
The Powerlifted Planning System in the IPC 2023
Augusto B. Corrêa1, Guillem Francès2, Markus Hecher3, Davide Mario Longo4, Jendrik Seipp5

1University of Basel, Switzerland
2Independent Researcher

3Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
4TU Wien, Institute of Logic and Computation, Austria

5Linköping University, Sweden
augusto.blaascorrea@unibas.ch, guillem.frances@gmail.com, hecher@mit.edu,

davidem.longo@gmail.com, jendrik.seipp@liu.se

In this planner abstract, we introduce the version of the
Powerlifted (Corrêa et al. 2020) planning system used in the
IPC 2023. Powerlifted is a lifted planner that works directly
on the PDDL representation of planning tasks (i.e., it does
not ground the tasks). It is a heuristic search planner,1 and it
contains several heuristics and search engines.

At its core, Powerlifted uses database and logic program-
ming techniques to search more efficiently. It relies on con-
junctive queries to generate successor states (Corrêa et al.
2020), Datalog programs to compute relaxed-plans (Corrêa
et al. 2021, 2022), and fast on-demand indexing to evaluate
states (Corrêa and Seipp 2022). Other works also used Pow-
erlifted to study how to produce very fast heuristics (Lauer
2020; Lauer et al. 2021), or extract lifted landmarks (Wich-
lacz, Höller, and Hoffmann 2021, 2022).

In contrast to previous usages, the Powerlifted version
used in the IPC 2023 is a sequential portfolio. It runs a
sequence of different configurations, each with a specified
timeout. Sequential portfolios have worked very well for
ground planners in previous IPCs (e.g., Helmert et al. 2011;
Röger, Pommerening, and Seipp 2014; Seipp and Röger
2018), so we extend the idea to lifted planners here. Pow-
erlifted participated in the satisficing and agile tracks.

Next, we highlight the techniques used in our IPC 2023
version of Powerlifted. We also discuss the new features
implemented within Powerlifted exclusively for the IPC.
To keep the abstract at an appropriate length, we refer to
the original papers for more details. We also refer to Ull-
man (1988, 1989) for a comprehensive explanation of the
database and logic programming terms used here.

Main Techniques
As mentioned above, Powerlifted relies on database tech-
niques for several aspects of its design. The key usages are
for state representation and successor generation.

In our submission, we use the sparse state representation
of Powerlifted. It represents a state as a database, where
each predicate is a table, and a ground atom that is true in
this state corresponds to a tuple in its associated table. Pow-
erlifted also supports an extensional representation, where
all (relaxed) reachable atoms are computed in advance, and

1Although Powerlifted has been used as a lifted SAT-planner as
well (Höller and Behnke 2022).

states are represented as a simple evaluation of true/false to
each atom — which is essentially the same representation as
some ground planners (e.g., Helmert 2006) use for STRIPS
tasks. Earlier experiments showed that the extensional rep-
resentation does not pay-off (Corrêa 2019), so we do not use
it in our portfolio.

Powerlifted also contains several different successor gen-
erators (Corrêa et al. 2020). We use the one based on Yan-
nakakis’ algorithm 1981 that exploits acyclicity of precon-
ditions and implicitly existentially quantified variables. The
version implemented in Powerlifted also takes inequalities
into account, which are originally not considered by Yan-
nakakis (1981) but are studied by later algorithms (Papadim-
itriou and Yannakakis 1999). The support for inequalities in
Powerlifted is an ad-hoc modification to Yannakakis’ algo-
rithm and has no efficiency guarantees.

We use a combination of different heuristics and search
engines to construct our portfolio. For heuristics, we use the
following:

• hblind: the blind heuristic evaluating non-goal states to 1,
and goal states to 0.

• hadd: the lifted implementation of the additive heuristic
(Bonet and Geffner 2001; Corrêa et al. 2021).

• hFF: the lifted implementation of the FF heuristic (Hoff-
mann and Nebel 2001; Corrêa et al. 2022).

• hRFF: the rule-based FF heuristic (Corrêa et al. 2022).

The last three heuristics are all based on delete-relaxation,
and hence they compute preferred operators (POs; Richter
and Helmert 2009) as a side-effect.

For search engines, we use different variants of greedy
best-first search (GBFS) and best-first width search (BFWS;
Lipovetzky and Geffner 2017):

• GBFS: a regular (eager) greedy-best first search search.
• Lazy GBFS: a GBFS with lazy state evaluation (Richter

and Helmert 2009). We always combine it with pre-
ferred operators (POs) and use two versions: (i) Lazy-
Prune, where the search prunes states produced by non-
preferred operators; (ii) Lazy-PO, where the search gives
priority to states generated by preferred operators.

• BFWS: a regular BFWS search (without pruning). It has
a width parameter w defining the size of the atom con-
junctions.



• Alt-BFWS: the alternation between BFWS and (lazy)
GBFS introduced by Corrêa and Seipp (2022). It also has
the width w as a parameter.

As commonly done (e.g., Francès et al. 2017), we limit the
choice of w to 1 or 2.

IPC 2023 Features
All techniques listed above have already been studied and
evaluated. Next, we introduce the novel ideas of our IPC
submission.

PDDL Support
Originally, Powerlifted only supported the fragment of
PDDL consisting of STRIPS with inequalities. To support
the more expressive fragment used in the competition, we
use CPDDL.2 CPDDL rewrites PDDL files to remove more
sophisticated features. It can also be used as a lifted plan-
ner, or as a tool to compute information in the lifted setting
(e.g., Fišer, Torralba, and Shleyfman 2019; Fišer 2020; Fišer
et al. 2021; Horčı́k and Fišer 2021). However, we only use
the PDDL rewriting machinery of CPDDL in our pipeline.

Overall, our submitted version of Powerlifted supports al-
most the full PDDL language: some negated preconditions
are not removed by CPDDL, and are still not supported
by Powerlifted — unless they are nullary. The planner just
aborts if it finds negated preconditions with arity higher than
0. Functional action costs are also not supported, and they
are simply ignored (i.e., the domain is transformed into unit
cost if they are present).

Sequential Portfolios
We added support for sequential portfolios to Powerlifted.
In a nutshell, one can provide a sequence of different search
configurations, each with a specific time limit. Powerlifted
then performs each search iteratively, based on the time limit
given. Time limits are adjusted every time a configuration
finishes before reaching its pre-defined limit. We use a total
of 22 configurations and 1943 instances to learn the portfo-
lio. All learned configurations transform the input tasks into
tasks with unit cost actions.

For the satisficing track, we use the Stone Soup algorithm
(Helmert et al. 2011; Röger, Pommerening, and Seipp 2014;
Seipp and Röger 2018) to learn a 30 minute portfolio. We
refer to the paper by Seipp and Röger (2018) for an expla-
nation of how this learning algorithm works. The learned
portfolio uses 10 configurations in total, which we show in
the top part of Table 1. The individual configuration with
highest coverage was Alt-BFWS (with w = 1) using hRFF.
It solved 1387 tasks. Our learned portfolio had a coverage of
1793 tasks.

For the agile track, we use the Greedy approximation al-
gorithm (Streeter and Smith 2008; Seipp 2018). Once again,
we refer to the referenced papers for details. The learned
portfolio for this track is described in the bottom part of
Table 1. This portfolio is much longer than the satisficing
track one, having 23 configurations in total, even though it

2https://gitlab.com/danfis/cpddl

Search Heuristic Time

Sa
tis

fic
in

g
Tr

ac
k

Alt-BFWS (w = 1) hRFF 476
Alt-BFWS (w = 1) hadd 38
Alt-BFWS (w = 2) hFF 74
Alt-BFWS (w = 2) hadd 359
Lazy-PO hFF 234
BFWS (w = 2) hblind 278
Lazy-PO hadd 80
BFWS (w = 1) hblind 116
GBFS hRFF 80
GBFS hadd 29

A
gi

le
Tr

ac
k

Alt-BFWS (w = 1) hFF 1
BFWS (w = 1) hblind 1
Lazy-PO hadd 2
BFWS (w = 1) hblind 2
Lazy-PO hFF 3
Alt-BFWS (w = 1) hFF 9
BFWS (w = 2) hblind 9
Lazy-PO hFF 9
Alt-BFWS (w = 1) hadd 17
BFWS (w = 2) hblind 35
Lazy-Prune hFF 23
Lazy-PO hadd 5
Alt-BFWS (w = 1) hFF 40
GBFS hadd 3
Lazy-Prune hadd 30
BFWS (w = 1) hblind 47
Lazy-PO hRFF 9
GBFS hRFF 6
Alt-BFWS (w = 2) hRFF 7
GBFS hadd 7
Lazy-PO hadd 7
GBFS hRFF 9
Alt-BFWS (w = 1) hRFF 10

Table 1: Ordered list of configurations used in the sequential
portfolio for each track. Time in seconds.

runs for only 5 minutes. As for the satisficing case, the indi-
vidual configuration with highest coverage was Alt-BFWS
(with w = 1) using hRFF, with a coverage of 1297 tasks.
Our learned portfolio had a coverage of 1372 tasks. The
coverage increase is not as significant as for the satisficing
track, mostly due to the higher overlap of solved tasks in the
shorter time limit.

Competition Results
Powerlifted did not perform well in either track it partici-
pated in. One of the key issues was the lack of PDDL sup-
port. Although we used CPDDL to normalize the domains,
and the organizers also provided alternative normalized do-
mains, only in Folding the normalization helped. In fact,
Powerlifted had the highest score in the Folding domain
among the planners participating in the satisficing track.



One problem was that the normalization (both from
CPDDL and from the organizers) did not remove negated
static preconditions (but non-static ones were removed). As
Powerlifted does not support any sort of negation in precon-
dition, two domains failed even in their normalized versions:
Labyrinth and Ricochet Robots.

The delete-relaxation heuristics in Powerlifted also pro-
duced bugs in the Folding domain. For some yet unknown
reason, the goal was always considered unreachable and the
heuristic became unsafe. Hence, only configurations using
the blind heuristic could solve this domain. By the time of
this report, it is unclear what the source of the bug was. It
is interesting that Powerlifted was still the best-performing
participant in this domain, despite the bug in its more in-
formed configurations.

In total, Powerlifted obtained non-zero scores in only
three of the seven domains in the satisficing track: Folding,
Quantum Layout, and Slitherlink. In the agile track, it did so
in only two domains: Folding and Quantum Layout. It is ob-
vious that Powerlifted must be extended to deal with more
expressive features of PDDL in order to be competitive in
the IPC.

Acknowledgments
We thank all Powerlifted contributors for their help to im-
prove the planning system. We especially thank Dillon
Chen, Daniel Fišer, Daniel Gnad, Malte Helmert, Pascal
Lauer, Florian Pommerening, Philipp Sauer, and Julia Wich-
lacz for their input, bug reporting, and discussions. We are
also grateful to Daniel Fišer for allowing us to use CPDDL,
and for showing us how to use it.

References
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1): 5–33.
Corrêa, A. B. 2019. Planning using Lifted Task Representa-
tions. Master’s thesis, University of Basel.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Goldman, R. P.; Biundo, S.; and Katz, M., eds.,
Proceedings of the Thirty-First International Conference on
Automated Planning and Scheduling (ICAPS 2021), 94–102.
AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation using Query Op-
timization Techniques. In Beck, J. C.; Karpas, E.; and
Sohrabi, S., eds., Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling (ICAPS
2020), 80–89. AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2022. The FF Heuristic for Lifted Classical Plan-
ning. In Honavar, V.; and Spaan, M., eds., Proceedings of
the Thirty-Sixth AAAI Conference on Artificial Intelligence
(AAAI 2022), 9716–9723. AAAI Press.
Corrêa, A. B.; and Seipp, J. 2022. Best-First Width Search
for Lifted Classical Planning. In Thiébaux, S.; and Yeoh,
W., eds., Proceedings of the Thirty-Second International
Conference on Automated Planning and Scheduling (ICAPS
2022), 11–15. AAAI Press.

Fišer, D. 2020. Lifted Fact-Alternating Mutex Groups and
Pruned Grounding of Classical Planning Problems. In
Conitzer, V.; and Sha, F., eds., Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence (AAAI
2020), 9835–9842. AAAI Press.
Fišer, D.; Gnad, D.; Katz, M.; and Hoffmann, J. 2021.
Custom-Design of FDR Encodings: The Case of Red-Black
Planning. In Zhou, Z.-H., ed., Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2021), 4054–4061. IJCAI.
Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator
Mutexes and Symmetries for Simplifying Planning Tasks. In
Proceedings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence (AAAI 2019), 7586–7593. AAAI Press.
Francès, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Representations are Over-
rated: Classical Planning with Simulators. In Sierra, C., ed.,
Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI 2017), 4294–4301. IJCAI.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In IPC 2011 Planner Abstracts,
38–45.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Höller, D.; and Behnke, G. 2022. Encoding Lifted Classi-
cal Planning in Propositional Logic. In Thiébaux, S.; and
Yeoh, W., eds., Proceedings of the Thirty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2022), 134–144. AAAI Press.
Horčı́k, R.; and Fišer, D. 2021. Endomorphisms of Lifted
Planning Problems. In Goldman, R. P.; Biundo, S.; and
Katz, M., eds., Proceedings of the Thirty-First International
Conference on Automated Planning and Scheduling (ICAPS
2021), 174–183. AAAI Press.
Lauer, P. 2020. Unary Relaxation. Bachelor’s thesis, Saar-
land University.

Lauer, P.; Torralba, Á.; Fis̆er, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In Zhou, Z.-H., ed., Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2021), 4119–4126. IJCAI.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Plan-
ning. In Singh, S.; and Markovitch, S., eds., Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI 2017), 3590–3596. AAAI Press.
Papadimitriou, C. H.; and Yannakakis, M. 1999. On the
Complexity of Database Queries. Journal of Computer and
System Sciences, 58(3): 407–427.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated



Planning and Scheduling (ICAPS 2009), 273–280. AAAI
Press.
Röger, G.; Pommerening, F.; and Seipp, J. 2014. Fast Down-
ward Stone Soup 2014. In Eighth International Planning
Competition (IPC-8): Planner Abstracts, 28–31.
Seipp, J. 2018. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
74–76.
Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80–82.
Streeter, M. J.; and Smith, S. F. 2008. New Techniques for
Algorithm Portfolio Design. In Proceedings of the 24th Con-
ference in Uncertainty in Artificial Intelligence (UAI 2008),
519–527.
Ullman, J. D. 1988. Principles of Database and Knowledge-
Base Systems. Volume I: Classical Database Systems. Com-
puter Science Press.
Ullman, J. D. 1989. Principles of Database and Knowledge-
Base Systems. Volume II: The New Technologies. Computer
Science Press.
Wichlacz, J.; Höller, D.; and Hoffmann, J. 2021. Landmark
Heuristics for Lifted Planning – Extended Abstract. In Ma,
H.; and Serina, I., eds., Proceedings of the 14th Annual Sym-
posium on Combinatorial Search (SoCS 2021), 242–244.
AAAI Press.
Wichlacz, J.; Höller, D.; and Hoffmann, J. 2022. Landmark
Heuristics for Lifted Classical Planning. In De Raedt, L.,
ed., Proceedings of the 31st International Joint Conference
on Artificial Intelligence (IJCAI 2022), 4665–4671. IJCAI.
Yannakakis, M. 1981. Algorithms for Acyclic Database
Schemes. In Proceedings of the 7th International Confer-
ence on Very Large Data Bases (VLDB 1981), 82–94. IEEE
Press.


