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Lifted Planning

what we consider lifted classical planning:

planning only with the PDDL description

predicate symbols, objects, action schemas, initial state, goal

heuristic search:

action schemas are lifted

states are ground



What We Already Know in Lifted Planning

what we already know:

efficient successor generation

several heuristics

hadd, unary relaxation, goalcount, . . .

extract preferred operators

problem: no lifted version of a state-of-the-art heuristic

our contribution: lifted hFF



Running Example

Running Example

(:init (P 0 1) (S 0))

(:action A

:parameters (?X ?Y)

:precondition (and (P ?X ?Y)

(S ?X))

:effect (and (Q ?X)

(R ?Y)))

(:goal (Q 0))

delete-free planning task → Datalog program



Initial State into Datalog Facts

Running Example

(:init (P 0 1) (S 0))

F := {P(0, 1),S(0)}



Action Schemas into Datalog Rules

Running Example

(:action A

:parameters (?X ?Y)

:precondition (and (P ?X ?Y)

(S ?X))

:effect (and (Q ?X)

(R ?Y)))

head︷ ︸︸ ︷
A-applicable(X ,Y ) :−

body︷ ︸︸ ︷
P(X ,Y ), S(X )

Q(X ) :− A-applicable(X ,Y )

R(Y ) :− A-applicable(X ,Y )



Goal into Datalog Rule

Running Example

(:goal (Q 0))

goal() :− Q(0)



Datalog Program

F :={P(0, 1), S(0)}
R :={A-applicable(X ,Y ) :− P(X ,Y ),S(X ),

Q(X ) :− A-applicable(X ,Y ),

R(Y ) :− A-applicable(X ,Y ),

goal() :− Q(0)}



One Step Further...

annotated Datalog:

annotate each rule with instructions

Python-like imperative instructions

in our case: annotations add ground actions to a relaxed plan πFF



Datalog Program

A-applicable(X ,Y ) :− P(X ,Y ), S(X ) [Add A(X ,Y ) to πFF]

Q(X ) :− A-applicable(X ,Y ) [ ]

R(Y ) :− A-applicable(X ,Y ) [ ]

goal() :− Q(0) [ ]



How It Works

step-by-step:

i ground program until we reach goal()

ii construct derivation tree

iii execute instructions in order



Step 1: Ground

M ={P(0, 1),S(0)}
GroundRules ={}



Step 1: Ground

M ={P(0, 1), S(0),A-applicable(0, 1)}
GroundRules ={r1}

r1 :=A-applicable(0, 1) :− P(0, 1), S(0) [Add A(0, 1) to πFF]



Step 1: Ground

M ={P(0, 1), S(0),A-applicable(0, 1)}
GroundRules ={r1}



Step 1: Ground

M = {P(0, 1), S(0),A-applicable(0, 1),Q(0),R(1)}
GroundRules = {r1, r2, r3}

r2 :=Q(0) :− A-applicable(0, 1) [ ]

r3 :=R(1) :− A-applicable(0, 1) [ ]



Step 1: Ground

M = {P(0, 1), S(0),A-applicable(0, 1),Q(0),R(1)}
GroundRules = {r1, r2, r3}



Step 1: Ground

M = {P(0, 1), S(0),A-applicable(0, 1),Q(0),R(1), goal()}
GroundRules = {r1, r2, r3, r4}

r4 := goal() :− Q(0) [ ]

note: in practice, we ground atoms ordered by hadd values



Step 2: Derivation Tree

atom A derives B if A is in the body of the rule reaching B

goal()

Q(0)

A-applicable(0, 1)

P(0, 1) S(0)

r4

r2

r1



Step 3: Execute Instructions

goal()

Q(0)

A-applicable(0, 1)

P(0, 1) S(0)

r4 : [ ]

r2 : [ ]

r1 : [Add A(0, 1) to πFF]

execution:

order rule annotations bottom-up and execute

our example: r1, r2, r4

after execution: πFF = 〈A(0, 1)〉
hFF = cost of πFF



Framework

With this type of annotations, we can compute hFF.
But we can do more than that.

annotated Datalog as a framework:

useful atoms

other heuristics

more info in the paper



Problem

problem: straightforward encoding used does not scale

atoms like A-applicable might have high arity

duplicated sub-expressions

inefficient joins

solution: program rewriting transformations



Example of Transformation: Rule Merging

A-applicable(X ,Y ) :− P(X ,Y ),S(X ) [Add A(X ,Y ) to πFF]

Q(X ) :− A-applicable(X ,Y ) [ ]

R(Y ) :− A-applicable(X ,Y ) [ ]



Example of Transformation: Rule Merging

Q(X ) :− P(X ,Y ),S(X ) [Add A(X ,Y ) to πFF]

R(Y ) :− P(X ,Y ), S(X ) [Add A(X ,Y ) to πFF]



Example of Transformation: Rule Splitting

P1(X ) :− Q(X ,Z ),T (X ,Y ), S(Y ) [Add A1(X ,Y ,Z ) to πFF]

P2(X ) :− R(X ,Z ),T (X ,Y ),S(Y ) [Add A2(X ,Y ,Z ) to πFF]



Example of Transformation: Rule Splitting

α(X ) :− T (X ,Y ),S(Y ) [Instantiation[α(X )] = (X ,Y )]

P1(X ) :− Q(X ,Z ), α(X ) [X,Y = Instantiation[α(X )];

Add A1(X, Y,Z ) to πFF]

P2(X ) :− R(X ,Z ), α(X ) [X,Y = Instantiation[α(X )];

Add A2(X, Y,Z ) to πFF]

more: predicate collapsing, variable renaming



Transformations Preserve Relaxed Plans

in the paper: transformations preserve relaxed plans

step-by-step process for the transformations

how to handle annotations

transformations preserve semantics of annotations in general

under certain circumstances

by transforming annotations together with the rules



Experiments

two benchmarks:

1001 IPC tasks

862 hard-to-ground (HTG) tasks

setup:

30 minutes per run

16 GiB



Comparison to Ground Version

using hFF with lifted and ground implementations of

eager GBFS

lazy GBFS with preferred operators

Ground Lifted

Coverage Eager Lazy + PO Eager Lazy + PO

IPC Sum (1001) 775 862 653 782

blocksworld-large (40) 4 12 3 9
childsnacks-large (144) 51 115 27 77
genome-edit-distance (312) 312 312 286 310
logistics-large (40) 30 32 6 40
organic-synthesis (56) 20 20 46 47
pipesworld-tankage-nosplit (50) 15 19 17 28
rovers-large (40) 11 13 26 40
visitall-multidimensional (180) 72 72 108 140

HTG Sum (862) 515 595 519 691

Total Sum (1863) 1290 1457 1172 1473



Comparison to Other Lifted Methods

hadd hFF

Coverage hgc, ur-d Eager Lazy + PO Eager Lazy + PO

IPC Sum (1001) 575 608 762 653 782

blocksworld-large (40) 7 1 5 3 9
childsnacks-large (144) 98 34 81 27 77
genome-edit-distance (312) 312 181 285 286 310
logistics-large (40) 0 6 40 6 40
organic-synthesis (56) 47 46 47 46 47
pipesworld-tankage-nosplit (50) 10 22 32 17 28
rovers-large (40) 16 11 31 26 40
visitall-multidimensional (180) 151 117 142 108 140

HTG Sum (862) 641 418 663 519 691

Total Sum (1863) 1216 1026 1425 1172 1473



Solved Tasks over Time
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Conclusion

key ideas:

lifted hFF

state-of-the-art lifted planner

framework to compute delete-relaxed heuristics


