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Abstract

Classical planning problems are defined using some specifi-
cation language, such as PDDL. The domain expert defines
action schemas, objects, the initial state, and the goal. One
key aspect of PDDL is that the set of objects cannot be mod-
ified during plan execution. While this is fine in many do-
mains, sometimes it makes modeling more complicated. This
may impact the performance of planners, and it requires the
domain expert to bound the number of required objects be-
forehand, which can be a challenge. We introduce an exten-
sion to the classical planning formalism, where action ef-
fects can create and remove objects. This problem is semi-
decidable, but it becomes decidable if we can bound the num-
ber of objects in any given state, even though the state space
is still infinite. On the practical side, we extend the Power-
lifted planning system to support this PDDL extension. Our
results show that this extension improves the performance of
Powerlifted while supporting more natural PDDL models.

Introduction
Bob, a former classical planning researcher, opens a new lo-
gistics company. Real life, however, is not so simple. He first
needs to decide how many trucks he needs to buy. Buying
many trucks is not an issue – Bob became very rich work-
ing on classical planning – but he still wants to minimize
his expenses. He decides to tackle this problem using clas-
sical planning. Bob encodes the delivery locations and the
roads connecting them in PDDL (McDermott 2000; Haslum
et al. 2019). He then declares a bunch of truck objects in ad-
vance, and cleverly encodes his actions to balance the costs
between buying a new truck and doing more deliveries with
the same truck. But how does he know how many trucks
to declare in advance? Does he compute an estimate upper
bound or does he overshoot this bound? Computing it seems
as if he is solving the problem himself, so he goes with a
rough estimate of 10 trucks. But does the optimal solution
only require 10 trucks? What if it requires much more? Bob
gets worried and increases the number of trucks to 1,000.

He finally formalizes his problem and runs it on some
classical planners. All planners take months to solve his task.
At the end, the optimal plan uses 11 trucks. Even if 98.9% of

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the truck objects were irrelevant, they still impacted the per-
formance of the planners (Fuentetaja and de la Rosa 2016;
Silver et al. 2021). Bob ends up frustrated with the whole
procedure. If only there was a native way to let planners in-
troduce more objects as they plan.

In this paper we introduce a novel way of dealing with
problems where the objects are not all known upfront. In-
stead of preemptively declaring all objects in the definition
of the task, objects can be created and also removed via ac-
tion effects. There are three clear benefits to this extension:
(i) it makes the encoding simpler and more natural for sev-
eral domains (e.g., Long and Fox 2003), (ii) it reduces the
amount of expert knowledge needed in the domain encoding
(e.g., Petrov and Muise 2023), and (iii) it might improve per-
formance of planners by reducing state size and number of
unnecessary objects (e.g., Fuentetaja and de la Rosa 2016).

On the theoretical side, classical planning with object cre-
ation is semi-decidable. In other words, if a plan exists we
are guaranteed to find it. However, no algorithm will rec-
ognize, in general, if a task is unsolvable. If we talk about
bounded plan existence though, the problem becomes de-
cidable. Furthermore, for tasks with bounded states we show
decidability, even though the state-space is still infinite.

On the practical side, we introduce a PDDL extension that
allows for object creation/removal in the effect of actions.
Moreover, we extend the state-of-the-art lifted planner Pow-
erlifted (Corrêa et al. 2020) to deal with our formalism. Pow-
erlifted has better performance when using the PDDL exten-
sion in comparison to the original PDDL encodings where
all objects are declared beforehand and object creation/re-
moval is simulated with auxiliary predicates.

First-Order Logic
We consider first-order languages L = ⟨V,P⟩, where V is a
finite set of variables and P is a finite set of predicate sym-
bols. Each predicate symbol P ∈ P has an associated arity
ar(P ) ∈ N0. We restrict our definitions to languages without
constant or function symbols.1 Thus, a term is a variable. An
atom P (t1, . . . , tar(P )) is composed of a predicate symbol
P ∈ P and a tuple of terms ⟨t1, . . . , tar(P )⟩. We assume fa-
miliarity with common concepts from first-order logic, e.g.,

1We will discuss later how constant symbols can be emulated,
so not allowing them syntactically is no loss of generality.



formulas φ, the free variables free(φ) of a formula φ, and
the logical constant ⊤ (“true”).

An interpretation over a first-order language L is a tuple
I = ⟨UI , {P I}P∈P⟩ consisting of

• a finite2 set UI of objects called the universe, and

• for each predicate symbol P ∈ P , its interpretation
P I ⊆ (UI)ar(P ).

A variable assignment is a function σ (partial or total)
that maps the variables V to objects. For a variable v and ob-
ject t, we write σ[v/t] for the assignment that agrees with
σ on variables other than v and maps v to t. With some
abuse of notation, we extend σ to atoms, e.g., σ(P (v, w)) :=
P (σ(v), σ(w)).3

As usual, we write I, σ |= φ to denote that a formula
φ is true for a given interpretation and assignment. This
is defined as usual in first-order logic with one extension.
Under regular first-order logic conventions, variable assign-
ments are always total, and we must have σ(V) ⊆ UI for
the notation I, σ |= φ to be legal. In this paper, we do allow
assignments to map variables to objects that are not part of
the universe of I, but atoms involving such variables will
always be false, i.e., I, σ ̸|= P (v1, . . . , vn) if for some i we
have σ(vi) /∈ UI . This does not require a modification to
the standard semantics of atoms (if σ(V) ⊆ UI then define
I, σ |= P (v1, . . . , vn) iff ⟨σ(v1), . . . , σ(vn)⟩ ∈ P I), but
is rather an extension of which notations are considered le-
gal, i.e., we extend the notation I, σ |= φ to cases where
σ(V) ̸⊆ UI . This extension will prove convenient for defin-
ing the semantics of object-creation effects in the following
section (in particular, for conditional effects).

Planning Formalism

A planning task with object creation is a tuple Π =
⟨L, s0, G,A⟩, where L is a first-order language; s0 is the
initial state, which is an interpretation over L; G is the goal,
which is a closed formula over L; A is a finite set of action
schemas, defined below. In the context of planning tasks, in-
terpretations are known as states, and it is customary to de-
note them by s.

Example 1. We use the logistics scenario from the introduc-
tion as a running example. Variables are denoted in upper
case (T, L, etc.) and objects in lower case (c1, t, etc.). Our
task has a package p1 initially located at city c1. There are
two cities, c1 and c2, which are connected. The city c1 is the
headquarters of the company. The goal is to move p1 from
c1 to c2.

The predicate symbols are at, in, connected (binary) and

2Interpretations in the context of classical planning are always
finite.

3Note that for atoms a = P (v1, . . . , vn), σ(a) is not formally
an atom because σ(vi) is not a term. We can think of σ(a) as the
pair ⟨P, ⟨σ(v1), . . . , σ(vn)⟩⟩ consisting of a predicate symbol and
a tuple of objects.

headquarters (unary). The initial state s0 has:

Us0 := {p1, c1, c2}
Ps0 := {connected(c1, c2), connected(c2, c1),

at(p1, c1), headquarters(c1)}.

(We write Ps0 as a set of atoms here to simplify notation.)
We define the goal G := at(p1, c2).
The action schemas are defined in Example 2 below.

An action schema A consists of a precondition pre(A)
and an effect eff(A). The precondition pre(A) is a first-order
formula. Effects are defined inductively as follows:

• every atom a and its negation ¬a are effects, called sim-
ple effects;

• if e1, e2 are effects, then (e1 ∧ e2) is a conjunctive effect;
• if φ is a first-order formula and e is an effect, then (φ▷e)

is a conditional effect;
• if v ∈ V is a variable and e is an effect, then ∀v : e is a

universal effect;
• if v ∈ V is a variable and e is an effect, then ⊕v : e is an

object-creation effect;
• if v ∈ V is a variable, then⊖v is an object-removal effect.

As usual we may drop parentheses when there is no result-
ing ambiguity, e.g., we may write e1 ∧ e2 ∧ e3 instead of
((e1 ∧ e2) ∧ e3). Apart from object-creation and object-
removal effects, these definitions follow the PDDL formal-
ism (McDermott et al. 1998; Haslum et al. 2019), except
that we use logic notation. Intuitively, an object-creation ef-
fect creates a new object and binds it to a variable v within
the effect. An object-removal effect removes an object in the
resulting state.

Example 2. We define the action schemas buy, sell-all, and
move, where

pre(buy) := headquarters(L)
eff(buy) := ⊕T : at(T, L)

pre(sell-all) := ¬headquarters(L)
eff(sell-all) := ∀T : at(T, L) ▷⊖T
pre(move) := at(T, L)
eff(move) := ¬at(T, L) ∧ at(T,M).

Action schema buy says “if L is the headquarters, then
add a new truck to L”; sell-all says “if L is not the head-
quarters, sell all the trucks at L”; and move says “move a
truck T from location L to M”.

We extend the definition of free variables from formulas
to effects:

• for a simple effect e, free(e) is the set of variables ap-
pearing in e;

• free(e1 ∧ e2) = free(e1) ∪ free(e2);
• free(φ ▷ e) = free(φ) ∪ free(e);
• free(∀v : e) = free(e) \ {v};
• free(⊕v : e) = free(e) \ {v}.
• free(⊖v) = {v}.



We also extend the definition to action schemas as
free(A) = free(pre(A))∪ free(eff(A)). Free variables of ac-
tion schemas correspond to parameters in PDDL.
Example 3. The free variables of our three action
schemas are free(buy) = {L}, free(sell-all) = {L}, and
free(move) = {L,M, T}.

Next, we define semantics for action application, for
which purpose we introduce the changes function. This
function maps a state, variable assignment and effect to a
tuple of new objects, removed objects, added atoms, and
deleted atoms. We define changes(s, σ, eff) inductively:

• if eff is a positive simple effect a, then

changes(s, σ, eff) = ⟨∅, ∅, {σ(a)}, ∅⟩;

• if eff is a negative simple effect ¬a, then

changes(s, σ, eff) = ⟨∅, ∅, ∅, {σ(a)}⟩;

• if eff = (e1 ∧ e2), then

changes(s, σ, eff) = ⟨New1 ∪New2,Rem1 ∪ Rem2,

Add1 ∪Add2,Del1 ∪Del2⟩,
where ⟨Newi,Remi,Addi,Deli⟩ = changes(s, σ, ei)
for i ∈ {1, 2}.

• if eff = (φ ▷ e) then4

changes(s, σ, eff) =
{
changes(s, σ, e) if s, σ |= φ,

⟨∅, ∅, ∅, ∅⟩ otherwise;

• if eff = ∀v : e, then

changes(s, σ, eff) =
〈 ⋃
u∈Us

Newu,
⋃

u∈Us

Remu,⋃
u∈Us

Addu,
⋃

u∈Us

Delu
〉
,

where

⟨Newu,Remu,Addu,Delu⟩ = changes(s, σ[v/u], e)

for all u ∈ Us.
• if eff = ⊕v : e, then

changes(s, σ, eff) = ⟨New′ ∪ {new},Rem′,Add′,Del′⟩,

where new is a unique fresh object,5 and
⟨New′,Rem′,Add′,Del′⟩ = changes(s, σ[v/new], e).

• if eff = ⊖v, then

changes(s, σ, eff) = ⟨∅, {σ(v)}, ∅, ∅⟩,

Example 4. Let σ be an assignment with σ(L) = c1. Then

changes(s0, σ, eff(buy)) = ⟨{t}, ∅, {at(t, c1)}, ∅⟩
where t is a fresh object not in Us0 .

4This is the only place where we use our definition that s, σ ̸|=
P (v1, . . . , vn) if σ(vi) /∈ Us for some i.

5A fresh object is an object that is not in Us. We explain later a
simple way on how to choose new. The technical report also con-
tains a more thorough discussion on this topic and how to guarantee
uniqueness (Corrêa et al. 2024b).

We are now ready to complete the definition of action se-
mantics. A ground action As,σ is given by an action schema
A, a state s, and a variable assignment σ that maps the
free variables of A to elements of Us (its definition for
other variables does not matter). The ground action As,σ

is applicable in s if s, σ |= pre(A). The successor state
succ(s, σ,A) under As,σ is the state defined as follows. Let
changes(s, σ, eff(A)) = ⟨New,Rem,Add,Del⟩. For each
P ∈ P , let

AddP = {⟨t1, . . . , tn⟩ | ⟨P, ⟨t1, . . . , tn⟩⟩ ∈ Add}
DelP = {⟨t1, . . . , tn⟩ | ⟨P, ⟨t1, . . . , tn⟩⟩ ∈ Del}

Then succ(s, σ,A) = ⟨U ′, (P ′)P∈P⟩, where

U ′ = (Us \ Rem) ∪New

P ′ = {⟨t1, . . . , tn⟩ ∈ (P s \DelP ) ∪AddP

| t1, . . . , tn ∈ U ′}.

Example 5. Using σ from the previous example, the succes-
sor state s1 = succ(s, σ, buy) is:

Us1 := {p1, c1, c2, t}
Ps1 := {connected(c1, c2), connected(c2, c1),

at(p1, c1), at(t, c1), headquarters(c1)}.

A plan for state s0 is a sequence As0,σ1

1 , . . . , A
sn−1,σn
n

of ground actions such that s1, . . . , sn are states where
A

si−1,σi

i is applicable in si−1 and si = succ(si−1, σi, Ai)
for 1 ≤ i ≤ n, and sn |= G.

Remark 1. Our logical language does not have constant
symbols. We decided so because constant symbols in predi-
cate logic must have an interpretation, and hence difficulties
with logic semantics arise if an object named by a constant
symbol is removed. Instead, we observe that constants can
be emulated in our definition of planning with object cre-
ation.

Suppose c is a constant symbol that may appear in the
goal and the action schemas. We introduce a unary predicate
C. In the initial state, we ensure that the interpretation of C
consists of a single object. In every formula of the planning
task (preconditions, effect conditions, goal) in which c ap-
pears, we replace each atom P (t1, . . . , tn) that references
c with ∃x(C(x) ∧ P (t1, . . . , tn)[c/x]). This preserves the
normal logical semantics in all states where c exists, while
making all atoms referencing a removed object false. In a
similar way, we replace occurrences of c in all atomic ef-
fects occurring in the action schemas of the task. If e is such
an effect, we replace it with ∀x : (C(x)▷e[c/x]). Again, this
preserves the original semantics in states where c exists; in
states where c was removed, it does nothing.

We introduce two natural decision problems:

Definition 1 (OBJCREATION-PLANEX). Given a planning
task with object creation Π, is there a plan for Π?

Definition 2 (OBJCREATION-PLANLEN). Given a plan-
ning task with object creation Π and k ∈ N, is there a plan
for Π with length at most k?



Classical planning problems can be solved in many differ-
ent ways, for example using satisfiability (Kautz and Selman
1992) or heuristic search (Bonet and Geffner 2001). In this
work, we extend the planning as heuristic search paradigm to
planning with object creation. We assume that the reader has
familiarity with search algorithms and their terminology.

PDDL Extension
We extend the PDDL syntax with the keywords :new and
:remove. The first one allows for the creation of objects,
and the second for their removal. Their syntax is as follows:

(:new (?v1 . . . ?vN) eff)
(:remove (?v1 . . . ?vN))

where v1, . . . , vN are variables and eff is an effect. In con-
trast to the logic formalism above, the PDDL syntax allows
to create or remove many objects at once. This can be eas-
ily reproduced within our formalism. For object creation, the
PDDL encoding is equivalent to ⊕v1 : . . . : ⊕vN : eff, and
the encoding of the object removal effect is equivalent to
⊖v1 ∧ . . . ∧ ⊖vN .6

Example 6. In our running example, the action buy is writ-
ten in PDDL as

(:action buy
:parameters (?L)
:precondition (headquarters ?L)
:effect (:new (?T) (at ?T ?L)))

This extension simplifies many PDDL models. With stan-
dard PDDL, domain experts need to puzzle out how to simu-
late object creation. This usually involves adding extra pred-
icates and modifying conditions to take these predicates into
account. For example, in the original Settlers domain (Long
and Fox 2003) vehicles can be created during the search. To
encode this in PDDL, the authors introduced a new predicate
potential indicating that an object is a potential vehicle.
This leads to a domain model that appears less natural than
a version with native PDDL object creation.

Example 7. Under standard PDDL syntax, the action
schema from Example 6 is written as

(:action buy
:parameters (?L ?T)
:precondition (and (headquarters ?L)

(not (bought ?T)))
:effect (and (bought ?T)

(at ?T ?L)))

where bought is a new predicate necessary to track which
trucks have already been bought. The action has a new pa-
rameter ?T, and all (potentially buyable) trucks need to be
declared in advance.

Decidability Results
Planning with object creation is undecidable. We can use
our formalism to decide if a Turing Machine (TM) accepts

6In PDDL, parameters can be typed. We also allow for this in
our PDDL extension, but do not include types in our mathematical
formalization for simplicity, as standard predicate logic is untyped.

a given input. The proof relies on the usual technique of
expanding the tape of the TM on demand (cf. Reiter 2001,
Hoffmann et al. 2009).

Definition 3 (Turing Machine). A Turing Machine (TM) is
given by a tuple M = ⟨Q,Σ, δ, q0, qaccept⟩, where

• Q is a finite set of states;
• Σ is the input alphabet (a finite set of symbols),
• δ : (Q\{qaccept})×(Σ∪{□})→ Q×(Σ∪{□})×{L, R}

is the transition function;
• q0 ∈ Q is the start state;
• qaccept ∈ Q is the accept state.

The machine has a head that can move left (L) and right
(R), and a working tape. This tape is denoted as Tape. We
assume it is infinite to the right, but not to the left. Given an
input x ∈ Σ∗, Tape starts with x written on its |x| left-most
cells. The special symbol □ (which is not contained in Σ)
is on all the other (infinitely many) cells, denoting that they
are empty. The head of the machine starts at the left-most
cell (i.e., the first symbol of x).

Theorem 1. OBJCREATION-PLANEX is undecidable.

Proof. We reduce the problem of deciding whether a given
TM M accepts a given input x to the problem of deciding if
there is a plan for Π.

We use the following predicates for Π: is-blank(s)
encodes that s is the blank symbol □; is-left(d) and
is-right(d) encode that direction d is left (L) or right
(R); is-accept(q) encodes that q is the accepting state
qaccept ; state(q) encodes that the TM is currently in state
q; transition(q1, s1, q2, s2, d) encodes that δ(q1, s1) =
(q2, s2, d), i.e., from state q1 when reading s1 there is a tran-
sition that changes state to q2, writes s2, and moves the head
in direction d; head(c) indicates that the head is at cell c;
next(c1, c2) indicates that c1 is immediately to the left of
c2 in Tape; right-limit(c) indicates that cell c is the current
right-most cell; and symbol(c, s) encodes that cell c has the
symbol s written in it.

Our task has the following action schemas: (i) read a sym-
bol at cell c and move the head to the left; (ii) read a symbol
at cell c and move the head to the right, to a cell that has been
reached before or is in the input; and (iii) read a symbol at
cell c and move the head to the right, to a fresh cell, while
expanding the tape.

To keep things short, we only show action schema (iii).
We denote this action by A. It uses the variables q1, q2, s1,
s2, c1, c2, d, and b. We define pre(A) as

pre(A) := state(q1) ∧ transition(q1, s1, q2, s2, d)
∧ head(c1) ∧ symbol(c1, s1) ∧ right-limit(c1)
∧ is-right(d) ∧ is-blank(b),

and the effect eff(A) as follows:

eff(A) := state(q2) ∧ symbol(c1, s2) ∧ ¬state(q1)
∧ ¬symbol(c1, s1) ∧ ¬head(c1) ∧ ¬right-limit(c1)
∧ (⊕c2 : head(c2) ∧ right-limit(c2)

∧ next(c1, c2) ∧ symbol(c2, b))



Procedure 1: Compute plan for tasks with object creation

1: S ← ∅
2: openList← {s0}
3: while openList ̸= ∅ do
4: s← openList.Extract()
5: if s |= G then return plan
6: for all A ∈ A do
7: for all σ : free(A)→ Us do
8: if s, σ |= pre(A) then
9: openList← openList ∪ {succ(s, σ,A)}

10: return unsolvable

Action schemas (i) and (ii) are similar, but they have no
object creation effect: instead of moving the head to a new
tape cell, they use the predicate next to encode already exist-
ing cells.

Let s1, . . . , sn ∈ Σ∗ be the input word. We introduce ob-
jects c1, . . . , cn for the first n tape cells of the TM. In the
initial state s0 = {Us0 , {Ps0}}, the interpretation {Ps0}
contains

• transition(q1, s1, q2, s2, d) if δ(q1, s1) = (q2, s2, d);
• state(q0);
• symbol(ci, si) for all 1 ≤ i ≤ n;
• next(ci, ci+1) for all 1 ≤ i < n;
• right-limit(cn);7

• head(c1);
• is-blank(□);
• is-left(L), is-right(R); and
• is-accept(qaccept).

The universe Us0 contains all objects mentioned in {Ps0}.
The goal is defined as state(qaccept).

The initial state of our task exactly encodes the initial con-
figuration of M in input x: the head starts at the first cell,
the state is the initial state q0, and the input is encoded in the
first cells of the tape. The actions simulate the possible tran-
sitions between configurations of the TM. The important de-
tail is that we initialize only a finite number of symbol pred-
icates, corresponding to the length of x. Whenever we need
to use new cells, we can use the action schema described
above to append an extra cell at the end of the tape.

Task Π can simulate M precisely. If there exists a plan for
Π, it can be converted into an accepting sequence of config-
urations of M . Conversely, if there is an accepting sequence
of configurations, it corresponds to a plan of Π.

Theorem 1 shows that planning with object creation is un-
decidable in general. However, when plans exist we can still
compute them. In other words, OBJCREATION-PLANEX is
semi-decidable.

First, consider Procedure 1. It shows a general state-space
search (without duplicate elimination). It works just the
same for tasks with object creation. If openList behaves as

7For simplicity and without loss of generality, we ignore the
special case where n = 0.

a FIFO, then Procedure 1 is a breadth-first search. This pro-
cedure can also be extended to accommodate heuristic esti-
mates or other optimizations.

Theorem 2. OBJCREATION-PLANEX is semi-decidable.

For Theorem 2, note that although the state space is
infinite, we are searching for a finitely long path in a
finitely branching state space. For such scenarios, breadth-
first search is semi-complete because it will consider all
(finitely many) paths of length k before considering any
longer path. So if a solution exists, it will be found after
a finite computation. This implies the following result:

Theorem 3. Procedure 1 finds a plan in finite time for any
solvable planning task with object creation.

If we are interested in plans of bounded length, the prob-
lem is decidable. To see this, we can again run breadth-first
search, keeping track of the length of generated paths and
rejecting the input as soon as we exceed the given bound.

Theorem 4. OBJCREATION-PLANLEN is decidable.

Overall Procedure in Practice
There are still some details missing for a practical imple-
mentation of the above procedure. For example, we would
like to quickly generate successor states, and also to define
how to come up with fresh objects during object creation.

To generate successor states, we need to find all variable
assignments for the action parameters leading to applicable
actions. Let s be a state and A an action schema. We can
find all ground actions As,σ1 , . . . , As,σm by computing all
σi such that s, σi |= pre(A). As states are finite, solving this
problem is decidable. Free variables occurring in eff(A) but
not in pre(A) can take any possible value, so we consider all
possible assignments.

Now assume that A has an object creation effect ⊕v : e,
where e is an effect. At a given state s, we need to instantiate
v to a fresh object that is not in Us. There are infinitely many
ways to do so. The new object could be assigned to a natural
number, or it could be an arbitrarily long sequence of char-
acters, like aaaa, or anything else that is not in Us. But all
these choices are just names assigned to the new object, and
they do not influence the semantics of the successor state.
In other words, they are just syntactic. Any such choice of
name is isomorphic to the other ones. Choosing one well-
defined method to come up with names is sufficient. We call
a function that chooses the next fresh object in a given state
a choice function.

One of the simplest ways is to map every object o ∈ Us0

to an index id(o) = i for i ∈ N. Whenever we need a fresh
object in a state s, we compute the minimum j ∈ N not
assigned to any object in Us. We then introduce a new object
named j and set id(j) = j. In other words, new objects
are identified by the minimum unused index in the current
state.8 Removing an object o unassigns id(o). A successor
state keeps the same mapping as its parent state, besides the

8This requires keeping track of the id-value for created objects
as we process the effect of an action. For a choice function where
this is not necessary, see the technical report (Corrêa et al. 2024b).



newly created or removed objects. For example, if our state
s has three objects, we can map them to indices 1, 2, and 3.
If the action As,σ has an object-creation effect, this object
can be assigned to index 4. The successor state succ(s, σ,A)
still maps the three original objects to 1, 2, and 3, but it also
maps the fourth object to 4.

This brings us to yet another efficiency concern. Assume
that we have a state s and two actions A and B. Let us also
assume that A and B have the trivially true precondition ⊤,
and let σ denote the empty variable assignment. Moreover,
eff(A) := (⊕v : P (v)), while eff(B) := (⊕v : Q(v)). The
sequences ⟨As,σ, Bsucc(s,σ,A),σ⟩ and ⟨Bs,σ, Asucc(s,σ,B),σ⟩
lead to two different states, but both are semantically equiv-
alent: they only differ by the names used to identify the cre-
ated objects. The two resulting states are isomorphic, and
keeping only one of them is sufficient.

State-space search algorithms usually rely on duplicate
state detection, but this is not enough here because we
want to detect all isomorphic states. Unfortunately, no
polynomial-time algorithms are known for this (Grohe and
Schweitzer 2020).

This problem is similar to the one faced by orbit space
search algorithms (Alkhazraji et al. 2014; Domshlak, Katz,
and Shleyfman 2015). In orbit space, search nodes corre-
spond to equivalence classes of states instead of individual
states. Two states are considered equivalent if they are de-
tected to be symmetric. This symmetry detection is usually
done based on canonical states.

Ideally, a canonical state would be a unique representative
of an equivalence class. During search, it is sufficient to store
the canonical state for each encountered equivalence class
and then use standard duplicate elimination techniques. The
efficiency of canonical state computation is a crucial part of
the performance of orbit space search planners. In practical
implementations, computing true canonical representatives
is considered to be too expensive, and therefore canonical
states are approximated by a greedy procedure. This leads to
some lost opportunities for detecting equivalence, but does
not affect correctness.

In planning with object creation, one would expect sym-
metrical states to occur often, as the different names given to
new objects are another source of symmetry. We can tackle
this problem as in orbit search, by using (exact or approxi-
mate) canonical states for each equivalence class.
Example 8. Let us say we have two states s1 and s2, and
a, b, c and d are objects created during search:

Us1 = {a, b, c}, Ps1 = {P (a), P (c), Q(a), Q(b)},
Us2 = {b, c, d}, Ps2 = {P (b), P (d), Q(b), Q(c)}.

These states are equivalent via the object mapping {a 7→
b, b 7→ c, c 7→ d}. In this case, this would be already de-
tected by a very simple algorithm approximating canoni-
cal representatives by mapping each object to its index in
a lexicographical order: for s1 we would map {a 7→ 1, b 7→
2, c 7→ 3}, and in s2 we would map {b 7→ 1, c 7→ 2, d 7→ 3}.
In both cases, we would end up with the same state s′, show-
ing equivalence:

Us′ = {1, 2, 3}, Ps′ = {P (1), P (3), Q(1), Q(2)}.

Decidability for State-Bounded Tasks
Inspired by the work on bounded situation calculus (De Gi-
acomo, Lespérance, and Patrizi 2016), we consider the case
in which the number of objects in Us, for any state s, is
bounded by a fixed constant k. We say that such a task is
state-bounded, with bounding constant k.

As an example of state-bounded tasks, consider the Book-
shelf domain by Calvanese et al. (2018):
Example 9. An avid reader wants to read b ∈ N books. They
can perform three actions: buy a new book, read a book, and
donate a book. The reader can store at most k < b books in
their bookshelf. Buying a book occupies one space, while
donating a book frees a space in the shelf.

From a planning perspective, there is no need to keep
track of more than k book objects, as there is no seman-
tic distinction between these different books. Whenever the
reader buys a new book – meaning that we have space in the
shelf – we can reuse a previous object to represent this book.

There are several sufficient conditions to guarantee state-
boundedness (De Giacomo, Lespérance, and Patrizi 2016).
We refer the reader to the original paper for details. What is
important is that state-boundedness implies decidability.
Theorem 5. If the domain is state-bounded, then
OBJCREATION-PLANEX is decidable.

This case is decidable by direct reduction to situation cal-
culus (e.g., Claßen, Hu, and Lakemeyer 2007) using the re-
sults in De Giacomo, Lespérance, and Patrizi (2016). For
state-bounded tasks, after an object is removed from a state
s, this same object can be later re-created by an effect in
some state reachable from s. We say that a choice function
is recycling if it prioritizes the re-introduction of removed
objects over introducing new ones. The choice function de-
scribed above assigning every object to a natural number is
recycling. Intuitively, if we use a recycling choice function
we create only finitely many new objects, so Procedure 1
considers only finitely many states, and so it is decidable.
Theorem 6. For state-bounded tasks, Procedure 1 with a
recycling choice function decides OBJCREATION-PLANEX.

Implementation
We extended the Powerlifted planner (Corrêa et al. 2020)
to allow object creation effects. The source code of our im-
plementation, the benchmarks used, and the experiment data
are publicly available (Corrêa et al. 2024a).

Powerlifted is a heuristic search planner that only supports
STRIPS (Fikes and Nilsson 1971) extended with types, so
we only implemented a STRIPS fragment of our formalism.
We consider the following as a STRIPS task with object cre-
ation: preconditions are restricted to conjunctive formulas
over positive atoms; an effect can only be a simple, conjunc-
tive, or object-creation effect; the goal is a conjunction of
atoms. Note that Theorem 1 uses this fragment in the proof,
so plan existence for STRIPS tasks with object creation has
the same decidability results as the complete formalism.

In this fragment, the algorithm by Corrêa et al. (2020) is
still sufficient to compute the applicable ground actions. As
preconditions are conjunctions of atoms, the precondition of



an action A can be considered as a conjunctive query (Ull-
man 1989). If we answer this query over a state s, every tuple
in the answer corresponds to a function σ mapping free(A)
to Us such that As,σ is applicable. Corrêa et al. (2020) ex-
ploit structural properties of these queries (i.e., acyclicity) to
compute successor states efficiently.

We use the choice function mapping objects to natural
numbers as described above (i.e., a new object o is mapped
to the smallest natural number j such that there is no o′

where id(o′) = j). We did not implement any isomorphism
check between states, and we rely on syntactic duplicate de-
tection. We leave more sophisticated techniques based on
(approximate) canonical representatives as future work.

To improve the search, we modified the lifted width-based
search (Lipovetzky and Geffner 2012, 2017) implemented
by Corrêa and Seipp (2022). Best-first width search (BFWS)
(Lipovetzky and Geffner 2017) uses the novelty measure to
choose which states to expand. The novelty w(s) of a state s
is the size of the smallest non-empty set of ground atoms Q
such that s is the first state visited where s |= Q. For exam-
ple, if s is the first state containing atom a, then w(s) = 1. In
contrast, if there is no single atom that first occurred in s but
there is a subset {a, b} that first occurred together in s, then
w(s) = 2. A more informed version of novelty is wf (s),
which is computed only considering tuples in states s′ where
f(s) = f(s′). We implemented BFWS with w#G(s), where
#G is the number of atoms in the goal satisfied in s. We
only compute w#G up to pairs. If there is no new pair in s,
then w#G(s) = 3.

Novelty measures do not seem to fit with object creation:
introducing a fresh object makes the state have a novelty
of 1, so BFWS always prioritizes states that create objects.
In domains where the number of created of objects is un-
bounded, this could lead to an infinite sequence of actions.
To solve this, our implementation only consider tuples of
atoms that do not mention new objects. In other words, we
compute the novelty of a state over those tuples that only
mention objects in Us0 . However, this has the completely
opposite effect: new objects do not account for the novelty
of a state, so they do not add any information to the BFWS.
What can happen in this case is that BFWS finds plans cre-
ating the minimum number of objects necessary. As we will
see in our experimental results next, this does indeed happen
often. Yet, this modified BFWS still improves our planner.

Experimental Results
Our experiments were run on an Intel Xeon Silver 4114 pro-
cessor running at 2.2 GHz using a runtime limit of 30 min-
utes and a memory limit of 8 GiB per task.

Benchmarks
We use four PDDL domains with object creation in our
benchmarks. Two of them are based on previously existing
domains that encode object creation by listing all possible
objects at the initial state and using auxiliary predicates to
simulate object creation. This made it necessary in the origi-
nal PDDL to introduce a bound on the number of objects that
can be created and then experiment with different bounds to

deal with tasks that are wrongly considered unsolvable be-
cause the number of objects is too low.

For each domain, we have two versions: one using our
new PDDL extension, and one where all potential objects are
declared in the initial state. The version using the new syntax
is called the extended version, while the other is called stan-
dard version. This comparison is imperfect because only the
extended version captures the underlying problem faithfully,
but it allows us to compare our planner using object creation
with existing planning systems.

Cluster Management In this new domain, we must pro-
duce a set of files. These files are produced by executing
scripts on certain inputs. For example, executing script S
with input I1 might output O1, and executing S with I2
might output O2. Our benchmark contains instances with up
to 100 files and 20 different scripts. We also have a cluster
with multiple CPUs, where we can load and execute these
scripts with the corresponding files. The actions are to load
a file or script in a CPU, to execute a script, to save a file into
memory, and to add a new CPU to the cluster. So if a script
must be used several times (with different inputs to produce
different outputs), it might be preferable to load it only once
in one of the CPUs and leave it there. The problem in this
domain is to find the optimal amount of CPUs to obtain a
certain set of goal files as quick as possible. We can add new
CPUs to our cluster using an action that creates a new CPU
object. In the standard version, we pre-declare 5 CPUs.

Commutative Rings This domain was introduced by
Petrov and Muise (2023). A task in this domain is a state-
ment in elementary algebra. A plan is a proof for this state-
ment. The domain focuses on tasks related to commutative
rings. One task, for example, is to prove that for all commu-
tative rings R, a × 0 = 0 for every a ∈ R. Action schemas
represent the axioms of commutative rings, equality opera-
tions, definitions of products, sums, and inverses. Object cre-
ation can be used to model existential axioms and build com-
plex expressions. For instance, given a commutative ring R,
for any a, b ∈ R there exists an element a+b ∈ R. So we can
construct a new object c and define c = a+b to be used later.
In the original domain, Petrov and Muise (2023) introduce
a fixed number of undeclared variables in the initial state.
However, this makes the task harder to ground, while also
bounding the number of proofs the planner can explore. We
used the original tasks of this domain, but compiled away
conditional effects, which are not supported by Powerlifted.

Logistics Company This is a new domain, and it is sim-
ilar to the running example in our paper. We have a set of
connected locations and a set of packages that must be de-
livered to specific locations. Our company has headquarters
in a few locations, and we can buy trucks that appear at one
of these headquarters. Actions are to move a truck, (un)load
packages, and buy a new truck. The challenge is to find a
good balance of how many trucks to buy to deliver all pack-
ages efficiently. While all tasks are solvable with one single
truck, it might be that using multiple trucks decreases the
plan length significantly. In our instances, the number of lo-
cations varies between 3 and 1 000, the number of packages



PWL++ PWL FD

B W B W B W

Cluster Man. (20) 3 10 2 14 5 12
Comm. Ring (15) 2 10 9 14 8 10
Logistics Comp. (20) 3 18 5 8 5 6
Settlers (20) 3 8 3 6 3 4

Total (75) 11 46 19 42 21 32

Table 1: Coverage of PWL++, PWL, and FD on our bench-
mark. For each planner, we tested a configuration with
breadth-first search (B) and best-first width search (W).

from 1 to 100, and the number of headquarters from 1 to 20.
In the standard version, the number of declared trucks at the
initial state is twice the number of headquarters in the task.

Settlers This domain is based on the Settlers domain used
in IPC 2002 (Long and Fox 2003). The domain focuses on
resource management. Products and factories must be built
from raw materials and used in the manufacturing or trans-
portation of further materials. The objective is to construct a
variety of building types at various specified locations. The
original domain is numeric: the quantity of resources at each
location is defined by numeric fluents. But these fluents are
discrete and their maximum values are always bounded, so
one can emulate them using predicates to encode a succes-
sor relation over the natural numbers. Long and Fox (2003)
mention that this domain highlights the necessity of object
creation during plan execution. In the standard version, all
objects had to be declared in advance, which made ground-
ing harder and made the modeling more convoluted. We re-
moved “maritime” objects – wharfs, docks, ships – in our
version, because the original instances were too challenging
for all planners.

Results
We ran Powerlifted on both versions of our benchmarks
(standard and extended versions). Powerlifted using the
standard versions is denoted as PWL, and using the extended
versions as PWL++. For each, we tested two configurations:
a breadth-first search (BFS), and the BFWS as explained in
the previous section. These are not the best configurations
of Powerlifted (e.g., Corrêa et al. 2022), but are the best-
performing configurations that we could extend to support
object creation within the scope of this paper.9

Table 1 shows the coverage of all methods in our bench-
mark. PWL++ outperforms PWL when using BFWS, but it
has lower coverage with BFS. The BFWS implementation
does not consider tuples considering newly created objects.
This can be an issue with the extended versions, as only
some objects are considered when evaluating the novelty of
a state. But this is not always problematic. In the Logistics

9It would be interesting to extend delete-relaxation heuristics
as implemented in Powerlifted to object creation, but this is not a
simple task and requires developing its own theory.

Company domain, for example, using one truck is already
enough to solve the task so BFWS does not favor the cre-
ation of new trucks. This increases coverage in the extended
version but also impacts plan quality. In some cases, the op-
timal plan had length 10, but PWL++ with BFWS only found
plans with more than 100 steps.

With respect to runtime, PWL++ and PWL are compara-
ble in both configurations. With respect to memory, there
are larger differences depending on the domain. In a few in-
stances of the Commutative Rings domain, PWL++ used up
to 10 times more more memory than PWL. In this domain,
some of the original instances in the standard version do not
use any undeclared variables. In the extended version, the
planner is not aware that they are not needed, so they are in-
troduced multiple times. This blows up the size of the state
space. To solve this problem it is crucial to have heuristic es-
timates that can better decide when more objects are needed.

Powerlifted has some advantages when solving tasks that
are hard to ground, but its search capabilities are not on par
with ground planners. To compare PWL++ with a state-of-
the-art heuristic search planner, we also ran Fast Downward
(Helmert 2006) on the standard versions. To keep the results
comparable, we used the blind search and we implemented
BFWS in Fast Downward. We denote Fast Downward as FD
in the rest. Results are also shown in Table 1.

When using blind search, FD is significantly better than
PWL++ and somewhat better than PWL. This is consistent
with previous results (Corrêa et al. 2020). For larger prob-
lems, grounding becomes a challenge (Corrêa et al. 2023).
This can be seen when comparing FD with BFWS and
PWL++ with BFWS. Although the coverage of FD increases
by almost 50% when switching from blind search to BFWS,
it is still worse than PWL++. Only in the Cluster Manage-
ment domain, FD outperforms PWL++. This is also the only
domain where all tasks can be grounded within seconds,
as the number of ground actions is low (a few thousands)
even declaring all objects in advance. In the Logistics Com-
pany domain, where several of the declared objects are not
necessary (although helpful) grounding does become a ma-
jor bottleneck. In this domain, FD has worse coverage than
PWL++. The same happens in the Commutative Rings do-
main, even though in this domain we have at most one un-
declared variable per task – but in the grounding several ac-
tions use this object. As noted by Petrov and Muise (2023),
adding one single undeclared variable to the initial state is
already enough to make the grounding much harder.

We also analyzed the number of expansions for each
method. The results vary with the domains. For example,
PWL++ expands fewer states than PWL and FD in the Lo-
gistics Company and Cluster Management domains, because
the search in PWL++ is guided directly to a goal state using
the minimum amount of objects. However, the plan found by
PWL++ is usually longer than the ones found by PWL and
FD. In the Settlers domain, all methods have a similar num-
ber of expansions. As object creation is very restricted in this
domain (depends on the resources available at the state), it
is not so impactful in the performance.



Related Work
Object creation has been considered several times as an im-
portant feature for large-scale planning systems (Long and
Fox 2003; Petrov and Muise 2023). So far, all methods try-
ing to solve this problem used compilations. Fuentetaja and
de la Rosa (2016) present an automatic compilation of “irrel-
evant objects” (i.e., objects whose name do not specifically
matter) into counters. While this is sufficient in certain do-
mains, it has inherent limitations. Two irrelevant objects can
only be compiled into the same counter if they are fungible
and can be easily interchanged in plans. In our logistics com-
pany example this is not the case, as trucks can develop very
different properties in a plan (e.g., each truck can be at a dif-
ferent location and carry a different set of packages). More-
over, counters must be first compiled into relations, which
forces them to be bounded. Similar compilations have been
proposed to automatically encode indistinguishable objects
into counters represented by numeric variables (Riddle et al.
2016).

In situation calculus (McCarthy 1963), infinitely many
objects have already been considered (cf. Reiter 2001), al-
though mostly in theory. In comparison to our work, the
most relevant result in situation calculus is the work by De
Giacomo, Lespérance, and Patrizi (2016). They show that
bounded situation calculus – when the number of objects in
tuples is bounded – is decidable. As mentioned before, this
is essentially the same as planning with object creation for
tasks with a bounded number of objects.

Lifted planners were dominant in the 1990s (Penberthy
and Weld 1992; Younes and Simmons 2003). Although
progress in this area was slow during the early 2000s, recent
work showed its usefulness in hard-to-ground benchmarks
(Corrêa et al. 2021; Lauer et al. 2021; Wichlacz, Höller, and
Hoffmann 2022; Höller and Behnke 2022; Shaik and van de
Pol 2022; Horčı́k, Fišer, and Torralba 2022; Ståhlberg 2023).
We used the Powerlifted planner, but other lifted heuristic
search planners could be extended to deal with object cre-
ation (e.g., Horčı́k and Fišer 2021).

Conclusion
We formalized an extension of classical planning that allows
for object creation and removal during plan execution. In our
formalism, this creation/removal happens as special kinds of
action effects.

In general, planning with object creation is semi-
decidable; when states are bounded, however, the problem
becomes decidable. We also implemented support for ob-
ject creation in the Powerlifted planner. In our experimen-
tal results, support for this extension caused no harm to the
planner performance. It was also on par with state-of-the-art
classical planners.

In the future, it would be useful to study how to efficiently
identify isomorphic states to reduce the search space. To fur-
ther scale performance, one could use more informed heuris-
tic estimates for tasks with object creation and develop a
more sophisticated integration of width-based search with
object creation.
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