
The FF Heuristic for Lifted Classical Planning

Augusto B. Corrêa1, Florian Pommerening1, Malte Helmert1,
Guillem Francès2

1University of Basel, Switzerland
2Universitat Pompeu Fabra, Spain

{augusto.blaascorrea,florian.pommerening,malte.helmert}@unibas.ch
guillem.frances@upf.edu

Lifted Planning

what we consider lifted classical planning:

planning only with the PDDL description

predicate symbols, objects, action schemas, initial state, goal

heuristic search:

action schemas are lifted

states are ground

What We Already Know in Lifted Planning

what we already know:

efficient successor generation

several heuristics

hadd, unary relaxation, goalcount, . . .

extract preferred operators

problem: no lifted version of a state-of-the-art heuristic

our contribution: lifted hFF

Running Example

Running Example

(:init (P 0 1) (S 0))

(:action A

:parameters (?X ?Y)

:precondition (and (P ?X ?Y)

(S ?X))

:effect (and (Q ?X)

(R ?Y)))

(:goal (Q 0))

delete-free planning task → Datalog program

Initial State into Datalog Facts

Running Example

(:init (P 0 1) (S 0))

F := {P(0, 1),S(0)}

Action Schemas into Datalog Rules

Running Example

(:action A

:parameters (?X ?Y)

:precondition (and (P ?X ?Y)

(S ?X))

:effect (and (Q ?X)

(R ?Y)))

head︷ ︸︸ ︷
A-applicable(X ,Y) :−

body︷ ︸︸ ︷
P(X ,Y), S(X)

Q(X) :− A-applicable(X ,Y)

R(Y) :− A-applicable(X ,Y)

Goal into Datalog Rule

Running Example

(:goal (Q 0))

goal() :− Q(0)

Datalog Program

F :={P(0, 1), S(0)}
R :={A-applicable(X ,Y) :− P(X ,Y),S(X),

Q(X) :− A-applicable(X ,Y),

R(Y) :− A-applicable(X ,Y),

goal() :− Q(0)}

One Step Further...

annotated Datalog:

annotate each rule with instructions

Python-like imperative instructions

in our case: annotations add ground actions to a relaxed plan πFF

Datalog Program

A-applicable(X ,Y) :− P(X ,Y), S(X) [Add A(X ,Y) to πFF]

Q(X) :− A-applicable(X ,Y) []

R(Y) :− A-applicable(X ,Y) []

goal() :− Q(0) []

How It Works

step-by-step:

i ground program until we reach goal()

ii construct derivation tree

iii execute instructions in order

Step 1: Ground

M ={P(0, 1),S(0)}
GroundRules ={}

Step 1: Ground

M ={P(0, 1), S(0),A-applicable(0, 1)}
GroundRules ={r1}

r1 :=A-applicable(0, 1) :− P(0, 1), S(0) [Add A(0, 1) to πFF]

Step 1: Ground

M ={P(0, 1), S(0),A-applicable(0, 1)}
GroundRules ={r1}

Step 1: Ground

M = {P(0, 1), S(0),A-applicable(0, 1),Q(0),R(1)}
GroundRules = {r1, r2, r3}

r2 :=Q(0) :− A-applicable(0, 1) []

r3 :=R(1) :− A-applicable(0, 1) []

Step 1: Ground

M = {P(0, 1), S(0),A-applicable(0, 1),Q(0),R(1)}
GroundRules = {r1, r2, r3}

Step 1: Ground

M = {P(0, 1), S(0),A-applicable(0, 1),Q(0),R(1), goal()}
GroundRules = {r1, r2, r3, r4}

r4 := goal() :− Q(0) []

note: in practice, we ground atoms ordered by hadd values

Step 2: Derivation Tree

atom A derives B if A is in the body of the rule reaching B

goal()

Q(0)

A-applicable(0, 1)

P(0, 1) S(0)

r4

r2

r1

Step 3: Execute Instructions

goal()

Q(0)

A-applicable(0, 1)

P(0, 1) S(0)

r4 : []

r2 : []

r1 : [Add A(0, 1) to πFF]

execution:

order rule annotations bottom-up and execute

our example: r1, r2, r4

after execution: πFF = 〈A(0, 1)〉
hFF = cost of πFF

Framework

With this type of annotations, we can compute hFF.
But we can do more than that.

annotated Datalog as a framework:

useful atoms

other heuristics

more info in the paper

Problem

problem: straightforward encoding used does not scale

atoms like A-applicable might have high arity

duplicated sub-expressions

inefficient joins

solution: program rewriting transformations

Example of Transformation: Rule Merging

A-applicable(X ,Y) :− P(X ,Y),S(X) [Add A(X ,Y) to πFF]

Q(X) :− A-applicable(X ,Y) []

R(Y) :− A-applicable(X ,Y) []

Example of Transformation: Rule Merging

Q(X) :− P(X ,Y),S(X) [Add A(X ,Y) to πFF]

R(Y) :− P(X ,Y), S(X) [Add A(X ,Y) to πFF]

Example of Transformation: Rule Splitting

P1(X) :− Q(X ,Z),T (X ,Y), S(Y) [Add A1(X ,Y ,Z) to πFF]

P2(X) :− R(X ,Z),T (X ,Y),S(Y) [Add A2(X ,Y ,Z) to πFF]

Example of Transformation: Rule Splitting

α(X) :− T (X ,Y),S(Y) [Instantiation[α(X)] = (X ,Y)]

P1(X) :− Q(X ,Z), α(X) [X,Y = Instantiation[α(X)];

Add A1(X, Y,Z) to πFF]

P2(X) :− R(X ,Z), α(X) [X,Y = Instantiation[α(X)];

Add A2(X, Y,Z) to πFF]

more: predicate collapsing, variable renaming

Transformations Preserve Relaxed Plans

in the paper: transformations preserve relaxed plans

step-by-step process for the transformations

how to handle annotations

transformations preserve semantics of annotations in general

under certain circumstances

by transforming annotations together with the rules

Experiments

two benchmarks:

1001 IPC tasks

862 hard-to-ground (HTG) tasks

setup:

30 minutes per run

16 GiB

Comparison to Ground Version

using hFF with lifted and ground implementations of

eager GBFS

lazy GBFS with preferred operators

Ground Lifted

Coverage Eager Lazy + PO Eager Lazy + PO

IPC Sum (1001) 775 862 653 782

blocksworld-large (40) 4 12 3 9
childsnacks-large (144) 51 115 27 77
genome-edit-distance (312) 312 312 286 310
logistics-large (40) 30 32 6 40
organic-synthesis (56) 20 20 46 47
pipesworld-tankage-nosplit (50) 15 19 17 28
rovers-large (40) 11 13 26 40
visitall-multidimensional (180) 72 72 108 140

HTG Sum (862) 515 595 519 691

Total Sum (1863) 1290 1457 1172 1473

Comparison to Other Lifted Methods

hadd hFF

Coverage hgc, ur-d Eager Lazy + PO Eager Lazy + PO

IPC Sum (1001) 575 608 762 653 782

blocksworld-large (40) 7 1 5 3 9
childsnacks-large (144) 98 34 81 27 77
genome-edit-distance (312) 312 181 285 286 310
logistics-large (40) 0 6 40 6 40
organic-synthesis (56) 47 46 47 46 47
pipesworld-tankage-nosplit (50) 10 22 32 17 28
rovers-large (40) 16 11 31 26 40
visitall-multidimensional (180) 151 117 142 108 140

HTG Sum (862) 641 418 663 519 691

Total Sum (1863) 1216 1026 1425 1172 1473

Solved Tasks over Time

100 101 102 103

800

1,000

1,200

1,400

Total time in seconds

S
ol
ve
d
ta
sk
s

Lazy + hFF

Eager + hgc, ur-d

Lazy + hFF (FD)

Conclusion

key ideas:

lifted hFF

state-of-the-art lifted planner

framework to compute delete-relaxed heuristics

