
Delete-Relaxation Heuristics for Lifted Classical Planning

Augusto B. Corrêa,1 Guillem Francès,2 Florian Pommerening,1 Malte Helmert1

1 University of Basel, Switzerland
2 Universitat Pompeu Fabra, Spain

{augusto.blaascorrea,florian.pommerening,malte.helmert}@unibas.ch
guillem.frances@upf.edu

Abstract

Recent research in classical planning has shown the impor-
tance of search techniques that operate directly on the lifted
representation of the problem, particularly in domains where
the ground representation is prohibitively large. In this paper,
we show how to compute the additive and maximum heuris-
tics from the lifted representation of a problem. We do this by
adapting well-known reachability analysis techniques based
on a Datalog formulation of the delete relaxation of the prob-
lem. Our adaptation allows us to obtain not only the desired
heuristic value, but also other useful heuristic information
such as helpful actions. Our empirical evaluation shows that
our lifted version of the additive heuristic is competitive with
its ground counterpart on most of the standard international
competition benchmarks, and significantly outperforms other
state-of-the-art lifted heuristic methods in the literature.

Introduction
Heuristic search has been one of the dominant approaches to
classical planning over the last decades. Although planning
problems are often specified in some first-order logic lan-
guage, most heuristics to date have been defined and imple-
mented assuming a ground, propositional representation of
the problem (Haslum and Geffner 2000; Bonet and Geffner
2001; Hoffmann and Nebel 2001; Edelkamp 2001; Helmert
2006; Richter and Westphal 2010). Thus, most planners take
the first-order representation of the problem and ground it at
preprocessing time, usually through efficient techniques that
combine grounding with relaxed reachability analysis and
work well for most standard benchmarks (Helmert 2009).

In recent years, however, a number of hard-to-ground
planning problems have emerged (Haslum 2011; Koller
and Petrick 2011; Matloob and Soutchanski 2016). These
problems are challenging for standard planners because the
ground representation is too large to compute without run-
ning out of memory. One way to address this problem is to
restrict grounding to those objects and actions in the problem
that are deemed relevant (Lang and Toussaint 2009; Gnad
et al. 2019), which requires good relevance estimators. An-
other option is to rewrite the problem encoding automati-
cally to reduce the number of ground actions, but this could
obscure the problem structure (Areces et al. 2014).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we take a different approach, and aim at
computing well-known classical planning heuristics directly
from the lifted representation of the problem. More specifi-
cally, we extend the Datalog formulation of relaxed reach-
ability by Helmert (2009) to perform the computation of
the additive heuristic hadd, the maximum heuristic hmax, and
other relevant information of the delete relaxation such as
helpful actions (Bonet and Geffner 2001; Hoffmann and
Nebel 2001). Our work takes inspiration from recently-
published techniques that generate the successors of a state
within a forward search context using query optimization
techniques (Corrêa et al. 2020). Combined with these tech-
niques, our work results in a forward-search heuristic plan-
ner that can entirely skip the standard grounding step, which
seems to be a necessary condition to solve some of the
above-mentioned hard-to-ground problems. We discuss sev-
eral optimizations and techniques to alleviate the cost of
computing the heuristics in a lifted manner, and benchmark
our novel algorithms on a suite with both standard and hard-
to-ground planning domains from the literature. Overall, our
lifted heuristics outperform previous lifted heuristics and are
surprisingly competitive with their ground counterparts.

The rest of the paper is organized as follows. We start with
the necessary background on classical planning and Data-
log. We present the standard Datalog-based formulation of
reachability analysis, and extend it to compute hadd and hmax

values. We describe an algorithm to perform such computa-
tion, discuss different implementation choices and optimiza-
tions, and evaluate them experimentally. We close by dis-
cussing related work and conclusions.

Background
We introduce some essential background and notation.
Throughout the paper, we use boldface t to denote tuples of
symbols of some kind. We use R+ for the non-negative reals,
and also use R∞ = R+∪{∞}. Both planning languages and
Datalog assume a logical vocabulary made up of an infinite
set of variables V , a finite number of predicate symbols P ,
each with a fixed non-negative integer arity, and a finite set
of constants. All vocabularies we consider are function-free.
If P is an n-ary predicate and t = 〈t1, . . . , tn〉 is a tuple of
constants and variables, then P (t) is an atom. When t has no
variables, the atom is called ground. A variable substitution
σ maps variables from V to constants.

Planning
We consider STRIPS planning tasks with inequality con-
straints in their preconditions, following Corrêa et al.
(2020). A (lifted) STRIPS planning task is a tuple Π =
〈P, O,A, s0, γ〉. P is a finite set of predicate symbols, and
O is a finite set of constants, also called objects. A state
is a set of ground atoms and describes the situation in the
world where exactly those atoms are true. The initial state
s0 describes the world at the start of the planning process.
The set of action schemas A describes how the world can
be changed. Each action schema a[∆] ∈ A consists of a
precondition pre(a[∆]), an add list add(a[∆]), a delete list
del(a[∆]), a set of inequality constraints ineq(a[∆]), and a
cost cost(a[∆]) ∈ R+. The first three components are sets
of atoms, whose variables are from the set of variables ∆.
Each inequality constraint is a pair 〈X,Y 〉 that forbids that
variables X and Y of ∆ be substituted with the same object.

An action schema a[∆] with ∆ = ∅ is called a ground ac-
tion (sometimes just action). Note that ground actions have
no variables or inequality constraints, and their precondi-
tion, add, and delete lists are sets of ground atoms. A vari-
able substitution σ that is defined on all variables ∆ of an
action schema a[∆] and respects all of its inequality con-
straints is called a grounding of the schema. The applica-
tion of a grounding to a schema results in the component-
wise application of the grounding to all atoms in pre(a[∆]),
add(a[∆]), and del(a[∆]). A planning task Π where all ac-
tion schemas are ground is called a ground planning task.

We say that ground action a is applicable in a state s, if s
satisfies all preconditions of a, i.e., if pre(a) ⊆ s. Applying
an applicable action a in a state s results in the successor
state sJaK = (s \ del(a)) ∪ add(a). A sequence of actions
π = 〈a1, . . . , an〉 is applicable in a state s if ai is applicable
in state sJa1K · · · Jai−1K for all i and we write the successor
state as sJπK = sJa1K · · · JanK. The goal γ of our planning
task defines the conditions we want to reach by applying
actions. It is a set of ground atoms and any state s such that
γ ⊆ s is called a goal state. A solution to the planning task
or plan is a sequence of ground actions π = 〈a1, . . . , an〉
that is applicable in the initial state s0 and leads to a goal
state, i.e., γ ⊆ s0JπK. The cost of such a plan is

∑
i cost(ai),

and a plan with minimal cost is an optimal plan.

Delete Relaxation
The delete relaxation (Bonet and Geffner 2001) of a (ground
or lifted) planning task Π is the task Π+ obtained from Π
by setting del(a[∆]) = ∅ for all actions schemas a[∆]. By
ignoring the delete lists, applying an action a in a state s
can only add ground atoms to the state, so all actions that
are applicable in s remain applicable in sJaK. Thus Π+ is
an overapproximation of Π in the sense that it preserves all
plans. A plan for Π+ is often called a relaxed plan for Π.

The delete relaxation of a task Π can be used for ground-
ing purposes (Helmert 2009): an atom not reachable in Π+ is
not reachable in Π either, so any ground action having such
an atom in its precondition can safely be ignored.

Computing optimal plans for a delete-free task is NP-
complete (Bylander 1994), but several approximations com-
pute (possibly suboptimal) plans in polynomial time (Bonet

and Geffner 2001; Hoffmann and Nebel 2001). These poly-
nomial relaxed plans are a common source of heuristic guid-
ance on the non-relaxed task Π.

One such delete-relaxed heuristic is the additive heuristic
hadd defined originally for ground STRIPS tasks without ac-
tion costs (Bonet and Geffner 2001), and extended to action
costs in (Keyder and Geffner 2008). Its definition relies on
an estimate h(p, s) of the cost of achieving ground atom p
from state s in the delete-free Π+:

h(p, s) =

0, if p ∈ s

min
a∈Ap

cost(a) +
∑

q∈pre(a)

h(q, s)

, otherwise,

(1)

where Ap is the set of ground actions with p in the add list.
The value of hadd is then defined as hadd(s) =

∑
p∈γ h(p, s).

The reason why hadd does not result in optimal estimates
for Π+ is that when computing the cost of reaching a set
of atoms, say {p, q}, it ignores that reaching p might help
in reaching q too. Replacing the

∑
operator by the max

operator in the equations above yields the admissible hmax

heuristic (Bonet and Geffner 2001).

Datalog
A Datalog rule r has the form φ0 ← φ1, . . . , φm, form ≥ 0,
where each φi is an atom, φ0 is called the rule head, and
φ1, . . . , φm is called the rule body. All atoms in Datalog are
function-free. We use head(r) to denote the atom φ0 and
body(r) to denote the set {φ1, . . . , φm}. A Datalog pro-
gram is a pair D = 〈F ,R〉, where F is a set of ground
atoms called the set of facts and R is a set of Datalog rules.
We use Const(D) to denote the set of all constants appear-
ing in D, and Atoms(D) to denote the (finite) set of all
ground atoms made up from predicates and constants ap-
pearing in D. We denote by Ground(r) the set of rules
obtained by applying all possible variable substitutions of
variables in r ∈ R by constants in Const(D). We also use
Ground(R) = ∪r∈RGround(r).

Given a Datalog rule r ≡ φ0 ← φ1, . . . , φm with vari-
ables v1, . . . , vk, we define r∀ ≡ ∀v1 . . . vk . φ1∧. . .∧φm →
φ0. The canonical model of a Datalog programD = 〈F ,R〉
is the set M ⊆ Atoms(D) of ground atoms φ such that
F ∪ {r∀ | r ∈ R} |= φ. The canonical model is unique, and
can be computed in time polynomial in the number |M| of
atoms in the model. However, |M| can be exponential in the
size of D. In fact, if the set of rulesR is considered as fixed,
computingM is P-complete, but if R is considered as part
of the input, then it is EXPTIME-complete (Abiteboul, Hull,
and Vianu 1995; Dantsin et al. 2001).

Datalog Formulation of Delete Heuristics
We now introduce the Datalog-based approach by Helmert
(2009) to ground a planning task through a relaxed reach-
ability analysis, and make explicit a connection with delete
heuristics that we will exploit in subsequent sections.

Datalog-Based Grounding of Planning Tasks
Let Π = 〈P, O,A, s0, γ〉 be a planning task and s one of its
states. We define D(Π, s) = 〈F ,R〉 as the Datalog program
where F contains all ground atoms in s, andR is defined as
follows: If γ = {γ1, . . . , γn},R contains a rule

goal← γ1, . . . , γn. (2)
For each action schema a[∆] ∈ A with pre(a[∆]) =
{φ1, . . . , φn},R contains one applicability rule

a-applicable(x)← φ1, . . . , φn, (3)
where x contains all variables in ∆ in some arbitrary order.
We call a-applicable an action predicate. Finally, for
each atom ψ(x′) ∈ add(a[∆]),R contains one effect rule

ψ(x′)← a-applicable(x). (4)
Helmert (2009) shows that the canonical model M

of D(Π, s0) contains exactly (i) all ground atoms reach-
able in the delete relaxation Π+, (ii) ground atom
a-applicable(o) iff ground action a[o] is applicable in
some reachable state of Π+, and (iii) the atom goal iff Π+

is solvable, i.e., all goal atoms are reachable from s0 in Π+.

Correspondence with hadd and hmax

We can establish a straightforward correspondence between
a simple generalization of the Datalog program D(Π, s) and
the h-estimate of the cost of reaching any atom from state
s in the planning task Π given in Equation (1). For that, we
need to extend Datalog programs with weights that will be
used to capture action costs.
Definition 1 (Weighted Datalog program). A weighted Dat-
alog program is a tuple 〈F ,R〉, where F is a set of facts and
R a set of weighted Datalog rules. A weighted Datalog rule
r is made up of a head head(r) and a body body(r), as for
standard Datalog rules, plus a weight w(r) ∈ R+. The set
Ground(r) and the canonical model of a program are de-
fined analogously to the standard case; in particular, vari-
able substitutions leave the weight of rules unchanged, and
the definition of the canonical model ignores rule weights.
Definition 2. Let Π be a planning task.Dw(Π, s) = 〈F ,R〉
is the weighted Datalog program defined as D(Π, s), but
where each rule r ∈ R has weight w(r) = cost(a), if
head(r) = a-applicable(·), and w(r) = 0 otherwise.

To establish our correspondence, we define a value vD(p)
for any ground atom in a weighted Datalog program:
Definition 3 (vD). Let D be a weighted Datalog program.
The value vD(p) of atom p ∈ Atoms(D) is

vD(p) =

0, if p ∈ F

min
r∈A(p)

w(r) +
∑

q∈body(r)

v(q)

 , otherwise,

(5)

whereA(p) = {r | r ∈ Ground(R) and head(r) = p}, and
the min of an empty set is assumed to be ∞. When clear
from the context, we denote vD with the simpler v.

The following proposition can be proven by rewriting the
sets of equations defining v and h until equivalence. Modi-
fying vD to obtain hmax values instead is straightforward.

Algorithm 1 Computing v for a weighted Datalog pro-
gram D = 〈F ,R〉

1: V := DEFAULTHASHTABLE(Atom,R∞,∞)
2: queue := PRIORITYQUEUE(Atom,R+)
3: M := ∅
4: for fact ∈ F do
5: V [fact] := 0
6: queue.PUSH(fact, 0)
7: while not queue.EMPTY() do
8: p := queue.POPMIN()
9: if p /∈M then

10: M :=M∪ {p}
11: for (head w← body) ∈ NEWRULES(p,M,R) do
12: cost := w +

∑
q∈body V [q]

13: if cost < V [head] then
14: V [head] := cost
15: queue.PUSH(head, cost)
16: return V

17: function NEWRULES(p,M,R)
18: return {(head w← body) ∈ Ground(R) |

p ∈ body and body ⊆M}

Proposition 1. Let Π be a planning task and s one of its
states. Let h be the function defined in Eqs. (1). Then,

1. If p is a ground atom of Π, then vDw(Π,s)(p) = h(p, s).
2. If p is a ground atom a-applicable(o), then
vDw(Π,s)(p) = cost(a) +

∑
q∈pre(a) h(q, s).

3. vDw(Π,s)(goal) = hadd(s).

Lifted Computation of hadd

We next present an algorithm that takes as input a weighted
Datalog program D and computes v(p) for each ground
atom p ∈ Atoms(D). Our approach builds on the algo-
rithm given by Helmert (2009) to incrementally compute the
canonical model of any standard Datalog program. The main
difference with Helmert’s algorithm is that ours computes
the v values as it builds the canonical model of the program.

The pseudocode for our algorithm is shown in Algo-
rithm 1. The algorithm (lines 1–3) uses (i) a hash table to
store the values of v, mapping (ground) atoms to real values,
and providing a default value of∞ for uninitialized entries;
(ii) a priority queue of atoms sorted by a given real priority,
breaking ties arbitrarily; (iii) a setM that grows monoton-
ically along the execution of the algorithm and at the end
contains all ground atoms in the canonical model.

The main loop (lines 7–15) works as a generalized Dijk-
stra algorithm, with the lowest-cost ground atom p removed
from the queue at each iteration, added to the model, then
checked to see if it triggers any new ground rule. Indeed, the
NEWRULES function computes all ground rules whose body
(a) is included in the modelM computed so far, and (b) con-
tains the atom p being considered. This is done through a
first-order unification procedure described in more detail in
the next subsection. For each newly-triggered ground rule,

if the v-value of its head atom improves the previous stored
value, we update it and enqueue the atom.

Once the priority queue pops an atom p with V [p] = C, it
will never pop an atom p′ with V [p′] < C. This happens be-
cause all rule weights are non-negative by definition and, as
the algorithm is a generalized version of Dijkstra’s, as soon
as an atom p is added to M, the value of V [p] is minimal
and equals its desired v-value.

Efficient Implementation
Algorithm 1 allows to compute the hadd value of any state s
from the lifted representation of the planning task Π alone:
first generate the weighted Datalog program Dw(Π, s), then
compute the v-value of the goal atom. As we are only in-
terested in obtaining the hadd value, the algorithm can stop as
soon as the goal atom is extracted from the queue, since at
that point V [goal] = vDw(Π,s)(goal) = hadd(s). We use
this early stopping rule in all the experiments below, and call
the entire procedure L-hadd.

As in typical algorithms for computing hadd from the
ground representation of Π (Liu, Koenig, and Furcy 2002),
the runtime and memory consumption of L-hadd is worst-
case polynomial in the size of the ground representation of
Π, which can in turn be exponentially larger than Π. How-
ever, while algorithms working on the ground representa-
tion always have to pay the price of this one-off exponen-
tial grounding step, L-hadd grounds the task only lazily, ex-
plicating those atoms and actions with hadd value no larger
that the hadd value of the atoms of the goal. This could re-
sult in a time advantage, but this is typically not the case,
since this grounding step is amortized over many calls to the
heuristic. However, in terms of memory consumption there
is no such amortization effect. The memory consumption of
grounded implementations equals the total size of all ground
atoms and actions, which in some tasks can easily exhaust
the available memory, whereas the memory consumption of
L-hadd can be sublinear in that size of the grounded problem.

An interesting implementation choice is posed by the
NEWRULES function, which is in charge of computing all
ground rules that are (newly) triggered by the atom p that
was just added to the modelM being built. Although its def-
inition in Algorithm 1 is given in terms of the set of ground
rules of the input Datalog program D = 〈F ,R〉, the chal-
lenge is to implement it without explicitly computing the
set Ground(R). To do that, the function needs to perform
a particular first-order unification query which consists on
finding, for each (lifted) rule r ∈ R, all substitutions σ of
the variables in r by Const(D) such that the set that results
from applying σ to all atoms in body(r) is contained inM,
and at the same time contains a given ground atom p.

To perform this unification efficiently, we use the rule-
rewriting approach described by Helmert (2009). Its main
idea is to split the rules in R into smaller rules so that the
unification query in NEWRULES can be implemented effi-
ciently with specialized data structures. This split is done
only once at preprocessing time. We refer the reader to the
original paper for details on these data structures, and dis-
cuss here only the rule rewriting procedure and how it affects
the v-values defined in Eq. (5).

The rewriting first removes duplicate occurrences of the
same variable in the same atom of some rule, then splits each
rule into a number of rules with at most two atoms in the
body. This rule splitting iteratively picks one rule r ≡ φ0 ←
φ1, . . . , φi, . . . , φj , . . . , φm ∈ R and replaces it with a pair
of new rules r1 and r2, which are either of the form

r1 ≡ φ0 ← θ, φ1, . . . , φi−1, φi+1, . . . , φm

r2 ≡ θ ← φi

or of the form

r1 ≡ φ0 ← θ, φ1, . . . , φi−1, φi+1, . . . , φj−1, φj+1, . . . , φm

r2 ≡ θ ← φi, φj

Both rewriting steps require the introduction of a new aux-
iliary atom θ. The choices in how to perform these splits em-
body well-known query optimization heuristics that aim at
pushing projections through joins and minimizing the join
computation effort. Each of these rewriting steps can be
extended to weighted rules by setting w(r1) = w(r) and
w(r2) = 0, and it can be shown that doing so, the value of
v(p) for all ground atoms p in the original program is pre-
served after each rewriting step.

Optimizations
We consider two novel optimizations of the weighted Data-
log program Dw(Π, s) aiming at speeding up Algorithm 1.

Action Predicate Removal Röger et al. (2020) have re-
cently shown that in many of the standard planning tasks,
the number of ground actions is vastly larger than that of
ground atoms. When this is the case, it might be preferable
to remove the a-applicable(·) atoms from rules (3–4)
and use one single rule to link together the precondition
{φ1, . . . , φn} of each action schema with each atom ψ(x)
of its add list:

r ≡ ψ(x)← φ1, . . . , φn, (6)

where w(r) = cost(a). This results in smaller canonical
models, and has the additional benefit of immediately pro-
jecting away all those variables that are not relevant for the
add effect at hand. This optimization is always performed
before the rule splitting, as it can impact how the algorithm
splits the rules. Given the particular structure of our program
Dw(Π, s), it can be shown that the value v(p) of all atoms
in the program that are not the removed a-applicable(·)
atoms remains unaffected by this transformation.

Duplicate Rule Removal The rule splitting technique
generates a large number of intermediate auxiliary predi-
cates, some of which are often defined by sets of rules that
are syntactically equivalent, up to variable renaming. Since
by construction these auxiliary predicates occur only in the
head of one rule, it is easy to detect equivalent classes of aux-
iliary predicates and replace all occurrences of each predi-
cate in a class by an arbitrary representative of the class. As
the rules defining the extension of auxiliary predicates have
all weight 0 and this rewriting step only replaces syntacti-
cally equivalent atoms, the rewriting does not affect the v
values of non-auxiliary atoms.

Reducing Evaluation Time
As the evaluation of hadd for a given state might be one of the
bottlenecks of the search, it is important to keep the number
of evaluations low. One way to reduce evaluations is by ap-
plying deferred evaluation (Helmert 2006). Deferred eval-
uation algorithms do not evaluate a state when generated,
but only when expanded. States are added to the open list
with the h-value of their parent. We call lazy an algorithm
that uses deferred evaluation, and eager one that does not.
Richter and Helmert (2009) show that deferred evaluation
paired with heuristics such as hadd can reduce the number of
evaluations necessary to solve a problem, but also that on its
own, deferred evaluation can make the performance of the
planner worse, as it makes the search more uninformed. In-
deed, deferred evaluation works best when combined with
additional heuristic mechanisms, such as preferred opera-
tors (Hoffmann and Nebel 2001; Helmert 2006). Preferred
operators, also referred to as helpful actions, are actions that
are considered particularly promising on a given state, typi-
cally because they are part of a relaxed plan or because they
can make actions of this plan applicable. The planner can use
them to prune states not generated by preferred operators (at
the price of making the search incomplete), or to prioritize
such states when selecting the next state for expansion. Both
strategies can help the lazy search find promising successors
without evaluating them (Richter and Helmert 2009).

We can extract preferred operators while computing the
lifted hadd heuristic by keeping track of the best achievers
for each atom in the model of our weighted Datalog pro-
gram. The best achiever of an atom p is the body of the
rule minimizing the right-hand side of (5). This is an adap-
tation of the idea proposed in (Keyder and Geffner 2008)
to extract a relaxed plan without computing the planning
graph. In Algorithm 1, we can add a hash table B map-
ping atoms to its best achievers. When we update the value
of V [head] (line 13), we also set B[head] = body. Once
the goal atom is achieved, we backtrack from it collect-
ing its achievers B[goal] = γ1, . . . , γn, then the achievers
B[γ1], . . . , B[γn], and so on, until we reach a fixed point.
The union of all the best achievers corresponds to the pre-
conditions of all actions in the relaxed plan. Any action pro-
ducing one of these atoms is considered helpful.

Experimental Results
We have implemented the described algorithms and opti-
mizations in the open-source planning system introduced by
Corrêa et al. (2020). The source code used is available online
(Corrêa et al. 2021). Our experiments were run on an Intel
Xeon Silver 4114 processor running at 2.2 GHz with a run-
time limit of 30 minutes and a maximum 16 GiB of memory
per task.

We benchmark our algorithms on 35 domains, divided
into two disjoint sets. The IPC set contains 1001 tasks from
all 29 domains encoded in STRIPS with types from the sat-
isficing track of International Planning Competitions held
to date. The HTG set contains 418 tasks over the 6 hard-
to-ground domains used by Corrêa et al. (2020). All of these
domains are encoded in STRIPS with types and inequalities.

We have only benchmarked our lifted implementation
L-hadd of hadd, not hmax. We use it to guide two variations
of a standard greedy best-first search (GBFS), one eager and
one lazy, as explained in the previous section. In all cases,
states are expanded using the “full reducer” lifted successor
generation technique described in (Corrêa et al. 2020).

Impact of Optimizations
We first discuss the impact of the two optimizations to the
Dw(Π, s) program we use to compute L-hadd: action pred-
icate removal and duplicate rule removal. Figure 1 shows
coverage on the entire set including IPC and HTG instances.
The baseline version using none of the optimizations solves
774 tasks. Duplicate rule removal has a very mild effect,
taking the total number of solved tasks after 30 minutes to
782. Action predicate removal has a more significant impact,
increasing coverage to 821. The combination of both opti-
mizations has the strongest effect and takes the total number
of solved instances to 862.

When factoring into the analysis the benchmark set, in
the IPC set, each individual optimization increases coverage
by 7. In contrast, in the HTG set action predicate removal
increases coverage by 40 tasks, while duplicate rule removal
only by 1. This can be due to the fact that HTG domains are
usually challenging for the grounding precisely because of
the large number of ground actions in their instances.

Finally, we benchmarked an additional rewriting tech-
nique to take into account negated preconditions when com-
puting our model. In the HTG set, all Organic Synthesis vari-
ants and both variants of the Genome Edit Distance (GED)
domain have inequality constraints on the action schemas,
which in our Datalog formulation are ignored, with the sub-
sequent potential loss of heuristic information. We ran an
experiment where instead of ignoring them, we replace each
inequality constraint X 6= Y in ineq(a[∆]) with a fresh
not-equal(X,Y) atom, then add initial facts not-equal(o, o′)
for every pair of different objects o, o′ in the task. In our
results, this caused more harm than good. Only in 2 of the
368 instances in the HTG set using inequality constraints the
compilation resulted in a different initial hadd value, but the
overhead of dealing with the additional atoms in the state
evaluation decreases the total number of solved tasks from
183 to 160 in the GED variants and from 46 to 17 in the Or-
ganic Synthesis variants. We therefore ignore this technique
in what follows.

Deferred Evaluation and Preferred Operators
Next we discuss the two strategies previously introduced
to mitigate the cost of computing the lifted hadd heuristic.
The first four result columns in Table 1 show the results
for L-hadd with four variations of greedy best-first search
(GBFS): eager GBFS (“Eager hadd” column), lazy GBFS
(“Lazy hadd” column), lazy GBFS with preferred-operator
based pruning (“Lazy hadd+PO/Pr” column), and lazy GBFS
with preferred-operator based boosted dual queue (“Lazy
hadd + PO/DQ” column). All these methods have already
been discussed above.

The three lazy variations improve coverage compared to
the eager GBFS with L-hadd in both benchmark sets. While

100 101 102 103

300

400

500

600

700

800

900

Search time in seconds

S
o
lv
ed

ta
sk
s

All optimizations
No duplicated rules
No action predicates
No optimizations

Figure 1: Solved tasks over time with
different optimizations on the Datalog
program for computing L-hadd.

10−1 100 101 102 103 104 105 106 107 108
10−1

100

101

102

103

104

105

106

107

108

uns.

unsolved

L-hadd

h
g
c

HTG
IPC

Figure 2: Number of total state evalua-
tions: hgc vs. L-hadd.

10−2 10−1 100 101 102 103 104 105 106
10−2

10−1

100

101

102

103

104

105

106

L-hadd

h
gc

HTG
IPC

Figure 3: Number of state evaluations
per second: hgc vs. L-hadd. Only tasks
solved by both approaches shown.

the improvement is less expressive when using lazy GBFS
alone, the combination with any of the two possible usages
of preferred operators makes much more difference. On the
IPC set, Lazy hadd + PO/DQ solves the highest number of
tasks: 754 out of 1001, compared e.g. to 616 of the eager
approach. The incomplete Lazy hadd + PO/Pr increases cov-
erage significantly too, solving 699 tasks. Looking at indi-
vidual domains, Lazy hadd + PO/DQ (respectively, Lazy hadd

+ PO/Pr) performs better than Eager hadd in 18 (17) domains,
and worse only in 3 (4).

On the HTG set, the Lazy hadd + PO/DQ search never
performs worse than eager hadd search, and overall is again
the best choice among the four variations, solving 362 out of
418 tasks. Most of the increase in coverage with respect to
the 251 instances solved by the eager approach comes from
the split variant of the Genome Edit Distance GED domain.
This large increase is simply not there if preferred operators
are not used. All in all, the results show that the extraction
of preferred operators during the lifted computation of hadd

and its usage within a lazy search approach are key for good
performance.

Comparison to Other Lifted Methods

We now compare our L-hadd implementation to two previous
lifted heuristic methods in the literature. The “hgc” column
in Table 1 shows the performance of the same greedy best-
first search with a simple goal-count heuristic that counts the
number of unachieved goal atoms in the given state. The “L-
RPG” column shows the performance of the L-RPG lifted
planner by Ridder and Fox (2014), which uses a lifted ver-
sion of the relaxed planning graph (Hoffmann and Nebel
2001) to compute a heuristic similar to hFF. We discuss these
two baselines in turn.

Comparison to Goal-count Heuristic We first analyzed
the cost-effectiveness of L-hadd by comparing it to the much
simpler goal-count heuristic hgc. Note that hgc can be eas-
ily computed from the lifted representation, and it is cheap

enough so that lazy search makes little sense for it.1
Figures 2 and 3 respectively show how informed and ex-

pensive each of the two heuristics is in our entire benchmark
set when compared to each other. Fig. 2 plots the total num-
ber of necessary state evaluations until a plan is found using
hgc and Eager GBFS + L-hadd, while Fig. 3 plots the num-
ber of state evaluations per second. As expected, L-hadd is
clearly more informed in a vast majority of cases, requiring
fewer state evaluations to solve the task, but is at the same
time much more expensive than hgc.

Looking at coverage on the IPC benchmark, hadd +
PO/DQ solves 157 instances more than hgc. There are 15 do-
mains where it solves more instances than hgc, and 5 where
the opposite happens.

In contrast, on the HTG benchmark hgc solves 20 in-
stances more than hadd + PO/DQ. The advantage of hgc

comes entirely from the split variation of the Genome Edit
Distance domain, where the number of action schemas and
the plan length is known to be substantially higher than in
the standard version (Haslum 2011; Areces et al. 2014). Be-
cause of its higher cost, this is likely to affect L-hadd more
adversely than hgc. Additionally, hadd seems particularly un-
informed in this domain. A standard eager GBFS with our
L-hadd solves 28 of the 156 instances, only 6 more than a
blind breadth-first search. Only in 4 of these 28 instances
does L-hadd find a plan with fewer state evaluations than hgc.

Over the entire benchmark set, hadd + PO/DQ performs
better than hgc in 16 domains, whereas the opposite happens
in 7 domains. While it seems clear that on IPC domains the
higher cost of hadd + PO/DQ pays off and the better heuristic
guidance results in more solved tasks, on HTG domains the
picture is less clear, and more domains would be needed for
better understanding of the cost-effectiveness of L-hadd.

Comparison to L-RPG Since L-RPG does not support
constant symbols in preconditions and effects, we report
the results for only 867 instances for the IPC benchmark

1We indeed ran a lazy GBFS with hgc (not shown in results
table), but it was consistently worse than the eager version.

Lifted (New contributions) Lifted (Other) Ground (FD)

Eager Lazy Eager Eager Lazy

Coverage hadd hadd hadd+ PO/Pr hadd+ PO/DQ hgc L-RPG hadd hadd+ PO/DQ
airport (50) 23 24 24 24 26 – 36 40
barman-sat14-strips (20) 0 0 0 0 0 0 0 0
blocks (35) 35 35 35 35 35 32 35 35
childsnack-sat14-strips (20) 0 0 7 7 0 – 2 2
depot (22) 9 10 18 18 13 8 14 17
driverlog (20) 16 16 8 14 19 14 19 20
freecell (80) 73 77 75 75 30 0 80 80
grid (5) 2 2 5 5 3 2 4 5
gripper (20) 20 20 20 20 20 20 20 20
logistics00 (28) 28 28 28 28 28 18 28 28
logistics98 (35) 15 18 29 29 5 8 27 31
miconic (150) 150 150 150 150 150 93 150 150
movie (30) 30 30 30 30 30 0 30 30
mystery (30) 18 17 16 17 15 12 18 19
nomystery-sat11-strips (20) 1 2 5 6 6 – 6 6
openstacks-strips (30) 18 9 9 9 8 – 24 28
parking-sat11-strips (20) 10 19 20 20 0 – 19 20
parking-sat14-strips (20) 2 5 16 16 0 – 6 18
pipesworld-notankage (50) 22 25 39 36 37 27 27 42
pipesworld-tankage (50) 12 15 21 21 21 12 21 36
psr-small (50) 42 43 0 50 48 – 50 50
rovers (40) 14 16 38 38 18 24 30 40
satellite (36) 26 23 36 36 11 21 31 36
thoughtful-sat14-strips (20) 6 9 10 10 5 2 15 16
tpp (30) 15 16 28 28 12 25 24 30
trucks-strips (30) 8 9 10 10 5 – 15 16
visitall-sat11-strips (20) 1 2 2 2 20 0 4 4
visitall-sat14-strips (20) 0 0 0 0 12 0 0 0
zenotravel (20) 20 20 20 20 20 13 20 20

IPC Sum (1001) 616 640 699 754 597 331 755 839

genome-edit-distance (156) 155 153 155 155 156 50 155 156
genome-edit-distance-split (156) 28 33 130 130 156 62 71 101
organic-synthesis-alkene (18) 18 18 18 18 18 14 18 18
organic-synthesis-MIT (18) 18 18 15 18 18 0 2 2
organic-synthesis-original (20) 10 12 12 12 12 0 1 1
pipesworld-tankage-nosplit (50) 22 21 30 29 22 11 17 20

HTG Sum (418) 251 255 360 362 382 137 264 298

Total Sum (1419) 867 895 1059 1116 979 468 1019 1137

Table 1: Domain-wise coverage for all tested methods. Number of instances in each domain shown in parenthesis next to domain
name. Best results over all algorithms shown in bold typeface; best results over lifted planners shown with shaded background.
Domains not supported by L-RPG have their coverage marked as “–”.

set. This does not affect the results in the HTG benchmark,
where L-RPG can process all domains. In the (reduced) IPC
set, L-hadd solves a total of 483 instances, for 339 of L-RPG.
In the HTG set, L-hadd solves 251 instances, for 137 solved
by L-RPG. L-hadd solves more instances than L-RPG in 23
domains, whereas the contrary never happens.

Comparison to Grounded hadd

Finally, we compare the lifted L-hadd to its ground, standard
counterpart, as implemented in Fast Downward (Helmert
2006), which we denote FD-hadd. We run FD-hadd both in
an eager GBFS (to get a clearer picture) and in a lazy GBFS

with preferred-operator based boosted dual queue (which is
the best-performing configuration for L-hadd).2

On the IPC set, FD-hadd has superior coverage in both
search configurations. Whereas in an eager search FD-hadd

solves 22.6% more instances than L-hadd, in the lazy con-
figuration its advantage decreases to 11.3%. The lazy strat-
egy and preferred operators usage thus offer a superior per-

2We note however that the operators considered as preferred
by L-hadd are those achieving some precondition of any operator
in the relaxed plan, whereas Fast Downward considers an operator
preferred only if it is included in the relaxed plan found by hadd.

formance boost for the more expensive L-hadd heuristic.
We note that the domains where L-hadd performs much
worse than FD-hadd are often (the STRIPS version of) do-
mains such as Airport, Trucks, or Openstacks, which in-
deed have been partially pre-grounded to convert them into
STRIPS from previous encodings in more expressive lan-
guages such as ADL. An effect of this pre-grounding is
that these STRIPS encodings have a large number of action
schemas with few, if any, action parameters, which makes
our lifted approach clearly the wrong tool to tackle them.

On the HTG set, L-hadd with a boosted dual-queue solves
more instances than its ground counterpart in 4 of the 6 do-
mains, whereas the opposite happens in just 1 domain. Over-
all, L-hadd solves 21.5% more instances. FD-hadd also per-
forms poorly in the split variant of GED, which is consis-
tent with our previous analysis on how little informed hadd

is in this domain. Indeed, an eager GBFS with the standard
(ground) hFF heuristic (Hoffmann and Nebel 2001) solved
all 156 tasks of the domain.

All in all, our results show that while solving 11.3% fewer
IPC instances than its ground counterpart, the lifted compu-
tation of both hadd and related heuristic information such as
preferred operators is a significant step towards closing the
gap between lifted and ground heuristic techniques, offer-
ing a very significant boost with respect to preexisting lifted
heuristic methods.

Related Work
Recent years have seen a surge of interest in lifted planning
techniques (Lang and Toussaint 2009; Areces et al. 2014;
Gnad et al. 2019), likely motivated by the emergence of new
planning problems that are not easy to ground using standard
techniques (Haslum 2011; Koller and Petrick 2011; Matloob
and Soutchanski 2016), as discussed in the introduction.
However, planning approaches that do not rely on ground-
ing the entire task as a preprocessing step are far from new,
and not at all restricted to the planning-as-heuristic-search
paradigm (Penberthy and Weld 1992; Younes and Simmons
2002; Robinson et al. 2008).

On the heuristic side, McDermott (1996) is closely re-
lated to our work. The author presents a heuristic based on a
regression-match graph, which estimates the number of op-
erators necessary to achieve each subgoal of the task by ap-
plying a backward-chaining-like inference method on a rep-
resentation of the planning task that uses ground states but
lifted action schemas. More recently, Ridder and Fox (2014)
introduce a heuristic algorithm (L-RPG) based on a lifted
version of the delete-free relaxed planning graph on which
the hFF heuristic is based (Hoffmann and Nebel 2001). The
heuristic that L-RPG computes however is not equivalent to
hFF, as it takes into account almost-equivalence relationships
between objects of the task for performance reasons. While
indeed this often results in fast heuristic computations, it
comes at a price in decreased heuristic quality (Ridder and
Fox 2014). We have compared L-RPG to our approach in the
experimental results previously reported.

More recently, Lauer (2020) has introduced lifted heuris-
tics based on the unary relaxation, which is a further relax-
ation of the delete relaxation that we use in this work. For

a predicate P with arity n, his method creates n predicates
P1, . . . , Pn, where Pi is the relational-algebraic projection
ofP over its i-th argument. Applying this relaxation to all el-
ements of a delete-relaxed task (predicates, action schemas,
initial state, and goal) results in the unary-relaxed version of
the task, where all predicates have arity at most one. This
allows the planner to compute a relaxed plan and associ-
ated heuristic value very quickly. Since the source code of
Lauer’s approach is not available and the work is still in a
preliminary stage, we did not empirically compare his ap-
proach to ours. However, in his experiments Lauer reports
that the heuristic value is often not informative, and that the
overall performance of his planner is not better than a GBFS
with the goal-count heuristic.

Outside the planning literature, we can see a similarity
between our lifted computation of hadd and the Rete pattern
matching algorithm (Forgy 1982). A Rete-based system uses
a tree where each node corresponds to some element (in our
context, a predicate symbol) in the body of a rule. Also, each
node has a table to memorize the facts produced matching
this element. The path from a root node (which does not
correspond to any element of a rule) to a leaf node passes
through all elements in the body of some rule. When a new
fact is explored, it is added to its corresponding node, and the
information is passed through the network. Once it reaches a
leaf node, it produces a new fact and this fact is added to the
knowledge-base. This process is similar to our exploration
of facts, and the network and data structures used are similar
to the ones used by Helmert (2009).

Conclusions
We have introduced a novel technique to compute both the
hadd and hmax heuristics, along with other relevant heuris-
tic information, directly from the lifted representation of a
classical planning task. In contrast to previous work, our
heuristic is not a lifted approximation of a well-established
heuristic, but actually computes the exact same heuristic,
allowing a cleaner experimental comparison of the advan-
tages and disadvantages of the lifted computation. We have
combined our heuristics with the lifted successor generation
techniques introduced by Corrêa et al. (2020) in order to ob-
tain a forward-search heuristic planner that can entirely skip
the standard grounding preprocessing step. The empirical
performance of our planner is significantly better than that
of previous lifted heuristic methods, and makes an impor-
tant step in closing the gap with ground heuristic methods.

Our Datalog-based heuristic framework offers interest-
ing possibilities for integrating other standard delete-relaxed
heuristics such as hFF. Furthermore, the optimizations to the
Datalog program that we have presented and evaluated can
be easily ported to the grounding algorithm of Fast Down-
ward (Helmert 2006, 2009). In the future, we look forward to
implementing other Datalog evaluation techniques that ap-
pear well-suited to our problem, such as magic sets (Abite-
boul, Hull, and Vianu 1995), and to exploit exciting recent
advances in the detection of symmetries from lifted tasks
that could potentially speed up the computation of our Dat-
alog evaluation (Röger, Sievers, and Katz 2018).

Acknowledgments
This work was funded by the Swiss National Science Foun-
dation (SNSF) as part of the project “Certified Correctness
and Guaranteed Performance for Domain-Independent Plan-
ning” (CCGP-Plan). Furthermore, this research was also
partially supported by TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under
grant agreement no. 952215. G. Francès is supported by
grant IJC2019-039276-I, MICINN, Spain.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Areces, C.; Bustos, F.; Dominguez, M. A.; and Hoffmann, J.
2014. Optimizing Planning Domains by Automatic Action
Schema Splitting. In Proc. ICAPS 2014, 11–19.

Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ 129(1): 5–33.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. AIJ 69(1–2): 165–204.

Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Code from the paper “Delete-Relaxation Heuris-
tics for Lifted Classical Planning”. https://doi.org/10.5281/
zenodo.4594669.

Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation using Query Opti-
mization Techniques. In Proc. ICAPS 2020, 80–89.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys 33(3): 374–425.

Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP 2001, 84–90.

Forgy, C. 1982. Rete: A Fast Algorithm for the Many Pat-
terns/Many Objects Match Problem. AIJ 19(1): 17–37.

Gnad, D.; Torralba, Á.; Domı́nguez, M. A.; Areces, C.; and
Bustos, F. 2019. Learning How to Ground a Plan – Par-
tial Grounding in Classical Planning. In Proc. AAAI 2019,
7602–7609.

Haslum, P. 2011. Computing Genome Edit Distances using
Domain-Independent Planning. In ICAPS 2011 Scheduling
and Planning Applications woRKshop, 45–51.

Haslum, P.; and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc. AIPS 2000, 140–149.

Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26: 191–246.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. AIJ 173: 503–535.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR 14:
253–302.

Keyder, E.; and Geffner, H. 2008. Heuristics for Planning
with Action Costs Revisited. In Proc. ECAI 2008, 588–592.

Koller, A.; and Petrick, R. 2011. Experiences with Planning
for Natural Language Generation. Computational Intelli-
gence 27(1): 23–40.
Lang, T.; and Toussaint, M. 2009. Relevance grounding
for planning in relational domains. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, 736–751. Springer.
Lauer, P. 2020. Unary Relaxation. Bachelor’s thesis, Saar-
land University.
Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding Up the
Calculation of Heuristics for Heuristic Search-Based Plan-
ning. In Proc. AAAI 2002, 484–491.
Matloob, R.; and Soutchanski, M. 2016. Exploring Organic
Synthesis with State-of-the-Art Planning Techniques. In
ICAPS 2016 Scheduling and Planning Applications woRK-
shop, 52–61.
McDermott, D. 1996. A Heuristic Estimator for Means-
Ends Analysis in Planning. In Proc. AIPS 1996, 142–149.
Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In Proc. KR 1992,
103–114.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Proc. ICAPS
2009, 273–280.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR 39: 127–177.
Ridder, B.; and Fox, M. 2014. Heuristic Evaluation Based
on Lifted Relaxed Planning Graphs. In Proc. ICAPS 2014,
244–252.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2008.
A Compact and Efficient SAT Encoding for Planning. In
Proc. ICAPS 2008, 296–303.
Röger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020. An
Atom-Centric Perspective on Stubborn Sets. In Proc. SoCS
2020, 57–65.
Röger, G.; Sievers, S.; and Katz, M. 2018. Symmetry-based
Task Reduction for Relaxed Reachability Analysis. In Proc.
ICAPS 2018, 208–217.
Younes, H. L. S.; and Simmons, R. G. 2002. On the Role
of Ground Actions in Refinement Planning. In Proc. AIPS
2002, 54–62.

