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Abstract

The desire for persistent autonomy in ambitious robotic space
missions has seen renewed interest in the use of on-board
planning. This poses particular challenges in terms of the
limited computational power of radiation-hardened hardware,
and also the need to integrate with functions external to the
planner itself. In this paper, we discuss the development of
a forward-chaining temporal planner for use in this setting.
We present results illustrating its lightweight resource foot-
print compared to contemporary planners, and its application
to two proposed robotic space scenarios.

1 Introduction
In recent years, a number of ambitious robotic space mission
scenarios have been proposed, leading to a renewed interest
by national and international agencies in increasing the de-
gree of autonomy within robotic space missions, including
planetary exploration and orbital operations. Within this is a
desire to develop and consolidate the maturity of technolo-
gies for on-board reasoning, including automated planning.
Such technologies would support an increased degree of per-
sistent autonomy, with space robots relying on on-board rea-
soning to support operations over an extended period with-
out intervention from ground-based operations staff.

Autonomous reasoning for space missions is not a new
idea (Muscettola et al. 1998; Chien et al. 2010), but re-
duction in agency budgets has renewed interest in its de-
velopment. Progress in domain-independent planning over
the past decades makes it a viable option to consider for
implementing such autonomy for robotic space missions.
The opportunity is exciting, but search-based planning and
space hardware are not natural bedfellows: modern plan-
ning algorithms are often evaluated in terms of the rules and
benchmarks of the International Planning Competition (IPC)
where a planner is allocated 30 minutes of time on a mod-
ern CPU and several gigabytes of memory; but in space, this
would exceed the hardware resources available by an order
of magnitude or more. Moreover, while portfolio planners
have emerged as the forerunners in many IPCs, testing and
certifying a single planner as flight-ready would be ambi-
tious; let alone certifying a suite of them.
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In this paper, we present a domain-independent temporal
planner and its application to two mission scenarios: plane-
tary exploration and orbital operations. These are modeled
in a variant of the Planning Domain Definition Language
(PDDL), extended only with an interface for external func-
tion evaluation, as required for integration with other on-
board reasoning components for path planning and robotic
arm motion planning. We discuss the engineering and de-
sign decisions in the development of the planner, in particu-
lar those that support the aim of reducing its computational
resource requirements. To evaluate the planner in the plan-
etary exploration mission scenario, we present a summary
of our experience of using it on a rover during a field trip
to the western Sahara. To evaluate the general low-resource
capabilities of the planner, we compare its performance to
its closest benchmark, the planner OPTIC (Benton, Coles,
and Coles 2012), across a range of standard PDDL planning
domains.

2 Background
Reasoning with expressive models that incorporate tempo-
ral and numeric constraints is crucial to planning in space
based applications. The most popular paradigm for planning
in space domains to date and the one that has been most suc-
cessfully used in practice is timeline-based planning (Chien
et al. 2000; Frank and Jonsson 2003; Cesta et al. 2012;
Chien et al. 2012). In this setting planning problems com-
prise a set of timelines, each representing the state of a
component of the system. Synchronizations specify con-
straints between these timelines over transitions between
states. Timeline-based planers have many strengths for space
applications, in particular their ability to handle externally
calculated functions and global temporal constraints, e.g.
time windows in which a satellite is visible for communi-
cation. The drawback of such systems is that they tend to
require the specification of domain-specific heuristics and
hence significant engineering to apply the planner to new
domains. Scalability also remains a challenge; indeed to this
day, much of the planning for space missions is done on the
ground, by personnel using these tools, rather than on-board
the spacecraft.

Recent decades have seen the development of scalable
domain-independent PDDL-based planners capable of han-
dling expressive domains. The advent of PDDL 2.1 (Fox



and Long 2003) for the third IPC saw a flurry of planners
supporting numeric (Hoffmann 2003) and temporal (Do and
Kambhampati 2003; Gerevini, Saetti, and Serina 2006; Eye-
rich, Mattmüller, and Röger 2009) models; followed more
recently by highly temporally expressive planners includ-
ing CRIKEY, POPF and OPTIC (Coles et al. 2008; 2010;
Benton, Coles, and Coles 2012) and even those capable of
handling global temporal interval constraints (Coles et al.
2019). In parallel, these planners have been enhanced with
methods that allow to incorporate external functions into the
planning process (Dornhege et al. 2009; Hertle et al. 2012;
Gregory et al. 2012; Piacentini et al. 2013).

In this work, we show that PDDL-based planning is a
viable alternative to timeline-based planning for on-board
autonomy that is worth considering. We leverage the ex-
pressiveness of temporal PDDL planning alongside the ef-
ficiency of the state-of-the-art classical planner Fast Down-
ward (Helmert 2006), which incorporates memory saving
features that are crucial for developing a scalable planner
that can be deployed on limited on-board hardware. We
integrate the resulting planner in a timeline-based system
whilst maintaining domain-independence. This has the ad-
vantage over a purely timeline-based system that domain-
independent heuristics can be re-used and it is easier to
apply the system to a new mission scenario. However, the
rest of the system maintains the expressiveness of timeline
planners. Others have considered the relationship between
these two paradigms before, including work bridging the
gap between the representation languages (Smith, Frank,
and Cushing 2008), comparing the expressiveness of the ap-
proaches (Gigante et al. 2016) or using PDDL planners to
create timeline plans (Ocon et al. 2017). However, none of
these focused on the development of scalable planning sys-
tems for on-board use in space missions.

2.1 Problem Definition
Our planner reasons with a restricted class of PDDL 2.2
planning problems. Specifically, we forbid numeric effects
which are either continuous over time, non-linear, or de-
pend on the duration of an action. A planning task is a tuple
〈P, V,A, I,TILs, G〉 where P is a set of propositions and
V a set of numeric variables. The initial state I maps each
propositional variable in P to a truth value and each numeric
variable in V to a real number. Each action a ∈ A is a tu-
ple 〈pre`, eff`, pre↔, prea, effa〉 comprising the sets of pre-
conditions and effects at the start (`) and end (a) of the ac-
tion and a set of invariant conditions (pre↔) that must hold
throughout the execution of the action. An action a is also
associated with a duration constraint that defines the mini-
mal duration lba ∈ R+

0 and maximal duration uba ∈ R+
0 ,

uba ≥ lba it takes to execute the action.
A precondition is a conjunction over propositions p ∈ P

and numeric conditions of the form w1v1 + w2v2 + ... +
wnvn ◦ c, where vi ∈ V , ◦ ∈ {≤,=,≥}, and wi, c ∈ R. A
precondition is satisfied in a state s if all contained proposi-
tions are true in s and if the inequality of all contained nu-
merical conditions is true when the variables vi are replaced
with their values in s. An action can start at a time t if the
state of the world at time t satisfies pre` and it can end at

times where prea is satisfied. It can be executed from t to t′
if it can start at t, end at t′, and pre↔ is satisfied at all times
between t and t′.

Effects are either propositions that are added or deleted
when an action is applied or numeric expressions that update
the values of variables in V of the form: vk ◦w1v1+w2v2+
... + wnvn + c (vi ∈ V, ◦ ∈ {−=,=,+=}, wi, c ∈ R). A
propositional effect adding p updates the state by setting p
to true, while an effect deleting p sets it to false. A numeric
effect decrements, updates, or increments the value of vk by
the value of the expression with the variables vi replaced
by their current value. The effects in eff` update the state at
the time the action is started and the effects in effa update it
when the action ends.

The Timed Initial Literals TILs denote time-stamped
changes to the world, with each TIL prescribing that a
proposition is either added or deleted at a specified time.
By referring to TILs in the preconditions of actions, it is
possible to constrain the ranges of times during which the
respective actions are applicable.

The solution to a planning problem is a plan: a time-
stamped sequence of actions fromAwhich defines start- and
end-time for each action in a way that all actions can be ex-
ecuted, the duration constraints of all actions are satisfied,
and the initial state I is transformed into a state that satisfies
the set of preconditions G, called the goal of the task. We
assume that effects take a small time ε to be realized in the
state, so, for example, an action with a starting precondition
added at the end of action apre can start no earlier than the
end time of apre plus ε. Different interpretations are possible
and our planner can easily be adapted to them.

3 Project Context and Missions
In this section we summarize the application context in
which our planner is being developed and the two mission
scenarios that are being targeted. The missions and broader
system design were contractually specified, so are outside
the scope of our work on the planner itself, but it is helpful
to understand the context in which we are operating.

3.1 System Architecture
The architecture in which our planner will be operated is
based on T-REX (McGann et al. 2007). T-REX is based on
a classic ‘sense, deliberate, act’ cycle, with a component-
based design that distributes functionality between compo-
nents called reactors. Our planner is embedded in what we
call the ‘task planning’ reactor; depending on the mission
scenario, there may be other reactors for path planning and
navigation, robot arm motion planning, and so on.

The task planning reactor serves as middleware between
our planner and the rest of the system. It is responsible for
generating the planning problems to be solved, expressed in
PDDL; to pass these problems to our planner, along with a
domain model for the mission; and to try and execute the
generated solution plans. Executing a plan might fail in the
real world if the PDDL model is inaccurate, for example if
the cost for moving between two waypoints turns out to be
higher than estimated. In that case, the task planning reac-
tor will start a re-planning procedure, which we describe in



Figure 1: Orbital test case

more detail in Section 5.2. As T-REX is a timeline-based
system, the task planning reactor translates solution plans
into a timeline-based representation, to support plan dis-
patch and execution monitoring; this is done following the
approach of Ocon et al. (2017).

The system architecture has two important consequences
for what is expected of the planner. First, as the PDDL is
generated by the middleware, its exact specification is out-
side of our control, so we have less flexibility than other ap-
plications of planning, where one might expect to be able
to engineer both the model and the planner itself. This is
to ensure that there is a correspondence between the PDDL
model and the timeline representation used throughout the
rest of T-REX. Moreover, the domain file must remain the
same for all problems to be solved, so PDDL modeling tech-
niques that rely on tailoring the domain file on a per-problem
basis are not available.

Second, to find a plan, the planner needs estimates of
the time and resource needs of the actions in the plan. As
these may be determined by the other reactors (for instance,
the path planning reactor estimating the time to complete a
traversal), the planner needs to be able to use external infor-
mation. The planning reactor could compile this information
into the domain but we instead developed an interface for
external functions that gives the planning algorithm control
over when other reactors are queried. This makes interesting
future extensions possible (see Section 4.5).

3.2 Orbital Mission Scenario
The first mission we consider is an evaluation of the poten-
tial for orbital maintenance operations to be performed by
autonomous robotic systems. Initially, we consider a robot
arm built onto a satellite or other orbital platform that can
rearrange modules connected to the platform. In a terrestrial
setting, this acts as an alternative to astronauts performing
extra-vehicular activities for time-consuming and repetitive
tasks, e.g., if the modules are quite heavy and need to be
placed with a high degree of precision. In orbit around other
celestial bodies, the aim is to increase mission flexibility and
service life. The test platform we used is shown in Figure 1.

The initial state in this planning problem is a configura-
tion of a modular satellite. The goal is a desired configura-
tion that either configures the satellite for a new operational
mode, or replaces damaged modules. The actions allow the
arm to localize, grasp, or place modules. External functions
provided by a different reactor estimate the action dura-
tions considering the necessary changes of the arm’s pose
and location. Due to the high degree of precision needed,
re-planning based on updated information may be required,
though this is handled outside the planner (see Section 5.2).

3.3 Planetary Mission Scenario
The next mission we consider explores the potential for in-
creased autonomy of a planetary rover. We consider a rover
equipped with a camera to identify interesting geological
targets and a robotic arm with scientific instruments. There
are three relevant reactors that handle the following tasks:

• path planning and navigation, using satellite terrain maps
supplemented by information gathered from the camera

• motion planning of the robotic arm

• processing images from the camera

The last reactor motivates increased autonomy: identify-
ing an interesting geological target generates an additional
science-gathering goal that the planner should consider. The
planner reactor uses a simple strategy for new goals: plan
execution is paused, and an updated planning problem is
passed to the planner; if the problem can be solved, the new
plan starts executing, otherwise the old plan is resumed.

The initial state in this scenario is the current status of
the rover. Timed Initial Literals (Hoffmann and Edelkamp
2005) constrain the timing of communication windows and
science-gathering tasks. The goal describes which science-
gathering tasks should be done and what data communi-
cated. Actions model the rover movement, scientific oper-
ations, and data transmission. External functions provided
by the other reactors estimate their durations.

4 The Stellar Planner
The Stellar planner is a heuristic search temporal planner
based on Fast Downward. It has an interface for external
functions, handles temporal constraints similar to OPTIC
but consumes less memory by not using state annotations.

4.1 Search
The source code of Fast Downward provides Stellar with the
basic search procedure. Fast Downward is a tightly imple-
mented codebase, used as the basis for a number of classical
planners. Inter alia, it minimises the memory used to store
each propositional state by using a bit-packed encoding – al-
locating to each finite-domain state variable the number of
bits needed to store it. This makes it a good starting point
for our work, the two main limitations being that it sup-
ports neither numeric state variables nor temporal planning
semantics. Temporal Fast Downward (Eyerich, Mattmüller,
and Röger 2009) is a fork of Fast Downward that extended
the code to support both of these, but preceded a decade of



intensive development on the Fast Downward code. Hence,
we started by developing a hybrid of the two.

First, Fast Downward was extended to reason with snap-
actions, where the start- and end-point of each PDDL du-
rative action are considered to be separate instantaneous
actions. To respect the temporal semantics, planning with
these snap-actions additionally required modifications to the
search algorithm such that:

• an ‘end’ snap action can only be applied if the action has
started but not yet ended;

• in the goal state, all actions must have ended; and

• after a snap-action has been applied, the active invariant
conditions of all currently executing actions are still true.

We used a technique from OPTIC called compression
safety (Coles et al. 2009) to reduce the size of the search
space. It recognises where it is completeness-preserving to
apply the end of an action as soon as it has started.

4.2 Heuristic
The search algorithm is guided by a simple heuristic based
on the successful FF heuristic (Hoffmann and Nebel 2001).
We relax the task for the heuristic computation by ignor-
ing its temporal and numerical aspects. To relax the tem-
poral aspects, we convert each snap action into a classical
action in the following way. For a temporal action a =
〈pre`, eff`, pre↔, prea, effa〉, we introduce two classical ac-
tions: the start action a` = 〈prea`

, effa`
〉 has a cost that

corresponds to the minimal duration of a, its preconditions
prea`

are the propositional conditions in pre` and those
propositional conditions in pre↔ that are not added by eff`,
and its effects effa`

are the propositional effects of eff`; the
end action aa = 〈preaa

, effaa
〉 has a cost of 0 and it precon-

ditions and effects are the propositional preconditions and
effects of prea and effa. We create an additional proposi-
tional variable ra for each temporal action a to represent if
a is currently running in a state (i.e., its start snap action
has been added to the plan but its end snap action has not).
We add ra to the effect effa`

of the start action of a and to
the precondition preaa

of the end action of a. Intuitively, we
should also delete the variable in effaa

but this is not neces-
sary as the FF heuristic is based on a delete relaxation that
ignores such effects anyway. These propositional start- and
end-actions follow a similar idea as the snap actions, but re-
lax the numerical aspects, do not rely on an STN, and use
additional propositions to connect the start to the end of an
action.

When evaluating the heuristic, we first reconstruct the set
of temporal actions that are currently running and add the
corresponding facts ra to the initial state. We then compute
the FF heuristic on the projected task. The heuristic com-
putes a relaxed plan for the classical task that consists of
start and end actions. We extend this plan by adding the end
actions of all started actions or running action where the plan
does not contain a corresponding end action. We also use
preferred operators, a technique that prefers actions from
the relaxed plan in the search and had a strong impact on
performance in the classical setting.

The heuristic is relatively naı̈ve and ignores central as-
pects of the temporal task. It could be extended to also
consider numerical aspects, either only in the monotonic
case (Hoffmann 2003) or more generally with an interval
relaxation (Aldinger, Mattmüller, and Göbelbecker 2015).
However, we found that this simple heuristic was already
sufficient for our mission scenarios and showed good per-
formance on IPC benchmarks (see Section 6).

4.3 Efficient Temporal Constraint Management
In Stellar, we build upon the temporal constraint manage-
ment approach of POPF and OPTIC, making a distinction
between logical and temporal consistency. The search space,
as described in Section 4.1, comprises states, each reached
by a logically correct plan (i.e., all preconditions are sat-
isfied). At each state, further steps are taken to ensure the
plan is temporally correct. The following rules are used to
incrementally define temporal constraints on the start- and
end-times of actions as states are expanded, i.e. when a snap
action is added to the end of a partial plan:

• For each of the snap action’s logical or numeric precon-
ditions on a state variable v, it is ordered after the most
recent modifier of the value of v in the plan. This ensures
the value of v needed for the precondition is supported.

• For each of the snap action’s effects on a state variable v,
it is ordered after any earlier steps in the plan that have a
precondition/effect on v; and it is ordered after what was
hitherto the most recent effect on v. This ensures the snap
action cannot threaten earlier preconditions on v, and that
all effects on v are totally ordered, giving v a known value.

• When an end snap action is added to the plan, the time
between its corresponding start and this end must obey
the action’s duration constraint.

The former two of these yield simple ordering constraints
ti + ε ≤ tj . The latter yields a constraint of the form
lba ≤ tend − tstart ≤ uba. A sequence of snap actions is
called temporally consistent if it can be scheduled in a way
that satisfies all temporal constraints. Since the constraints
depend on the path on which a state is reached, duplicate
states reached by different paths cannot be eliminated.

In POPF and OPTIC, the ordering constraints were de-
termined by referring to annotations on each state variable
v, recording the index of the step to last have an effect on v,
and the indices of any steps since then to have a precondition
on v. Whilst these annotations support the efficient look-up
of which steps the new snap-action needs to be ordered af-
ter, they need to be stored in each state, increasing memory
usage. Thus, in Stellar, we used a different mechanism: it is
possible to recreate these annotations by inspecting the pre-
conditions and effects of the snap-actions by iterating back-
wards through the plan reaching the state being expanded.

Without annotations, the only data that needs to be
recorded in each state are the constraints themselves. These
take the form of a Simple Temporal Network (Dechter,
Meiri, and Pearl 1991). As an implementation detail, we
noted that the majority of the temporal constraints were sim-
ple ordering constraints (separating pairs of snap-actions by



0 or ε) rather than duration constraints: actions tend to have
multiple preconditions and effects (hence multiple ordering
constraints), but only a single duration constraint. Hence,
we used a compact serialised encoding of the temporal con-
straints, varying the serialised length of each constraint. For
each constraint lb ≤ tj − ti ≤ ub, 15 bits were reserved for
the step index j, and 15 bits for i1. The temporal constraint
bounds can be recorded in two bits, optionally followed by
one or two continuation bytes:
00 : lb = 0, ub =∞; no continuation bytes are needed.
01 : lb = ε, ub =∞; no continuation bytes are needed.
10 : lb = ub = x; where x is stored in a continuation byte.
11 : lb = x, ub = y; where x then y are stored in continu-

ation bytes.
At each state, temporal consistency of the plan to the state

is then checked by unpacking this serialised encoding of
the constraints, and running a conventional STN consistency
check (Dechter, Meiri, and Pearl 1991).

4.4 Time Window Constraints
To encode time windows and deadlines on which activities
can be performed, our domain models use Timed Initial Lit-
erals (TIL). A TIL can be thought of as an action effect
that happens in any plan at a specified time. A naı̈ve imple-
mentation of these is to take the sequence of defined TILs
TIL0 ..TILn as being dummy snap-actions, with TILi be-
ing applicable in a state if each of [TIL0 ..TILi) has been
applied in the plan to reach that state; and if plan step a de-
notes TILi, its time ta must be exactly the time at which
TILi occurs.

For TILs that denote a one-off time window, or deadlines,
static analysis can recognise specific patterns of TILs and
translate these into global lower- and upper-bounds on the
times at which snap actions can occur (Tierney et al. 2012).
In short, if a fact v = k becomes true exactly once at time t,
and false exactly once at time t′, and no actions have effects
on v, then any snap-action with a precondition v = k must
occur between t and t′. As in OPTIC, if TILs obey this pat-
tern, their dummy snap-actions can be removed from search,
so long as the temporal constraints of actions added to the
plan are updated to reflect their bounds t, t′ due to TILs.
Unlike OPTIC, to conserve memory, we do not explicitly
record these temporal constraints, and instead reconstruct
them only at the point of temporal consistency checking, by
iterating through the steps in the plan.

4.5 External Function Interface
Some important quantities are computed by other reactors
in the overall architecture. For example, traversal costs be-
tween waypoints is estimated by a path planning reactor. We
introduced an interface for external functions that allows val-
ues in the PDDL model to be defined as the result of an ex-
ternal function. We view external functions as functions that

1In theory, this restricts us to plans of at most 32,767 steps. In
practice, if we had enough memory to store a search space that can
reach a plan of this length, we would not be so concerned with
memory efficiency.

(:modules (:module ef_orbitalrarmplanner
(:function (ra_move_dur ?from ?to - slot))
(:function (ra_move_energy ?to - slot))
))

Figure 2: Example for defining a module with two external
functions

map PDDL objects of a given type to real numbers. These
functions can then be used in the PDDL model in places
where constants could otherwise be used. One option to
deal with the dependency on other reactors for the values of
these functions would be to make the planning reactor query
the other reactors for all function values before building the
PDDL model and compile the constants into the model. We
decided to extend the PDDL language with an interface for
such functions instead because it opens up possibilities to
optimize function calls from within the search algorithm of
the planner. So far, we evaluate all external functions when
loading them but an on-demand evaluation would not be dif-
ficult to add.

We follow the approach of Dornhege et al. (2009) who
allow the definition of external solvers as modules. On the
technical side, we added an optional section :modules to
the PDDL model that can contain any number of modules,
each consisting of a name and a list of parametrized func-
tions (see Figure 2). When loading the PDDL file Stellar
looks for a dynamic library with the name of the module and
imports all functions from it. The dynamic library can be
implemented independently of the planning algorithm and
make calls to other reactors. After loading the functions,
the planner evaluates all of them on all possible parameter
choices and stores the result in a numeric variable that can
be used transparently in the planning algorithms. As the pa-
rameters are typed and the types only contain a small amount
of objects, the overhead of evaluating the functions for all
parameter choices is manageable in our case.

We considered some interesting extensions to this idea
but did not implement them so far: we could (i) consider
functions that estimate action durations at different levels of
accuracy and use a deferred evaluation search to evaluate
expensive high-accuracy estimations only when needed; (ii)
add functions that depend on values in the current state and
that are re-evaluated in every state; (iii) investigate how to
include a black-box function value in the heuristics; or (iv)
extend our approach with planning modulo theories (Gre-
gory et al. 2012) where new types like sets or vectors can be
added as modules and functions operating over those types
can then be used in actions.

5 The Stellar Reactor: Integration with the
Executive

As noted in Section 3.1, the Stellar planner is used with an
architecture based on T-REX, within the task planning reac-
tor. Wrapper code in the reactor allows the planner itself to
work in a conventional ‘PDDL in, solution plan out’ manner,
by abstracting the details needed for system integration.



5.1 PDDL Generation
At an architectural level, no distinction is made between
PDDL generation for planning (new goals have been sent)
and re-planning (an unexpected scenario was discovered, so
a new plan is needed). In both cases, the wrapper needs to
produce an initial state and a goal state. The assumption is
made that planning occurs from an ‘inactive’ initial state, i.e.
mission operations are paused while planning takes place.
To this end, each system component has one or more ‘inac-
tive’ states, in which operations can be paused; and zero or
more ‘active’ states, which can arise during plan execution.
For instance, in the planetary mission scenario:

• Navigation is either idle at a location (inactive); or going
to a location (active).

• The camera is either idle (inactive); or in states corre-
sponding to taking an image (active).

• The robot arm is either idle in some pose (inactive); or
going to another pose (active).

• Each science gathering goal has two states, both of which
are inactive: the goal is not true, or the goal is true.

In the case where planning is triggered while components
are in an active state, they fall back to an inactive state: the
rover stops moving, the arm stops moving, the camera is de-
activated; and the state of science-gathering goals persists.

The active/inactive definitions for each domain are de-
fined as metadata outside the PDDL, allowing this approach
to be reusable across different application domains.

5.2 Plan Execution Monitoring
The plans produced by the planner have straight-forward ex-
ecution semantics in terms of PDDL durative actions: at the
start of a durative action, the reactor commands the execu-
tive to begin the respective action; and the reactor then waits
to be notified that the action has completed. The caveat is
that these plans, as per the conventions of PDDL, give each
action a fixed start time and duration, and any variation from
the (estimated) durations used at planning-time will result in
the plan being ostensibly invalid.

To manage this source of variability, due to the underlying
uncertainty in actions’ durations (for instance, rover traver-
sal time is highly unpredictable) the reactor post-processes
each plan into a flexible plan. As per Section 4.3, each plan
produced has an associated Simple Temporal Network. This
STN tracks the ordering dependencies between actions, their
estimated durations, and any time window constraints. Or-
dinarily, the planner will schedule each action at its earliest
time, with its duration set to the minimum time in the STN
between its start and its end. However, this STN can be seen
as a template for a space of possible plans: any assignment
of timestamps to the actions in the STN that obey its con-
straints is a valid plan. Hence, to retain flexibility, instead
the earliest and latest time at which each action can start
is retained, giving a valid start time window [lb, ub]. Then,
when executing the plan:

• If at time t the predecessors of an action have finished,
and t ≤ lb the action executes at time lb, as planned;

• If at time t the predecessors of an action have finished, and
t ∈ (lb, ub] the action executes immediately – the action
has been delayed, but this does not violate the constraints
in the STN;

• If at time t > ub the predecessors of an action have not
yet finished, the plan is temporally invalid – delaying it to
time t or later would violate the constraints in the STN.

In the latter case, replanning is triggered – it may be pos-
sible to find an alternative solution plan, placing actions in
other time windows.

5.3 Opportunistic Science Goals and Replanning
In the planetary mission scenario, the rover is equipped with
a panoramic camera. An on-board image analysis compo-
nent periodically monitors the camera images, using an im-
age classifier to identify novel geological targets. This func-
tionality is embedded into a reactor that sends additional op-
portunistic science goals to the planning reactor.

In the reactor, when an opportunistic science goal is re-
ceived, replanning is triggered. As discussed in Section 5.1
the current plan execution is paused; a new PDDL problem
is then generated containing the existing goals and this ad-
ditional goal, and the planner is invoked. In the ideal case,
a new plan can be found, and execution re-starts. If a new
plan cannot be found (either provably, or empirically if the
planner has not found a solution after a minute), the oppor-
tunistic science goal is dropped, and replanning is triggered
again, generating PDDL without the new opportunistic goal.

One remaining consideration is how to treat opportunistic
science goals when replanning in general. If replanning fails
to find a solution plan, the most recent opportunistic goal is
discarded, and replanning attempted again. The motivation
for this is whilst the opportunistic goals are nice to have, they
are obvious candidates to discard if they would otherwise
compromise achieving the hard goals for the day specified
by ground control staff.

6 Evaluation
Our evaluation comprises two parts. First we discuss the
use of our planner running as part of the complete system,
executing on a rover in field trials in the Western Sahara.
Second, we consider a theoretical evaluation of the planner
on traditional planning benchmarks to demonstrate its ef-
ficiency in terms of memory usage and performance com-
pared to existing PDDL planners with similar expressivity.

6.1 Rover Field Trials
To test the capabilities of planning in the planetary scenario,
along with other technologies developed within our strategic
research cluster, a four-week field trip was undertaken in the
western Sahara, near Erfoud in Morocco.2 This location was
chosen due to its similarity to Martian terrain. The SherpaTT
rover (Cordes and Babu 2016) was used for the experiments,
providing a flexible four-wheeled rover platform. A number
of scenarios were tested and validated as part of this trip:

2See https://youtu.be/-zqve9baOzM for an over-
view of the whole field trip.



Figure 3: SherpaTT Rover in the Western Sahara

• Three goals were uploaded through the ground control in-
terface: to take a photo, pick and drop a sample in three
different locations. Planning took less than one second,
and all three goals were successfully achieved.

• Three goals were uploaded including an optional goal to
take an image with a narrow time window of opportunity.
The latter was blocked by obstacles not known at plan-
ning time. When too much time had passed attempting to
reach the imaging location replanning was triggered cor-
rectly. No new plan existed, so the goal was dropped, and
replanning found a way to achieve the remaining goals.

• Opportunistic science goals were successfully generated,
and replanning incorporated additional actions into the
plan to achieve these. When too many soft goals were gen-
erated and/or terrain difficulties were encountered, these
soft goals were successfully dropped.
The planner was invoked over 400 times over the dura-

tion of the trip. It never failed to solve a problem that had a
solution and never took more than two seconds to do so.

The main limitation of the planner observed in the field
is that the order in which locations were visited was not
necessarily optimal, because the first plan found for each
given problem was executed regardless of quality. This was
a deliberate trade-off: finding a plan takes time, especially
on modest hardware; and PDDL planners typically need
a known, fixed initial state from which to plan. As future
work, we will adapt recent techniques for situated replan-
ning, where the planner can search for a new plan in parallel
to the execution of an existing one; and preempt it when a
new better plan is found (Cashmore et al. 2019).

6.2 Efficiency Compared to OPTIC
The field trials showed that, broadly, Stellar is sufficient
for our mission purposes. We now perform a more detailed
comparison to investigate our claims that the techniques de-
ployed in Stellar reduce computational overheads compared
to existing PDDL planners. For these experiments we use In-
tel Core i5-4690 3.50 GHz machines, with time and memory
limits of 30 minutes and 4 GiB.

We were unable to compare to any planner on the domains
for our orbital and planetary scenarios as no existing planner
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Figure 4: Peak memory usage on IPC benchmarks
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Figure 5: Time taken to solve IPC benchmarks

supports all required features (time windows and external
functions). Instead, for these experiments we use a diverse
range of temporal PDDL problems from previous Interna-
tional Planning Competitions (IPC) and the existing litera-
ture. We selected OPTIC as the best representative PDDL
planner for comparison to Stellar as it is the most closely
comparable in terms of supported features: OPTIC is the lat-
est implementation in the family of planners that includes
CRIKEY3, Colin and POPF: it has support for temporal
time-windows and uses a STN scheduler similar to the one
in Stellar in domains without continuous numeric effects.

Figures 4 and 5 show a comparison of peak memory usage
and time taken to solve problems in our evaluation domains
respectively for Stellar and OPTIC. Points above the line
indicate that Stellar’s performance was better (lower mem-
ory use/shorter solution time); those on the axes indicate
that the planner failed to find a solution within the given
time/memory limit. It is clear that Stellar is able to solve
problems with a much lower memory consumption, often an
order of magnitude. On most of the problems solved by Stel-
lar but not by OPTIC the reason for OPTIC’s failure was that
it exceeded the available memory.

Whilst Stellar is efficient and lightweight, it can reach a
solution within the given time limits to most problem in-



stances (including the ones that are highly challenging). In-
terestingly, of the 5 problems OPTIC did manage to solve
more quickly, most were in the Rovers Metric Time domain;
note that this is the IPC benchmark domain and not the plan-
etary rover scenario for which Stellar was developed. The
reason for this discrepancy in performance is that OPTIC
makes use of numeric dominance constraints to prune states.
That is, if the planner is in the same propositional state, but
the value of a numeric fluent is different: e.g. when the com-
municate action is applied twice, the rover remains in the
same propositional state, but has less battery remaining, then
this state is not interestingly different because bigger values
of battery charge are always better. The ability to recognise
this boosts OPTIC’s performance in this domain. This fea-
ture could be ported to Stellar, but it was not implemented in
the project as it was not needed for the scenarios covered.
In other domains Stellar generally solved problems more
quickly than OPTIC, demonstrating that its tightly optimised
code based on the Fast Downward planning architecture al-
lows for efficient planning.

7 Conclusions
In this paper we discuss the development of a PDDL plan-
ner aimed at supporting on-board planning for robotic space
missions. The planner was found to be reliable and capa-
ble when used for on-board planning for a rover during field
trials; and empirically, has been shown to be efficiently im-
plemented, in terms of time and memory requirements.

We continue to develop the ideas in this paper, with a fo-
cus on plan quality and supporting mixed-initiative planning
with the role of the planner being to find minimal diversions
to accommodate opportunistic science goals.
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