The FF Heuristic for Lifted Classical Planning

Augusto B. Corréal, Florian Pommereningl, Malte Helmert!,
Guillem Frances?

LUniversity of Basel, Switzerland
2Universitat Pompeu Fabra, Spain
{augusto.blaascorrea,florian.pommerening,malte.helmert}@unibas.ch
guillem.francesQupf.edu

Lifted Planning

what we consider lifted classical planning:
@ planning only with the PDDL description
e predicate symbols, objects, action schemas, initial state, goal

heuristic search:
@ action schemas are lifted

@ states are ground

What We Already Know in Lifted Planning

what we already know:

o efficient successor generation
@ several heuristics
e h*4 unary relaxation, goalcount, . ..

@ extract preferred operators

problem: no lifted version of a state-of-the-art heuristic

@ our contribution: lifted AFF

Running Example

(:init (P 0 1) (S 0))
(:action A
:parameters (?7X ?7Y)
:precondition (and (P 7X ?7Y)
(8 7X))
reffect (and (Q ?7X)
(R ?Y)))
(:goal (Q 0))

delete-free planning task — Datalog program

Initial State into Datalog Facts

Running Example
(:init (P 0 1) (8 0))

F ={P(0,1),5(0)}

Action Schemas into Datalog Rules

Running Example

(:action A
:parameters (7X ?7Y)
:precondition (and (P 7X ?7Y)
(s 7X))

:effect (and (Q ?7X)
(R 7Y)))

head body
‘A-applicable(X, Y) :— P(X, Y), S(X)
Q(X) :— A-applicable(X,Y)
R(Y') :— A-applicable(X,Y)

Goal into Datalog Rule

Running Example
(:goal (Q 0))

goal() :— Q(0)

Datalog Program

F ={P(0,1),5(0)}

R :={A-applicable(X,Y) — P(X,Y), S(X),
Q(X) :— A-applicable(X,Y),
R(Y') :— A-applicable(X,Y),
goal() :— Q(0)}

One Step Further...

annotated Datalog:
@ annotate each rule with instructions

@ Python-like imperative instructions

in our case: annotations add ground actions to a relaxed plan g

Datalog Program

A-applicable(X,Y) :— P(X,Y),S5(X) [Add A(X,Y) to mgF]
Q(X) :— A-applicable(X, Y)]
R(Y) :— A-applicable(X, Y) L]
goal() :— Q(0) []

How It Works

step-by-step:
@ ground program until we reach goal()
@ construct derivation tree

@ execute instructions in order

Step 1: Ground

M ={P(0,1),5(0)}
GroundRules ={}

Step 1: Ground

M ={P(0,1), 5(0), A-applicable(0, 1)}
GroundRules ={r }

ri = A-applicable(0,1) :— P(0,1), 5(0) [Add A(0,1) to mgr]

Step 1: Ground

M ={P(0,1), 5(0), A-applicable(0, 1)}
GroundRules ={r }

Step 1: Ground

M = {P(0,1), 5(0), A-applicable(0,1), Q(0), R(1)}
GroundRules = {ri, r», r3}

rp = Q(0) :— A-applicable(0, 1) []
r3 = R(1) :— A-applicable(0, 1) []

Step 1: Ground

M = {P(0,1), 5(0), A-applicable(0,1), Q(0), R(1)}
GroundRules = {ri, r», r3}

Step 1: Ground

M = {P(0,1), 5(0), A-applicable(0, 1), Q(0), R(1), goal()}
GroundRules = {r1,ra, r3, ra}

ra = goal() :— Q(0) L]

note: in practice, we ground atoms ordered by h?d values

Step 2: Derivation Tree

atom A derives B if A is in the body of the rule reaching B

goal()
ra

Q(0)
r

A-applicable(0, 1)
[r

| |
P(0,1) 5(0)

Step 3: Execute Instructions

goal()
rg]
Q(0)
]

A-applicable(0,1)
| ' |r1: [Add A(0,1) to mgF]

P(0,1) 5(0)

execution:
@ order rule annotations bottom-up and execute

@ our example: r, r,

after execution: s = (A(0, 1))
e hFF = cost of mpp

Framework

With this type of annotations, we can compute hFF.
But we can do more than that.

annotated Datalog as a framework:
o useful atoms
@ other heuristics

@ more info in the paper

problem: straightforward encoding used does not scale
e atoms like A-applicable might have high arity
@ duplicated sub-expressions

@ inefficient joins

solution: program rewriting transformations

Example of Transformation: Rule Merging

A-applicable(X, Y) :— P(X,Y),S(X) [Add A(X,Y) to mgr]
Q(X) :— A-applicable(X,Y) []
R(Y) :— A-applicable(X,Y) []

Example of Transformation: Rule Merging

Q(X) :— P(X,Y),S(X) [Add A(X,Y) to mpg]
R(Y) = P(X,Y),S(X) [Add A(X,Y) to m]

Example of Transformation: Rule Splitting

Pi(X) — Q(X,2), T(X,Y),5(Y) [Add A1(X,Y,Z) to mrr]
Pa(X) = R(X,Z), T(X,Y),S(Y) [Add Ax(X,Y,Z) to mer]

Example of Transformation: Rule Splitting

a(X) = T(X,Y),S5(Y) [Instantiation[a(X)] = (X, Y)]
Pi(X) — Q(X, Z2),a(X) [X,Y = Instantiation[a(X)];

Add Ai(X,Y,Z) to mrr]
Py(X) :— R(X, Z), a(X) [X,Y = Instantiation[a(X)];

Add AQ(X,Y, Z) to mrpl

more: predicate collapsing, variable renaming

Transformations Preserve Relaxed Plans

in the paper: transformations preserve relaxed plans
@ step-by-step process for the transformations
@ how to handle annotations

transformations preserve semantics of annotations in general
@ under certain circumstances

@ by transforming annotations together with the rules

two benchmarks:
e 1001 IPC tasks
@ 862 hard-to-ground (HTG) tasks

setup:
@ 30 minutes per run
e 16 GiB

Comparison to Ground Version

using hFF with lifted and ground implementations of

@ eager GBFS
o lazy GBFS with preferred operators

Ground Lifted
Coverage Eager Lazy + PO Eager Lazy + PO
IPC Sum (1001) 775 862 653 782
blocksworld-large (40) 4 12 3 9
childsnacks-large (144) 51 115 27 7
genome-edit-distance (312) 312 312 286 310
logistics-large (40) 30 32 6 40
organic-synthesis (56) 20 20 46 47
pipesworld-tankage-nosplit (50) 15 19 17 28
rovers-large (40) 11 13 26 40
visitall-multidimensional (180) 72 72 108 140
HTG Sum (862) 515 595 519 691

Total Sum (1863) 1290 1457 1172 1473

Comparison to Other Lifted Methods

hadd hFF
Coverage hee-urd Eager Lazy + PO Eager Lazy + PO
IPC Sum (1001) 575 608 762 653 782
blocksworld-large (40) 7 1 5 3 9
childsnacks-large (144) 98 34 81 27 7
genome-edit-distance (312) 312 181 285 286 310
logistics-large (40) 0 6 40 6 40
organic-synthesis (56) 47 46 47 46 47
pipesworld-tankage-nosplit (50) 10 22 32 17 28
rovers-large (40) 16 11 31 26 40
visitall-multidimensional (180) 151 117 142 108 140
HTG Sum (862) 641 418 663 519 691

Total Sum (1863) 1216 1026 1425 1172 1473

Solved Tasks over Time

1,400+

1,200+

10000 e ‘

Solved tasks

— Lazy + AP
..... Eager + h&e ur-d i

800 -+ Lazy + hFF (FD)

100 10* 102 103
Total time in seconds

Conclusion

key ideas:
o lifted AFF
@ state-of-the-art lifted planner

o framework to compute delete-relaxed heuristics

