The FF Heuristic for Lifted Classical Planning

Augusto B. Corrêa¹, Florian Pommerening¹, Malte Helmert¹, Guillem Francès²

¹University of Basel, Switzerland ²Universitat Pompeu Fabra, Spain {augusto.blaascorrea,florian.pommerening,malte.helmert}@unibas.ch guillem.frances@upf.edu

what we consider lifted classical planning:

- planning only with the PDDL description
 - predicate symbols, objects, action schemas, initial state, goal

heuristic search:

- action schemas are lifted
- states are ground

what we already know:

- efficient successor generation
- several heuristics
 - *h*^{add}, unary relaxation, goalcount, ...
- extract preferred operators

problem: no lifted version of a state-of-the-art heuristic

• our contribution: lifted h^{FF}

delete-free planning task \rightarrow Datalog program

(:init (P 0 1) (S 0))

$$\mathcal{F} \coloneqq \{P(0,1), S(0)\}$$

(:goal (Q 0))

goal() := Q(0)

$$\begin{aligned} \mathcal{F} &:= \{ P(0,1), S(0) \} \\ \mathcal{R} &:= \{ A \text{-applicable}(X,Y) := P(X,Y), S(X), \\ Q(X) &:= A \text{-applicable}(X,Y), \\ R(Y) &:= A \text{-applicable}(X,Y), \\ goal() &:= Q(0) \} \end{aligned}$$

annotated Datalog:

- annotate each rule with instructions
- Python-like imperative instructions

in our case: annotations add ground actions to a relaxed plan $\pi_{\rm FF}$

step-by-step:

- ground program until we reach goal()
- construct derivation tree
- execute instructions in order

$\mathcal{M} = \{ P(0, 1), S(0) \}$ *GroundRules* = {}

$$\mathcal{M} = \{P(0, 1), S(0), A\text{-applicable}(0, 1)\}$$

$$GroundRules = \{r_1\}$$

$$r_1 := A\text{-applicable}(0,1) := P(0,1), S(0) \qquad \texttt{[Add } A(0,1) \texttt{ to } \pi_{\texttt{FF}}\texttt{]}$$

$\mathcal{M} = \{ P(0,1), S(0), A\text{-applicable}(0,1) \}$ GroundRules = $\{r_1\}$

$$\mathcal{M} = \{ P(0,1), S(0), A\text{-applicable}(0,1), Q(0), R(1) \}$$

GroundRules = $\{ r_1, r_2, r_3 \}$

 $\mathcal{M} = \{ P(0,1), S(0), A\text{-applicable}(0,1), Q(0), R(1) \}$ GroundRules = $\{ r_1, r_2, r_3 \}$

$$\mathcal{M} = \{ P(0,1), S(0), A\text{-applicable}(0,1), Q(0), R(1), goal() \}$$

GroundRules = $\{ r_1, r_2, r_3, r_4 \}$

$$r_4 := goal() := Q(0)$$
 []

note: in practice, we ground atoms ordered by h^{add} values

atom A derives B if A is in the body of the rule reaching B

Step 3: Execute Instructions

execution:

- order rule annotations bottom-up and execute
- our example: r_1, r_2, r_4

```
after execution: \pi_{\rm FF} = \langle A(0,1) \rangle

• h^{\rm FF} = {\rm cost} \ {\rm of} \ \pi_{\rm FF}
```

With this type of annotations, we can compute h^{FF} . But we can do more than that.

annotated Datalog as a framework:

- useful atoms
- other heuristics
- more info in the paper

problem: straightforward encoding used does not scale

- atoms like A-applicable might have high arity
- duplicated sub-expressions
- inefficient joins

solution: program rewriting transformations

Example of Transformation: Rule Merging

Q(X) := P(X, Y), S(X)R(Y) := P(X, Y), S(X)

[Add A(X, Y) to $\pi_{\rm FF}$] [Add A(X, Y) to $\pi_{\rm FF}$]

Example of Transformation: Rule Splitting

 $P_1(X) := Q(X, Z), T(X, Y), S(Y)$ $P_2(X) := R(X, Z), T(X, Y), S(Y)$ [Add $A_1(X, Y, Z)$ to π_{FF}] [Add $A_2(X, Y, Z)$ to π_{FF}] $\begin{array}{ll} \alpha(X) := & T(X,Y), S(Y) \\ P_1(X) := & Q(X,Z), \alpha(X) \end{array} \begin{bmatrix} \text{Instantiation}[\alpha(X)] = & (X,Y) \\ [X,Y] = & \text{Instantiation}[\alpha(X)]; \\ \text{Add } & A_1(X,Y,Z) \text{ to } & \pi_{\text{FF}} \end{bmatrix} \\ P_2(X) := & R(X,Z), \alpha(X) \end{bmatrix} \begin{bmatrix} X,Y = & \text{Instantiation}[\alpha(X)]; \\ \text{Add } & A_2(X,Y,Z) \text{ to } & \pi_{\text{FF}} \end{bmatrix}$

more: predicate collapsing, variable renaming

in the paper: transformations preserve relaxed plans

- step-by-step process for the transformations
- how to handle annotations

transformations preserve semantics of annotations in general

- under certain circumstances
- by transforming annotations together with the rules

two benchmarks:

- 1001 IPC tasks
- 862 hard-to-ground (HTG) tasks

setup:

- 30 minutes per run
- 16 GiB

Comparison to Ground Version

using h^{FF} with lifted and ground implementations of

- eager GBFS
- lazy GBFS with preferred operators

	C	Ground	Lifted	
Coverage	Eager	Lazy + PO	Eager	Lazy + PO
IPC Sum (1001)	775	862	653	782
blocksworld-large (40)	4	12	3	9
childsnacks-large (144)	51	115	27	77
genome-edit-distance (312)	312	312	286	310
logistics-large (40)	30	32	6	40
organic-synthesis (56)	20	20	46	47
pipesworld-tankage-nosplit (50)	15	19	17	28
rovers-large (40)	11	13	26	40
visitall-multidimensional (180)	72	72	108	140
HTG Sum (862)	515	595	519	691
Total Sum (1863)	1290	1457	1172	1473

Comparison to Other Lifted Methods

		h ^{add}		hFF	
Coverage	h ^{gc, ur-d}	Eager	Lazy + PO	Eager	Lazy + PO
IPC Sum (1001)	575	608	762	653	782
blocksworld-large (40)	7	1	5	3	9
childsnacks-large (144)	98	34	81	27	77
genome-edit-distance (312)	312	181	285	286	310
logistics-large (40)	0	6	40	6	40
organic-synthesis (56)	47	46	47	46	47
pipesworld-tankage-nosplit (50)	10	22	32	17	28
rovers-large (40)	16	11	31	26	40
visitall-multidimensional (180)	151	117	142	108	140
HTG Sum (862)	641	418	663	519	691
Total Sum (1863)	1216	1026	1425	1172	1473

Solved Tasks over Time

key ideas:

- lifted h^{FF}
- state-of-the-art lifted planner
- framework to compute delete-relaxed heuristics