computation, Austria

KR 2023
Originally published at ICAPS 2023



2/15

Classical Planning

classical planning:

input: initial state, goal, possible actions

output: action sequence achieving the goal (plan)

properties: deterministic, fully-observable



3/15

A Simple Domain

a b c

#1 #2

at

#1 a
#2 c

adj

a b
b a
b c
c b



3/15

A Simple Domain

a b c

#1 #2

at

#1 a
#2 c

adj

a b
b a
b c
c b



4/15

A Simple Domain

a b c

#1 #2

drive(#1, a, b)

precondition: at(#1, a), adj(a, b)

effects: at(#1, b),¬at(#1, a)



5/15

A Simple Domain

a b c

#1 #2

drive(#1, a, b)

precondition: at(#1, a), adj(a, b)

effects: at(#1, b),¬at(#1, a)



6/15

A Simple Domain

a b c

#1 #2

drive(T, L1, L2)

precondition: at(T , L1), adj(L1, L2)

effects: at(T , L2),¬at(T , L1)



7/15

Grounding

planners use propositional tasks

solution: ground actions that can be reached from initial state

very hard to compute this exact set

overapproximate ground actions

drive(T, L1, L2)

precondition: at(T , L1), adj(L1, L2)

effects: at(T , L2),¬at(T , L1)



7/15

Grounding

planners use propositional tasks

solution: ground actions that can be reached from initial state

very hard to compute this exact set

overapproximate ground actions

drive(T, L1, L2)

precondition: at(T , L1), adj(L1, L2)

effects: at(T , L2),¬at(T , L1)



8/15

Grounding

planners use propositional tasks

solution: ground actions that can be reached from initial state

very hard to compute this exact set

overapproximate ground actions

drive(T, L1, L2)

precondition: at(T , L1), adj(L1, L2)

effects: at(T , L2)



9/15

Grounding Datalog

adj(a, b).

adj(b, a).

adj(b, c).

adj(c , b).

at(#1, b).

at(#2, c).

drive(T, L1, L2)← at(T , L1), adj(L1, L2).

at(T , L2)← drive(T, L1, L2).



9/15

Grounding Datalog

adj(a, b).

adj(b, a).

adj(b, c).

adj(c , b).

at(#1, b).

at(#2, c).

drive(T, L1, L2)← at(T , L1), adj(L1, L2).

at(T , L2)← drive(T, L1, L2).



10/15

Common Issue

in general, action schemas have too many parameters

more than 30 in many domains

hard to ground all at the same time

idea: split grounding of atoms and actions



10/15

Common Issue

in general, action schemas have too many parameters

more than 30 in many domains

hard to ground all at the same time

idea: split grounding of atoms and actions



11/15

Removing “Action Predicates”

drive(T, L1, L2)← at(T , L1), adj(L1, L2).

at(T , L2)← drive(T, L1, L2).



12/15

Removing “Action Predicates”

at(T , L2)← at(T , L1), adj(L1, L2).



13/15

Reconstructing “Action Predicates” – Iterated Solving

facts:

adj(a, b). adj(b, a). adj(b, c). adj(c, b).

at(#1, a). at(#1, b). at(#1, c).

at(#2, a). at(#2, b). at(#2, c).

rules:

1 {first-param(X ) : at(X , L1)} 1.
1 {second-param(Y ) : at(T ,Y ), adj(Y , L2)} 1.
1 {third-param(Z ) : adj(L1,Z )} 1.

⊥ ←first-param(X ), second-param(Y ),¬at(X ,Y ).

⊥ ←second-param(Y ), third-param(Z ),¬adj(Y ,Z ).

grounding via iterated solving:

for each action schema, create an ASP program

each stable model is an instantiation of the action schema



13/15

Reconstructing “Action Predicates” – Iterated Solving

facts:

adj(a, b). adj(b, a). adj(b, c). adj(c, b).

at(#1, a). at(#1, b). at(#1, c).

at(#2, a). at(#2, b). at(#2, c).

rules:

1 {first-param(X ) : at(X , L1)} 1.
1 {second-param(Y ) : at(T ,Y ), adj(Y , L2)} 1.
1 {third-param(Z ) : adj(L1,Z )} 1.

⊥ ←first-param(X ), second-param(Y ),¬at(X ,Y ).

⊥ ←second-param(Y ), third-param(Z ),¬adj(Y ,Z ).

grounding via iterated solving:

for each action schema, create an ASP program

each stable model is an instantiation of the action schema



13/15

Reconstructing “Action Predicates” – Iterated Solving

facts:

adj(a, b). adj(b, a). adj(b, c). adj(c, b).

at(#1, a). at(#1, b). at(#1, c).

at(#2, a). at(#2, b). at(#2, c).

rules:

1 {first-param(X ) : at(X , L1)} 1.
1 {second-param(Y ) : at(T ,Y ), adj(Y , L2)} 1.
1 {third-param(Z ) : adj(L1,Z )} 1.

⊥ ←first-param(X ), second-param(Y ),¬at(X ,Y ).

⊥ ←second-param(Y ), third-param(Z ),¬adj(Y ,Z ).

grounding via iterated solving:

for each action schema, create an ASP program

each stable model is an instantiation of the action schema



14/15

Results with Iterated Solving

400 450 500 550 600 650 700 750 800
100

101

102

103

Ground Programs

T
ot
al
ti
m
e
in

se
co
nd
s

FD++

gringo
iterated



15/15

Conclusion

summary:

grounding planning tasks → grounding Datalog

improved by decoupling action predicates

better performance than off-the-shelf grounders


