
The FF Heuristic for Lifted Classical Planning

Augusto B. Corrêa1, Florian Pommerening1, Malte Helmert1, Guillem Francès2

1University of Basel, Switzerland
2Universitat Pompeu Fabra, Spain

{augusto.blaascorrea,florian.pommerening,malte.helmert}@unibas.ch
guillem.frances@upf.edu

Abstract

Heuristics for lifted planning are not yet as informed as the
best heuristics for ground planning. Recent work introduced
the idea of using Datalog programs to compute the additive
heuristic over lifted tasks. Based on this work, we show how
to compute the more informed FF heuristic in a lifted man-
ner. We extend the Datalog program with executable annota-
tions that can also be used to define other delete-relaxation
heuristics. In our experiments, we show that a planner using
the lifted FF implementation produces state-of-the-art results
for lifted planners. It also reduces the gap to state-of-the-art
ground planners in domains where grounding is feasible.

Introduction
Planning is one of the oldest subfields of Artificial Intelli-
gence. A planning task defines the current state of the world
and a set of actions. Applying an action changes the state of
the world. The objective of planning is to find a sequence of
actions leading to a state that satisfies a goal condition.

Planning tasks are usually described in a lifted represen-
tation (McDermott 2000). While it was common to work di-
rectly on lifted representations (e.g., McDermott 1996, Re-
iter 2001), research in the last two decades mostly focused
on ground planning where the task is grounded to a proposi-
tional description that is then used to solve this task. Heuris-
tic search (Bonet and Geffner 2001), in particular, has been
very successful for ground planning. The main idea here is
to search for a solution in the space of all applicable action
sequences. Using a heuristic, the planner focuses the search
on promising sequences and thus speeds up the process.

Grounding a task sometimes has high costs, even if the
final propositional representation is not that large. For this
reason lifted planners – those that work directly on the lifted
representation – are seeing renewed interest (Corrêa et al.
2020; Lauer et al. 2021; Horčı́k and Fišer 2021). To benefit
from the advances in ground planning, in particular in the
area of heuristic search, we need strong heuristics that can
be computed for lifted representations.

The FF heuristic hFF (Hoffmann and Nebel 2001) is part
of state-of-the-art ground planners even 20 years after its in-
vention. It is based on the delete-relaxation of a planning

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task, where any fact that is made true by an action remains
true forever. This estimate is usually well informed and thus
gives good guidance for heuristic search planners.

We show how to compute hFF on lifted representations,
making it unnecessary to ground the task. Our work is based
on using Datalog programs to compute delete-relaxation
heuristics (Corrêa et al. 2021). We introduce the notion of
an annotated Datalog program, where atoms and rules are
associated with instructions. After evaluating a query, we
execute the instructions of all atoms and rules used to de-
rive this query. This allows us to collect a relaxed plan and
compute hFF. Furthermore, we show how to transform an-
notated Datalog programs in order to make them cheaper
to evaluate. Our transformations can simulate the optimiza-
tions introduced by Corrêa et al. (2021) and have the advan-
tage of being independent of previous transformations. In
our experiments, we show that a planner using the lifted hFF

heuristic achieves state-of-the-art performance among lifted
planners and is competitive with Fast Downward (Helmert
2006) using a ground implementation of the heuristic.

Background
In this paper, planning languages and Datalog programs as-
sume a function-free logical vocabulary over an infinite set
of variables V , a finite set of constants C, and a finite number
of predicate symbolsP . A term t is either a variable or a con-
stant. Each predicate symbol has a non-negative arity (in par-
ticular, this may be zero). Given an n-ary predicate P ∈ P
and a tuple of terms t = 〈t1, . . . , tn〉, we call P (t) an atom.
If t contains a variable, then P (t) is a lifted atom, otherwise
it is a ground atom. We define Atoms as the set of all possi-
ble atoms. Grounding an atom P (t) replaces all variables in
t by constants according to a substitution σ : V → C.

Classical Planning
With predicate symbols P and constants C, a lifted plan-
ning task is a tuple Π = 〈P, C,A, s0, goal〉. The finite set
A represents the action schemas. An action schema A ∈ A
consists of a cost c(A) ∈ R+

0 , and of three sets of atoms: the
precondition pre(A), the add list add(A), and the delete list
del(A). The parameters of A are the set of variables occur-
ring in any atom of pre(A)∪ add(A)∪ del(A) in some fixed
order. An action schema A with no parameters is a ground
action (sometimes called just action). If action schema A

has parameters 〈X1, . . . , Xn〉 and it is ground with con-
stants 〈C1, . . . , Cn〉 then we write A(C1, . . . , Cn) for the
ground action. A planning task Π where all action schemas
are ground is a ground planning task. A state s ⊆ Atoms
is a set of ground atoms with the interpretation that exactly
these atoms are true. The initial state s0 is a state con-
taining the atoms that are initially true. The ground atom
goal ∈ Atoms should be reached to solve the task. (Larger
conjunctive goals ϕ can compiled away by adding a zero-
cost action with precondition ϕ and add list {goal}.)

The precondition pre(A) of a ground action A is satisfied
in a state s iff pre(A) ⊆ s. In this case, we say that action A
is applicable. The successor state s′ of an applicable action
A is defined as s′ = (s\del(A))∪add(A). A sequence of ac-
tions A1, . . . , An is applicable in a state s0 if there are states
s1, . . . , sn where Ai is applicable in si−1 and its application
leads to si. A goal state s∗ is a state where goal ∈ s∗. An
applicable sequence of actions π = 〈A1, . . . , An〉 from the
initial state s0 to some goal state is called a plan and has cost
c(π) =

∑n
i=1 c(Ai). The task is solvable if a plan exists.

A function that estimates the distance between states and
their closest goal state is a heuristic. One prominent fam-
ily of heuristics are the delete-relaxation heuristics (Bonet
and Geffner 2001). The delete-relaxation of a task Π =
〈P, O,A, s0, goal〉 is the task Π+ obtained by redefining
del(A) = ∅ for all action schemas A ∈ A. By ignoring
the delete lists, applying an action in a state s only adds
more ground atoms to the state. Thus, all actions that are
applicable in s remain applicable in any successor state of s.
The relaxation Π+ is an overapproximation of Π: any atom
reachable (i.e., achieved by any sequence of actions) in Π is
also reachable for Π+. The converse is not always true.

One way of computing delete-relaxation heuristics is to
use the cost of a relaxed plan (a plan for Π+) as heuristic
value (e.g., Hoffmann and Nebel 2001, Keyder and Geffner
2008). We denote the cost of an optimal relaxed plan as
h+. Delete-relaxation heuristics that approximate h+ tend
to compare favorably with other heuristics (Hoffmann 2005;
Betz and Helmert 2009).

Datalog Programs
A Datalog rule r has the form P ← Q1, . . . , Qm, for m ≥
1. It consists of an atom head(r) = P called the head of the
rule and a set of atoms body(r) = {Q1, . . . , Qm} called its
body. We write vars(r) for the set of variables in the body
and head. A Datalog program D = 〈F ,R〉 is a pair where
the set of facts F is a set of ground atoms, and set of rules
R is a set of Datalog rules.

Given a Datalog rule r ∈ R, r = P ← Q1, . . . , Qm with
vars(r) = {v1, . . . , vn}, we define r∀ = ∀v1, . . . , vn. Q1 ∧
. . . ∧Qm → P . The canonical model of a Datalog program
D = 〈F ,R〉 is the maximal set M of ground atoms such
that F ∪ {r∀ | r ∈ R} |= M. Each Datalog program has a
unique canonical model (Abiteboul, Hull, and Vianu 1995).
In the case where the set of rules R is part of the input,
computingM is EXPTIME-complete (Dantsin et al. 2001).

For a rule r ∈ R we use Ground(r) for the set of rules
obtained by applying all possible substitutions of variables

in r with constants in C. We also define Ground(R) =⋃
r∈RGround(r).
A derivation is a sequence of facts from F and ground

rules from Ground(R) where all atoms in the body of a rule
either occur earlier in the derivation or are heads of rules
that appear earlier in the derivation. A fact P in a deriva-
tion demonstrates P ∈ M while a rule r demonstrates that
head(r) ∈M. We assume that each atom is derived at most
once in a derivation. If the last atom derived is P , we call
the derivation a derivation of P . An achiever choice func-
tion f : M \ F → Ground(R) maps atoms P to ground
rules r with head(r) = P that occur in a derivation. Given
an achiever choice function, we can construct a derivation
of an atom by back-chaining through the atoms in achiever
bodies. For each atom in M \ F that was not seen earlier,
we recursively add its derivation to the start of the sequence.

Computing the Canonical Model There are several al-
gorithms to compute the canonical model M of a Datalog
program (see Abiteboul, Hull, and Vianu 1995). In this pa-
per, we will use the algorithm introduced by Helmert (2009).
The idea is to build the canonical model incrementally.

The algorithm starts with a queueQ := F andM := ∅. It
then removes atoms from Q, one by one, until Q is empty.
Whenever an atom Q is removed, the algorithm checks
whether it is already in the canonical model. If so, the al-
gorithm continues with the next atom in the queue. Other-
wise, Q is added toM and the algorithm generates the set
of all ground rules r ∈ Ground(R) whereM |= body(r)
and Q ∈ body(r). For each such rule, head(r) is added to
Q. The algorithm implicitly constructs a derivation with an
achiever choice function that maps head(r) to r. Note that
the achiever choice function depends on how Q is ordered.

Datalog-Based Heuristics

For a given planning task Π = 〈P, O,A, s0, goal〉 and a
given state s, Corrêa et al. (2021) encode Π+ as a Data-
log program Ds = 〈F ,R〉. The set of facts F contains all
ground atoms in s, and R is defined as follows: For each
action schema A ∈ A with parameters X and pre(A) =
{Q1, . . . , Qn},R contains the action applicability rule

A-applicable(X)← Q1, . . . , Qn,

and for each P ∈ add(A),R contains the action effect rule

P ← A-applicable(X).

Note that an action schema A produces 1 + |add(A)| rules.
We assume all actions have at least one precondition and add
a dummy precondition if this is not the case. Helmert (2009)
showed that the canonical modelM of Ds contains exactly
the atoms that are reachable from s in Π+.

In order to extract a heuristic value, Corrêa et al. (2021)
assign a weight w(r) to each rule r. Each action applicability
rule is assigned a weight of c(A) and all other weights are 0.
They then consider a function v that is a maximal solution

for the following equations:

v(P) =

{
0, if P ∈ F
v(f add(P)), otherwise,

(1)

v(r) = w(r) +
∑

Q∈body(r)

v(Q) (2)

f add(P) ∈ arg min
r∈Ground(R)
head(r)=P

v(r). (3)

Equations (1) and (3) are defined overM and equation (2)
is defined over Ground(R). This system of equations has a
unique maximal solution if all actions have costs larger than
zero. In tasks with zero cost actions, these are considered to
have a small cost of ε > 0 so the maximal solution is unique.

Corrêa et al. (2021) show that function v can be computed
while also computing the canonical model. If the queue Q
is ordered according to v, whenever an atom P is added
to the canonical model, its v-value can be set according to
(1). This order implicitly defines the achiever choice func-
tion f add satisfying (3). The achiever f add(P) is called a best
achiever of P . The authors also show that for a given state
s, v(goal) = hadd(s). Their algorithm uses an early stopping
approach: when the value of v(goal) is first computed, the
algorithm can stop as hadd(s) can already be extracted.

An important aspect is that their algorithm does not keep
track of the ground rules explicitly: it adds labels to atoms
when they are included in M. An atom P is labeled with
> if P ∈ F , and with the body of its best achiever
body(f add(P)) otherwise. The best achiever f add(P) can
then be reconstructed from the atom and its label.

The FF Heuristic
The hadd heuristic assumes that there is no positive synergy
when achieving action preconditions. Thus hadd might over-
estimate the distance to the goal by a lot. To solve this issue,
Hoffmann and Nebel (2001) introduce the FF heuristic, de-
noted as hFF, which approximates h+ better than hadd.

The original definition of hFF (Hoffmann and Nebel 2001)
does not specify an achiever choice function. While Hoff-
mann and Nebel choose the best achievers based on hmax val-
ues (Bonet and Geffner 2001), Keyder and Geffner (2008)
do so using hadd. We follow Keyder and Geffner.

Let AP be an action with P ∈ add(A) that achieves P
with minimum hadd cost. Let

π(P) =

{
{}, if P ∈ s
{AP } ∪

⋃
Q∈pre(AP) π(Q), otherwise.

If we fix AP for each reachable atom P and goal is reach-
able, we can compute a unique solution to these equations
by recursively evaluating it starting from goal . In this case,
π(goal) can be sequenced into a relaxed plan πFF and the
FF heuristic is defined as hFF(s) = c(πFF). If goal is not
reachable in the delete relaxation, then hFF(s) =∞.

We can compute hFF from the canonical model of Ds by
considering the derivation of goal for the achiever choice
function f add. The set πFF then matches the set of all A
with parameters X for which A-applicable(X) is part of the
derivation.

Rule-Based FF
Corrêa et al. (2021) simplify Ds by removing the atoms
A-applicable(X). To do so, the action applicability rule
A-applicable(X) ← Q1, . . . , Qn is combined with the ac-
tion effect rule P ← A-applicable(X) into an action rule
P ← Q1, . . . , Qn for each add effect P of A.

They also introduced further transformations that do not
change the atoms in the canonical model but simplify the
Datalog program. We will discuss those transformations in
detail later on. For now we only consider their effect on an
example. The transformations would transform this Datalog
program

A-applicable(X,Y, Z)← Q1(X), Q2(X,Y), Q3(Y, Z)

P1(Y, Z)← A-applicable(X,Y, Z)

P2(Y, Z)← A-applicable(X,Y, Z)

into the following equivalent form:

P1(Y,Z)← Aux (Y), Q3(Y, Z)

P2(Y,Z)← Aux (Y), Q3(Y, Z)

Aux (Y)← Q1(X), Q2(X,Y).

The first two rules do not mention X , so we cannot compute
πFF as before.

Corrêa et al. (2021) show that these transformations are
performance-critical when computing hadd. We assume this
also holds for hFF and thus look into alternatives computing
the heuristic value with the optimized Datalog program. As
a first approximation, we consider a heuristic that just adds
the weights of all rules in a derivation of goal . We call it the
rule-based FF heuristic and denote it as hR-FF.

Where hFF computes a relaxed plan, hR-FF computes a
set of ground rules that are sufficient to derive the goal in
Ds. The main difference between hR-FF and hFF is that hR-FF

might count the cost of the same action multiple times. This
occurs when the action adds several atoms that are neces-
sary to reach the goal. For example, in the Datalog program
above, if both P1(Y, Z) and P2(Y, Z) are needed in the goal,
the cost of action A(X,Y, Z) is counted twice. This is sim-
ilar to hadd but hadd counts the cost of an action every time
one of its effects is used whereas hR-FF counts the cost of an
action at most once for each of its effects. Our hypothesis is
that actions usually add very few atoms that are necessary to
reach the goal and thus the values of hR-FF and hFF are close.

The intention of hFF is to approximate h+, so over-
counting actions by treating their effects separately means
that the heuristic loses accuracy. In the next section we in-
troduce a general framework for associating a computation
with a Datalog program. We will then show how hFF can be
computed in this framework without loss of accuracy.

Annotated Datalog
An annotated Datalog program is a Datalog program where
every fact P ∈ F and every rule r ∈ R is annotated with
a sequence of instructions denoted ann(P) and ann(r). An
instruction can refer to the variables used in the rule. When
a rule with instruction I is ground with substitution σ, we
consider the ground rule to have instruction I[σ].

Algorithm 1: Executing an annotated Datalog program.
1: function BACKCHAIN(P)
2: if visited[P] then
3: return
4: visited[P] := True
5: if P ∈ F then
6: EXECUTE(ann(P))
7: else
8: for Q ∈ BODY(f(P)) do
9: BACKCHAIN(Q)

10: EXECUTE(ann(f(P)))

The semantics of an annotated Datalog program are rela-
tive to the derivation of an atom P . Recall that a derivation
is a sequence over F ∪ Ground(R). To execute a Datalog
program for the derivation of P , we map each element of
this sequence to its associated instruction and execute the
instructions in this order.

Algorithm 1 shows how to find a derivation of an atom and
execute the Datalog program for it. The back-chaining pro-
cedure handles each atom at most once (lines 2–4). Facts in
F need no further derivation, so their annotation is executed
directly (lines 5–6). For other atoms, the algorithm ensures
that their derivation is included and the corresponding in-
structions are executed before executing the instructions of
the achiever (lines 8–10).

We demonstrate that annotated Datalog programs are use-
ful by expressing different concepts in them. We base all ex-
amples on the Datalog program Ds and the achiever choice
function f add, as defined in (3). Other achiever choice func-
tions, such as the one based on hmax, are also possible.

Useful Atoms An atom is considered useful (Hoffmann
and Nebel 2001) if it is not in the state but required in the
goal or the precondition of an operator used to reach an-
other useful atom. In Ds, they are the atoms occurring in a
derivation of the goal except for F and atoms of the form
A-applicable(X) (Corrêa et al. 2021). To compute them
with annotated Datalog programs, we use the annotation

ann(r) = [Mark head(r) as useful]

for all action effect rules r ∈ R and an empty annotation for
all action applicability rules and all P ∈ F .

Rule-Based FF The heuristic hR-FF can also be expressed
with an annotated Datalog program. For each action A, we
annotate its corresponding action effect rules r with

ann(r) = [Add c(A) to h]

and use an empty annotation in all other cases. The variable
h contains the value of hR-FF(s) after the execution.

FF For all actions A we annotate the corresponding action
applicability rule r = A-applicable(X)← Q1, . . . , Qn with

ann(r) = [Include A(X) in πFF]

and use empty annotations in all other cases. When execut-
ing an instruction for an atom P , if P /∈ s, the instruc-
tion adds the achiever A(X) = AP to πFF. We can show

by structural induction that after the execution for P , the
variable πFF contains all actions of π(P). The base case
of P ∈ s is trivial (π(P) = ∅). In the inductive step, the
achiever choice of P is A = f add(P) which is added to
πFF by the annotation of the rule achieving P . The actions
required to achieve preconditions of this action are already
included in πFF according to the induction hypothesis. As
the derivation of P only relies on actions in π(P), no addi-
tional actions are included in the set, so πFF has the value of
π(goal) after the execution for goal.

We introduced rule-based FF specifically because the op-
timizations introduced by Corrêa et al. (2021) are important
for performance. Yet, all examples above use the unopti-
mized program Ds. To make use of the optimizations, we
will now discuss how such optimizations can be done on any
annotated Datalog program without changing its semantics.

Transformations of Annotated Datalog

We introduce four transformations of annotated Datalog pro-
grams: rule merging, rule splitting, predicate collapsing,
and variable renaming. These transformations change the
set of rules and predicate symbols used in the program which
affects the derivations and thus the semantics of the program.
However, we can still show that the semantics before and af-
ter the transformation are equivalent in the following sense:
For any derivation under an achiever choice function f in the
transformed program, there is a derivation under an achiever
choice function f ′ in the original program such that the ex-
ecution of both problems under these derivations produces
the same results. Moreover, in our use case, all atoms of
the planning task that have a certain v-value under f have
the same v-value under f ′. This implies that any execution
based on hadd achievers in the transformed program corre-
sponds to an execution in the original program for one of
the possible choices of hadd achievers. The non-determinism
is completely caused by the tie-breaking in hadd-achievers.

The transformations we introduce are very similar to the
optimizations used by Corrêa et al. (2021). However, their
optimizations must be applied in a specific order, while our
transformations do not depend on the history of previous
transformations. Additionally, we have to update the anno-
tations, whereas their Datalog programs do not have them.

Rule Merging Rules can be merged to get rid of interme-
diate atoms such as A-applicable(X) in Ds. For an atom P
let R+

P ⊆ R be the rules with head P and let R−P ⊆ R
be the rules where the body contains P . The rules can only
be merged if those sets do not overlap, there are no other
rules or facts with the predicate symbol of P , and rules
from R+

P do not share variables with rules from R−P other
than the ones mentioned in P . We can then replace R by
(R\ (R+

P ∪R
−
P))∪R′. The set of merged rulesR′ contains

the rule r± = head(r−) ← (body(r−) \ {P}) ∪ body(r+)
for every combination of rules r+ ∈ R+

P and r− ∈ R−P . The
weight of the merged rule is w(r±) = w(r+) + w(r−) and
its annotation is ann(r±) = [ann(r+);ann(r−)].

For example, the rules from our previous example

r1 = A-applicable(X,Y, Z)← Q1(X), Q2(X,Y), Q3(Y,Z)

r2 = P1(Y,Z)← A-applicable(X,Y, Z)

r3 = P2(Y,Z)← A-applicable(X,Y, Z)

can be replaced by the rules

r1,2 = P1(Y, Z)← Q1(X), Q2(X,Y), Q3(Y, Z)

r1,3 = P2(Y, Z)← Q1(X), Q2(X,Y), Q3(Y, Z).

Assume we want to compute hFF and useful atoms,
then ann(r1) would be [Include A(X) in πFF] and
ann(ri) = [Mark head(ri) as useful] for i ∈ {2, 3}.
In that case, we would have

ann(r1,i) = [Include A(X) in πFF;

Mark head(ri) as useful].

A derivation that uses a ground rule r− ∈ Ground(R−P)

must contain a ground rule f(P) ∈ Ground(R+
P) to derive

P . Those two rules can be replaced by their correspond-
ing grounded merged rule r± in the transformed program.
Likewise a merged rule in a derivation for the transformed
program can be replaced by its components in the original
program. The derived value, its v-value, and the sequence of
executed instructions is the same.

Rule Splitting The rule-splitting transformation divides
rules with large bodies into multiple smaller rules. The goal
is to create an implicit join tree for the rules of the Datalog
program (Helmert 2009). Let r = P ← Q1, . . . , Qn be a
rule in an annotated Datalog program and let 1 ≤ k ≤ n.
Let X be the set of variables defined as

X =

 ⋃
0≤i≤k

vars(Qi)

 ∩
 ⋃

k+1≤i≤n

vars(Qi) ∪ P

 .

By introducing a new predicate symbol Aux , rule r can
be split into two rules r1 = Aux (X) ← Qk+1, . . . , Qn

with w(r1) = 0, and r2 = P ← Q1, . . . , Qk,Aux (X)
with w(r2) = w(r). The annotation ann(r1) stores the val-
ues of the variables

⋃
k+1≤i≤n vars(Qi) that r1 depends on.

The annotation ann(r2) is the same as ann(r) but replacing
those variables by the values stored by ann(r1).

Rule r1,2 = P1(Y,Z) ← Q1(X), Q2(X,Y), Q3(Y,Z)
from the previous example could be split into

r1 = Aux (Y)← Q1(X), Q2(X,Y),

r2 = P1(Y,Z)← Aux (Y), Q3(Y,Z)

If r1,2 had the annotation [Add A(X,Y, Z) to πFF] the
new rules would have the annotations

ann(r1) = [Instantiation[Aux (Y)] = X,Y]

ann(r2) = [X,Y = Instantiation[Aux (Y)];

Add A(X,Y, Z) to πFF].

Executing ann(r) has the same effect as executing
ann(r2) after ann(r1). As Aux never occurs outside of r1
and r2, any achiever choice function for Aux (X) must map

to r1 ground with X. In a derivation, this rule will therefore
occur before r2 leading to the execution of ann(r1) before
ann(r2). So, rule splitting does not change the semantics of
the annotated Datalog program.

Rule splitting might reduce the computational effort to
construct the canonical model M. Assume Q1(a) was just
popped from the queue and we have to find a rule r ∈
Ground(r1,2) such that M |= body(r). If we first join
Q1(X) with Q3(Y,Z) we could get a larger intermediate
result than if we first join with Q2(X,Y). In the split rules,
only the efficient join is possible.

Predicate Collapsing When the atoms of two predicate
symbols P1 and P2 are reachable in the same ways through-
out the Datalog program, we know that if P1(X) has a cer-
tain derivation, then P2(X) can have the same derivation. In
that case, we can replace P1(X) with P2(X) without chang-
ing the semantics of the Datalog program. Before we express
this formally, consider a Datalog program with following
rules as an example:

r1 = P1(X)← Q(X,Y), R(Y),

r2 = P2(X)← Q(X,Y), R(Y),

r3 = R(Z)← Q(Z, Y), P1(Y),

r4 = R(Z)← S(Z, Y), P2(Y)

where the weights and annotations of r1 and 2 are identical.
In this example, we can replace P1 by P2 without affecting
the semantics. Note that since the rules of a Datalog program
are a set, r1 and r2 become identical, so the resulting Dat-
alog program only contains three rules. Reducing the num-
ber of predicate symbols also reduces the size ofM, which
might speed up the computation of the heuristics.

Formally, two predicates P1 and P2 can be collapsed if
for each rule r1 : P1(X) ← Q1, . . . , Qn, there is a rule
r2 : P2(X) ← Q1, . . . , Qn, with ann(r1) = ann(r2) and
w(r1) = w(r2). For this purpose, we treat facts A ∈ F as
rules with an empty body, i.e. A ← >. If we then replace
P1 by P2, any derivation of goal in the resulting Datalog
program corresponds to a derivation in the original program
and the v-values of all derived facts and rules remain the
same.

Variable Renaming Variable names used in a rule r have
no impact on the canonical model or the back-chaining
through a derivation. They can be renamed without changing
the semantics of a Datalog program as long as the variables
occurring in ann(r) are renamed accordingly.

Transformations Used in Our Experiments While the
transformations are more general, we limit their use to simu-
late the optimizations done by Corrêa et al. (2021) for better
comparability. We start by merging action applicability and
action effect rules. We then use the strategy of Corrêa et al. to
split rules into rules with binary bodies. In all resulting rules,
we rename the variables to canonical names to maximize the
number of predicate symbols the algorithm can collapse. We
finally collapse auxiliary predicate symbols where possible.

Transformations Action applicability rules

not merged merged
A

ux
ili

ar
y

Pr
ed

ic
at

es not collapsed 1072 1144
not collapsed + VR 1069 1139
collapsed 1088 1176
collapsed + VR 1100 1244

Table 1: Coverage of hFF with eager GBFS on both bench-
mark sets (1863 tasks) under different Datalog transforma-
tions. All runs include the rule-splitting transformation.

Experimental Results
We implemented the Datalog-based FF heuristic using the
Powerlifted (PWL) planner by Corrêa et al. (2020). The
source code of our implementation is available online
(Corrêa et al. 2022). Our experiments were run on an In-
tel Xeon Silver 4114 processor running at 2.2 GHz using a
run time limit of 30 minutes and a memory limit of 16 GiB
per task.

We benchmark our algorithms on two sets. The first set
contains 1001 IPC tasks from 29 STRIPS domains. This
is the same set used by Corrêa et al. (2021). The second
set contains 862 hard-to-ground (HTG) tasks over 11 differ-
ent domains. The HTG set is the same used by Lauer et al.
(2021). We always consider action schemas as unit-cost.

We tested the following heuristics: (i) the lifted hR-FF

heuristic and the hFF heuristic; (ii) the lifted hadd heuristic
(Corrêa et al. 2021); (iii) the lifted goal-count heuristic, de-
noted as hgc (Corrêa et al. 2020); (iv) the lifted hgc heuristic
using the unary relaxation heuristic as a tie-breaker, denoted
as hgc, ur, and its enhanced version using disambiguation of
static predicates, hgc, ur-d(Lauer et al. 2021). These are the
best two configurations in the experimental results by Lauer
et al.; and (v) the ground version of hFF from Fast Downward
(FD), release 20.06 (Helmert 2006).

We tested hadd and hFF (both lifted and ground versions)
using a simple Eager Greedy Best-First Search (Pohl 1970),
and also using the Lazy GBFS with preferred operators and a
boosted dual-queue (Richter and Helmert 2009; Corrêa et al.
2021).1 We write these simply as “Eager” and “Lazy + PO”.

Transformations Corrêa et al. (2021) observed that all
transformations of the Datalog program are beneficial for
hadd. To test if this occurs with hFF, we ran all combinations
of rule merging, predicate collapsing and variable renaming
(VR). The algorithm by Helmert (2009) used to compute the
canonical model requires all rules in a specific form ensured
by rule splitting. Thus, we cannot disable rule splitting.

Table 1 shows the coverage of a GBFS with hFF after dif-
ferent transformations. The results confirm that the finding
by Corrêa et al. (2021) also holds for hFF: all transforma-
tions are beneficial and in particular removing action pred-
icates by merging rules is critical for performance. Using

1Note that the notion of preferred operators is not the same for
each case, as explained by Corrêa et al. (2021).

all transformations achieves the best performance, increas-
ing the baseline coverage from 1072 to 1244.

Removing action predicates always increases the cover-
age by at least 70 tasks. However, merging rules can affect
how ties in the achiever choice function are broken which
affects the performance. The benefit of merged rules is thus
not a clear dominance and we saw a few IPC domains where
coverage decreased (e.g., pipesworld-split, trucks). The vari-
able renaming transformation is mainly useful in conjunc-
tion with other transformations as they create more rules that
become identical with canonical variable names.

Datalog-Based Heuristics Our next experiment compares
the performance of different Datalog-based heuristics: hadd,
hR-FF, and hFF. The first seven columns of Table 2 show the
coverage for these heuristics. We include detailed results for
the IPC set only on Zenodo (Corrêa et al. 2022) due to space
limitation. With both eager and lazy searches, coverage im-
proves when switching from hadd to hFF, and we see a larger
improvement switching from Eager (which does not use pre-
ferred operators) to Lazy + PO. These confirm similar re-
sults in ground planning (Richter and Helmert 2009) show-
ing that while hFF is generally an improvement over hadd,
using preferred operators impacts the search performance
more. As with ground planning, the results for different do-
mains vary and hadd sometimes gives better guidance than
hFF (e.g., hadd solves 5 tasks more in satellite). As hadd is
more greedy than the other methods, this is expected in tasks
where greedy behavior leads to a plan more quickly.

With eager search, the lifted hFF has an edge over the sim-
pler rule-based FF heuristic hR-FF, although hR-FF has su-
perior coverage in a few domains (e.g., airport). However,
using the lazy search, hFF and hR-FF have a similar perfor-
mance: hFF solves only 13 instances more than hR-FF in total.
In this case, hR-FF solves more tasks than hFF in 5 domains
but hFFsolves more tasks in 7 domains with larger differ-
ences in coverage (e.g., +11 tasks in openstacks).

Compared to hadd the overestimation done by hR-FF is lim-
ited by the maximal number of effects in an action. We hy-
pothesized that usually not all effects of an action are re-
quired and thus the overestimation would be low. To test
this, we measured the number of useful atoms per action
in the relaxed plan found by hR-FF in the initial state. If this
proportion p is 1 then hR-FF is equal to hFF for this state.
With higher values, the overestimation is larger. Among the
1863 tasks, 87.3% (1627) have p ≤ 5, while only 10.5%
(196) have p ≤ 2. This shows that while the overestimation
of hR-FF is still low, it is not as low as we initially expected.
Also note that this overestimation does not necessarily influ-
ence the heuristic quality as scaling all heuristic values with
the same factor has no effect in our search algorithms.

Other Lifted Planners We also investigated how our
methods compare to the other lifted heuristics in the liter-
ature that do not use Datalog. We ran experiments using
hgc (Corrêa et al. 2020), and with the heuristics hgc, ur and
hgc, ur-d (Lauer et al. 2021) that break ties in hgc based on
the unary relaxation of the delete-relaxed task. Because of
this further relaxation, it is currently not possible to extract
a relaxed plan or preferred operators from these estimates.

Datalog-Based Heuristics Other Lifted Methods Fast Downward

Eager Lazy + PO Eager Eager Lazy + PO

Coverage hadd hFF hR-FF hadd hFF hR-FF hgc hgc, ur-d hgc, ur hFF hFF

IPC Sum (1001) 629 702 677 759 820 816 597 575 569 775 862

blocksworld-large (40) 1 4 0 6 9 4 4 7 7 4 12
childsnacks-large (144) 34 27 30 82 73 69 26 98 65 51 115
genome-edit-distance (312) 185 294 225 289 311 310 312 312 312 312 312
logistics-large (40) 8 9 9 40 40 40 20 0 0 30 32
organic-synthesis (56) 47 48 48 49 48 49 48 47 47 20 20
pipesworld-tankage-nosplit (50) 22 23 25 28 32 32 22 10 12 15 19
rovers-large (40) 11 36 36 40 40 40 1 16 14 11 13
visitall-multidimensional (180) 118 101 104 143 143 143 65 151 102 72 72

HTG Sum (862) 426 542 477 677 696 687 498 641 559 515 595

Total Sum (1863) 1055 1244 1154 1436 1516 1503 1095 1216 1128 1290 1457

Table 2: Coverage for all tested methods over both benchmark sets. Best results shown in bold typeface.

100 101 102 103

800

1,000

1,200

1,400

1,600

Total time in seconds

So
lv

ed
ta

sk
s

Lazy + hFF

Lazy + hR-FF

Eager + hgc, ur-d

Lazy + hFF (FD)

Figure 1: Solved tasks over time for different methods.

We thus use these heuristics with Eager. The columns under
“Other Lifted Methods” in Table 2 show the results.

When focusing on Eager search, all three methods based
on hgc are competitive with or better than hFF and hR-FF. In
total hFF solves 28 tasks more than hgc, ur-d. The advantage is
mainly in the IPC domains where hFF solves 127 tasks more
than hgc, ur-d. On the HTG domains, the picture is reversed
and hFF solves 99 tasks less than hgc, ur-d.

All methods using Lazy + PO are superior in coverage.
All the Datalog-based heuristics are still better on the IPC
set but also solve more tasks on the HTG set. As mentioned
above, the preferred operators have a larger impact than a
better heuristic and it is not known how to find preferred
operators over the unary relaxation task efficiently.

We analyzed coverage over time for hFF, hR-FF, and
hgc, ur-d in Figure 1. The search using hgc, ur-d has much
higher coverage in approximately the first 10 seconds be-
cause it is very fast to compute. Hence, tasks that do not
require a deep search are solved quickly. In fact, the lifted
hFF and hR-FF computation are worst-case exponential in
the PDDL-size, while hgc, ur-d is polynomial. Still, for small
tasks the overhead of computing hFF or hR-FF does not pay

104 105 106 107
0

200

400

600

800

1,000

1,200

1,400

1,600

Peak memory in kB

So
lv

ed
ta

sk
s
Lazy + hFF

Lazy + hR-FF

Eager + hgc, ur-d

Lazy + hFF (FD)

Figure 2: Solved tasks for different memory limits.

off. For larger tasks, the stronger heuristic guidance is worth
spending more time to compute hFF and hR-FF.

When analyzing memory, our methods are superior to
hgc, ur-d even with small limits. Figure 2 compares coverage
for different limits on peak memory. Using a limit as low as
100 MiB, the difference in coverage between our methods
and hgc, ur-d is already larger than 150 tasks.

Ground Planners Our last experiment compares PWL
with the lifted hFF heuristic FD (Helmert 2006) with the
ground hFF heuristic. Both use a generalized Dijkstra algo-
rithm for their heuristic computation but the lifted imple-
mentation requires a more expensive unification step with
this algorithm. Additionally, the two planners break ties in
the heuristic computation differently and have a different
notion of preferred operators (Corrêa et al. 2021), so they
are not guaranteed to expand the same set of states. We thus
treat this experiment as comparing two planners rather than
comparing two implementations of hFF.

Using Eager, FD outperforms PWL in general. In the IPC
set, it solves 73 more tasks in total. In 9 domains, FD solved
5 or more tasks more than PWL. The largest difference was
in barman, where FD solved 11 tasks more. The only do-

mains where PWL solves more tasks are visitall, parking-
sat14, and thoughtful. This difference in performance is ex-
pected since the IPC tasks are easy to ground and the main
challenge is the search itself. In such cases the advantage
of not having to ground the task does not offset the more
expensive heuristic computation in PWL. When comparing
the results in the HTG set, the planners are on par. Nonethe-
less, the coverage in some domains differs a lot, such as in
logistics-large and organic-synthesis.

With Lazy + PO, the trend is similar: FD is superior on
the IPC set, while PWL is superior on the HTG set. How-
ever, on the IPC set, the advantage of FD reduces from 73 to
42 tasks. On the HTG set, the advantage of PWL increases
from 27 to 101 tasks. In total, PWL has the highest coverage
in this setting.

As Figure 1 shows, FD solves more tasks than the lifted
methods in the first seconds. As most of the tasks in the com-
bined benchmark are easy-to-ground and the ground heuris-
tic computation is much faster, FD solves even more tasks
than hgc, ur-d straight away. In fact, PWL with hFF only passes
FD in number of solved tasks after around 400 seconds.

Comparing memory, FD has a similar performance to our
methods. We can see in Figure 2 that with limits smaller
than 1 GiB, FD has the highest coverage. For larger limits,
the lifted planner is slightly superior.

Conclusion
We showed how to compute hFF from a lifted representation
of a planning task. The rule-based FF heuristic, hR-FF, treats
the effects of an action independently and can thus over-
count an action. Therefore, we introduced annotated Data-
log programs, which associate every rule and fact with an
instruction. After evaluating a Datalog query, the actions be-
longing to a relaxed plan can be extracted by executing the
annotations along its derivation. We showed how such anno-
tated Datalog programs can be simplified without changing
their semantics. This allows us to compute hFF from smaller
annotated Datalog programs which are faster to evaluate. We
believe annotated Datalog programs can be used beyond the
definition of heuristics, such as for generating landmarks
(Zhu and Givan 2003), as they allow us to express other
computations over the relaxed task.

Empirically, a lifted planner using the lifted FF heuristic
achieves state-of-the-art performance among lifted methods.
In domains that are hard to ground, the lifted planner solves
more tasks than any other method. In IPC domains, which
are not particularly hard to ground, it reduces the gap to Fast
Downward, a state-of-the-art ground planner, and achieves
better coverage in a few of them.

Acknowledgments
This work was funded by the Swiss National Science Foun-
dation (SNSF) as part of the project “Certified Correctness
and Guaranteed Performance for Domain-Independent Plan-
ning” (CCGP-Plan). Furthermore, this research was also
partially supported by TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under
grant agreement no. 952215.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Betz, C.; and Helmert, M. 2009. Planning with h+ in Theory
and Practice. In ICAPS 2009 Workshop on Heuristics for
Domain-Independent Planning, 64–69.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ, 129(1): 5–33.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Proc. ICAPS 2021, 94–102.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation using Query Opti-
mization Techniques. In Proc. ICAPS 2020, 80–89.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2022. Code from the AAAI 2022 paper “The FF Heuris-
tic for Lifted Classical Planning”. https://doi.org/10.5281/
zenodo.6373793.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys, 33(3): 374–425.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. AIJ, 173: 503–535.
Hoffmann, J. 2005. Where ‘Ignoring Delete Lists’ Works:
Local Search Topology in Planning Benchmarks. JAIR, 24:
685–758.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR, 14:
253–302.
Horčı́k, R.; and Fišer, D. 2021. Endomorphisms of Lifted
Planning Problems. In Proc. ICAPS 2021, 174–183.
Keyder, E.; and Geffner, H. 2008. Heuristics for Planning
with Action Costs Revisited. In Proc. ECAI 2008, 588–592.
Lauer, P.; Torralba, Á.; Fis̆er, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In Proc. IJCAI 2021.
McDermott, D. 1996. A Heuristic Estimator for Means-
Ends Analysis in Planning. In Proc. AIPS 1996, 142–149.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine, 21(2): 35–55.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. AIJ, 1: 193–204.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Proc. ICAPS
2009, 273–280.
Zhu, L.; and Givan, R. 2003. Landmark Extraction via Plan-
ning Graph Propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.

