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Classical Planning

propositional classical planning tasks:

propositional variables: {x, y}
initial state: {x,¬y}
goal: {y}
actions:
a1: pre = {}

a1:

eff = {¬x}
a2: pre = {¬x}

a2:

eff = {y}
plan: π = ⟨(s0, a1, s1), (s1, a2, s2)⟩
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Planning without Revealing Solutions

I know a plan for some planning task.
But I won’t show you.

Can I convince you that I really know a plan?
How do I do that without revealing anything about the plan?

Zero-Knowledge Proofs!
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Formally

Prover:

claims to have a plan π (somehow)

wants to prove this without revealing anything about π

Verifier:

wants to check that Prover is not lying

do it efficiently

bounded plan existence:
Given a planning task Π and k ∈ N such that k ≤ poly(|Π|),
is there a plan π for Π with |π| ≤ k?

no limitation on k if you reduce to QBF protocols

Prover needs to stronger than in our case; algebraic
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Properties

completeness: Verifier will never reject plan of an honest Prover

soundness: Verifier might be fooled with low probability

zero-knowledge: Verifier learns nothing about the plan

efficiency: protocol executed efficiently by Verifier and Prover
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Protocol Overview

overview of all steps:

Prover obfuscates Π

Verifier chooses between

verifying if obfuscation was done correctly
verifying one transition of the claimed plan π

if the chosen verification succeeds, Verifier accepts π
otherwise, rejects

Prover communicates via encrypted messages

opened using some key

6



Classical Planning

propositional variables: {x, y}
initial state: {x,¬y}
goal: {y}
actions:
a1: pre = {}

a1:

eff = {¬x}
a2: pre = {¬x}

a2:

eff = {y}
plan: π = ⟨(s0, a1, s1), (s1, a2, s2)⟩

7



Prover Obfuscates Π

transform Π into Π̂ such that it is hard to map Π̂ back to Π

variables initial state goal actions

{x, y} {x,¬y} {y} {} → {¬x} {¬x} → {y}

make actions indistinguishable:
{x, y, z} {x,¬y,¬z} {y} {¬z} → {¬x} {¬x} → {y}

change variable labels and sign:
{χ, υ, ζ} {χ, υ,¬ζ} {¬υ} {¬ζ} → {¬χ} {¬χ} → {¬υ}

add canonical initial and goal states:
(omitted)

change plan π into π̂

done in polynomial time (details in the paper)
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Protocol

Verifier Prover

encrypted Π̂ and π̂

b ∈ {0, 1}
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Verifier’s Random Choice

Verifier chooses a random value b ∈ {0, 1}
if b = 0: verifier checks the transformation Π → Π̂

if b = 1: verifier checks one randomly chosen transition of π̂
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Protocol: b = 0

Verifier Prover

encrypted Π̂ and π̂

b = 0

function mapping Π to Π̂

key to open Π̂

If sent function indeed maps Π into Π̂, Verifier accepts.
Otherwise, rejects.
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Protocol: b = 1

Verifier Prover

encrypted Π̂ and π̂

b = 1 together with i ∈ [k]

key to open i-th transition of π̂

If transition (si−1, ai, si) is valid, Verifier accepts.
Otherwise, rejects.

in practice, a little bit harder:

check if s0 and sk are canonical initial and goal states

check if ai is an action of Π̂
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Properties (Revisited)

completeness: Verifier will never reject plan of an honest Prover

soundness: Verifier might be fooled with probability 1− 1
2k

run protocol multiple times to reduce this probability

zero-knowledge: Verifier learns nothing about the plan

see paper for details

efficiency: protocol executed efficiently by Verifier and Prover

constant number of messages per execution

only polynomial-time computation
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Conclusion

zero-knowledge proofs for classical planning problems:

how to prove that you have a plan without revealing it

works for problems with polynomially long plans

executed efficiently
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