
Relaxed Decision Diagrams for Delete-Free Planning

Augusto B. Corrêa and Florian Pommerening and Guillem Francès
University of Basel, Switzerland

{augusto.blaascorrea, florian.pommerening, guillem.frances}@unibas.ch

Introduction
In classical planning, we want to find a sequence of actions
that leads to a state satisfying a goal condition given only
an initial representation of the world and a set of possible
actions. One technique to solve classical planning problems
is heuristic search. In heuristic search, a heuristic function h
maps each state to a value estimating its distance to the clos-
est goal state. A heuristic guides the search through the space
of all possible world states, by exploring different reachable
states, until it reaches a state satisficing the goal. If the qual-
ity of the estimation of h is good enough, the planner can
mitigate the state explosion problem. If heuristic values are
lower bounds to the true goal distance (i.e., if the heuristic is
admissible), A∗ search can be used to find optimal solutions.

A common way to represent a planning problem is to use
a factored representation of the world, where each state is
represented by a set of facts and actions can add and delete
facts from a state. Here we consider a fragment of classi-
cal planning called delete-free planning where facts that are
made true remain true forever. In other words, an action
can only add facts to a state, but never delete them. Find-
ing optimal solutions to delete-free planning tasks remains
NP-hard (Bylander 1994) but is interesting because many
successful heuristics are based on a delete-free relaxation
of a classical task (e.g., Helmert and Domshlak 2009) and
some classical tasks are inherently delete-free (e.g., Gefen
and Brafman 2011).

We present a way to extract lower bounds for delete-free
tasks from relaxed decision diagrams (RDDs) (Andersen et
al. 2007; Bergman et al. 2016). We show how the set of all
plans can be represented by a decision diagram. The relaxed
version of this decision diagram then overapproximates the
set of all plans and can be used to generate lower bounds in
polynomial time. The lower bounds can be used as admissi-
ble heuristic values to find optimal solutions for such tasks.

We discuss different ways to use RDDs to solve delete-
free planning tasks and investigate how close the obtained
lower bounds are to the optimal solution.

Background
Delete-free Planning In a delete-free planning task, the
world is described by a set of facts P . States are subsets
s ⊆ P with the interpretation that the facts in s are true and

all other facts are false. The initial state of the world is given
as a state s0 and the goal of the task is given as a set γ∗ ⊆ P
of facts that have to be true in a goal state. A set of actionsA
describes how the world can be affected. Each action a ∈ A
is associated with a cost c(a) ∈ N, a precondition prea ⊆ P ,
and an effect adda ⊆ P . It is applicable in a state s if its
precondition is satisfied (prea ⊆ s) and applying a in s leads
to the state s[a] = s∪adda. A sequence of applicable actions
〈a1, a2, . . . , an〉, is called a plan if it ends in a goal state, i.e.,
s0[a1][. . . ][an] ⊆ γ∗. If it has least cost among all plans, it
is called an optimal plan and its cost is denoted as h+.

Decision Diagrams Decision diagrams (DD) provide an
efficient way to encode solutions of optimization problems
with factored representations. A DD is represented by a di-
rected acyclic graph G, divided in layers L1, . . . , Ln where
L1 contains only the root node r and Ln has only the ter-
minal node t. Each node g in layer Li, i < n is associated
with a variable v of the optimization problem. There is an
edge from g to a node in layer Li+1 for every possible value
d of v labeled with v := d. A path in G can thus be seen as
a set of assignment of variables to their values. Each node
represents the set of partial assignments represented by all
paths leading to it from r. The set of assigments represented
by node t is called the set of solutions of the DD. Costs can
be represented by associating a weight with each edge in the
DD. The cost of a path then is the sum of costs of its edges
and the cost of a node is the cost of the cheapest path leading
to it. A DD for a given problem P is an exact decision dia-
grams (EDD) if all solutions of P are represented as a path
from r to t with same cost, and vice versa.

For NP-hard problems, constructing an EDD is impos-
sible in polynomial time (unless P = NP). However, it is
possible to efficiently construct a relaxed decision diagram
(RDD) that overapproximates the solutions of the EDD. To
do so, we construct the RDD layer by layer, starting from
the root node. During construction, we limit the number of
nodes in each layer (called its width) to a constant ω. If a
layer has more than ω nodes, we combine a subset of nodes
in this layer into a single new node until there are only ω
nodes left. If the combination satisfies the following two
properties, the RDD overapproximates the EDD: (i) no so-
lution for the original EDD can be discarded; and (ii) no so-
lution represented by a path can have its cost overestimated.



RDDs for Delete-Free Planning
We want to construct an RDD that overapproximates the so-
lutions of a delete-free planning task Π. We first show how
an EDD for a given task can be constructed, then explain
how nodes are selected and combined to construct an RDD.

In the construction, the nodes of the decision diagram
roughly correspond to states of Π. Each node g is associ-
ated with two properties: the facts F (g) ⊆ P that are al-
ready reached, and a set of actions N(g) ⊆ A that should
not be used in states reached from g. In the root node r,
the facts of the initial state are reached (F (r) = s0) and
no action is forbidden (N(r) = ∅). In each node g the
EDD then branches over an action a that can be applied
in this state (prea ⊆ F (g)), adds at least one reached fact
(adda 6⊆ F (g)), and is not forbidden (a /∈ N(g)). The deci-
sion for a is whether to apply it right now, or never in any
state reached from g. This choice is possible because once
an action is applicable in a delete-free tasks, it remains ap-
plicable and applying it later cannot be beneficial. In the suc-
cessor where a is applied, we add adda to the reached facts;
in the successor where a is not applied, we keep the same
set of facts as g. In both successors, we add a to the set of
forbidden actions. If a generated node g has γ∗ ⊆ F (g), we
merge it into t. If no action exists that is applicable in a node
g, then g is a dead end and we prune it. We repeat this proce-
dure with the new successors until all leaf nodes are pruned
or merged this into t. As every action can only be used once
before being forbidden, the EDD has a limited depth.

For each path from r to t in the EDD we can reconstruct a
plan for Π by taking the actions chosen for application along
the path. If we associate the cost of an action with the edge
that applies it and a cost of 0 with the other edge, the cost of
the path matches the cost of the plan. All plans without un-
necessary actions are represented this way in one (applica-
ble) permutation. Since an optimal plan has no unnecessary
actions, the shortest path from r to t has cost h+.

In order to turn this EDD into a RDD, we need to com-
bine two nodes in a way that does not discard solutions
over overestimate costs. Given two nodes u and v to be
combined, we define the properties of the new node w as
F (w) = F (u)∪F (v) andN(w) = N(u)∩N(v). With this
definition, every path that can lead from u or v to t will also
be applicable in w, so no solution is discarded. The cost of
reaching w is the minimum over the cost of reaching u and
v and the cost of reaching t from w cannot be higher than
reaching it from u or v. Thus, no solution cost is overesti-
mated and the RDD is guaranteed to overestimate the EDD.
The cheapest path in the RDD is a lower bound to h+ and
can be used as an admissible heuristic in Π.

Note that our EDDs/RDDs are not ordered, i.e., several
nodes on a path could branch over the same actions. How-
ever, applying an action adds its effects to the successor node
and all its descendants so the action will never be applied
twice. A branch can only mention an action a more than
once if the first choice follows the successor where a is not
applied. Even in those cases, a can only be selected again if
a node was combined where a was not forbidden. As there
are limited options for this, the algorithm terminates.

The method to construct the RDD can be used with dif-

ferent strategies for choosing which operator to branch over
(operator selection strategy) and which nodes to combine
(combination strategy). As an initial evaluation, we keep
the operator selection strategy fixed and always select the
first applicable operator according to an arbitrary order. We
tested a combination strategy that selects a pair of nodes to
combine that has minimal Hamming distance over its prop-
erties. To show its effect, we compare it to a baseline com-
bination strategy that just selects two nodes at random.

Preliminary Experiments
We implemented the EDD and RDD construction described
above in the Fast Downward planner (Helmert 2006). We
tested two different values for the width ω, 128 and 256, and
compared the random combination strategy to the one based
on Hamming distance for all of them. We used a set of 921
IPC instances where we could compute h+. On 171 of those,
we could construct the EDDs. Each run had a limit of 3.6 GB
for memory and 30 minutes for CPU time.

As expected, larger values of ω produce better approxi-
mations of h+, but the process of selecting and combining
nodes can become a bottleneck. When ω = 128, using Ham-
ming distances leads to better approximations than random
node selection in 82% of the tasks. This rate increases to
95% when ω = 256. However, neither combination strat-
egy gets close to h+ in larger instances because combining
nodes without considering their cost introduces shortcuts.

Conclusion and Future Work
We presented a way to approximate delete-free planning
tasks with RDDs using advantages of both DDs and delete-
free planning semantics. However, initial results show that
more effort is needed to make this idea competitive with the
state-of-the-art delete-free heuristics for classical planning.
In the future, we want to explore other ideas for operator
selection and combination strategies. For instance, greedily
selecting a landmark action whenever applicable may reduce
the depth of some paths in the tree, while selecting nodes to
combine also based on the cost from r to the nodes can min-
imize the risk of creating shortcuts.

References
Andersen, H. R.; Hadzic, T.; Hooker, J. N.; and Tiedemann,
P. 2007. A constraint store based on multivalued decision
diagrams. In Proc. CP 2007, 118–132. Springer.
Bergman, D.; Cire, A. A.; Van Hoeve, W.-J.; and Hooker, J.
2016. Decision diagrams for optimization. Springer.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1-
2):165–204.
Gefen, A., and Brafman, R. I. 2011. The minimal seed set
problem. In Proc. ICAPS 2011.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
Proc. ICAPS 2009.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.


