
A Formalism for Optimal Search with Dynamic Heuristics

Remo Christen, Florian Pommerening, Clemens Büchner, Malte Helmert
University of Basel, Switzerland

{remo.christen, florian.pommerening, clemens.buechner, malte.helmert}@unibas.ch

Abstract

While most heuristics studied in heuristic search depend only
on the state, some accumulate information during search and
thus also depend on the search history. Multiple existing ap-
proaches use such dynamic heuristics in A∗-like algorithms
and appeal to classic results for A∗ to show that they return
optimal solutions. However, doing so disregards the intrica-
cies of searching with a mutable heuristic. We treat dynamic
heuristics formally and propose a framework that defines how
the information dynamic heuristics rely on can be modified.
We use these transformations in a generic search algorithm
and an instantiation that models A∗ with dynamic heuris-
tics, allowing us to provide general conditions for optimality.
We show that existing approaches fit our framework and ap-
ply our results. Doing so for future applications of dynamic
heuristics may simplify formal arguments for optimality.

Introduction
Heuristic search with A∗ is a canonical approach to find-
ing optimal solutions in transition systems. Heuristic func-
tions evaluate states to guide the search and typically map
states to numeric values. In this work, we consider the more
general class of dynamic heuristics that additionally depend
on information procured during search (e.g., Gelperin 1977;
Mérő 1984; Koyfman et al. 2024).

Classic optimality results for A∗ (e.g., Hart, Nilsson,
and Raphael 1968; Dechter and Pearl 1985) cannot be di-
rectly applied to search with such dynamic heuristics, as
their proofs assume static heuristics. Nevertheless, existing
approaches to classical planning that use dynamic heuris-
tics, such as LM-A∗ (Karpas and Domshlak 2009), LTL-A∗

(Simon and Röger 2015), or online abstraction refinement
(Eifler and Fickert 2018; Franco and Torralba 2019), are
claimed to return optimal solutions by referring to static no-
tions of admissibility and thereby implicitly relying on clas-
sic results, without taking the interaction between search and
heuristic into account. This is further complicated by discus-
sions of additional properties such as monotonically increas-
ing heuristic values and A∗ with re-evaluation, a modifica-
tion that re-inserts states popped from the open list if their
heuristic value improved while they where queued. Connec-

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tions to consistency and reopening are implied, but their im-
pact on the optimality of solutions is not formally proven.

Koyfman et al. (2024) show more formally that their A∗-
based approach guarantees optimal solutions while using a
dynamic heuristic. They achieve this result by showing that
their heuristic has a property called path-dynamic admissi-
bility (PDA). However, PDA has strong requirements about
the behavior of the search. Therefore the complexity inher-
ent to the interaction between a dynamic heuristic and the
search must be addressed while showing that the heuristic
has the PDA property, making it difficult to translate the re-
sult to other approaches.

We aim to prove these results in a more general fashion by
first formalizing the information that dynamic heuristics rely
on as a mutable object together with functions to transform
that object. We then define a generic algorithm framework
for heuristic forward search that models when information
can be transformed, define an instantiation of the framework
based on A∗, and show under what conditions it guarantees
optimal solutions. These conditions rely on extensions of
classic heuristic properties to the dynamic case that do not
depend on search behavior. Additionally, we show condi-
tions where no reopening occurs in the algorithm.

Finally, we apply these results to classical planning ap-
proaches that use dynamic heuristics, such as online ab-
straction refinement where abstractions are improved while
the search is running. We also briefly consider other search
strategies that do not use dynamic heuristics as such, but
whose behavior can be modeled by one. This includes
ways to consider multiple heuristics (e.g., Zhang and Bac-
chus 2012; Domshlak, Karpas, and Markovitch 2012; Tolpin
et al. 2013), pathmax (Mérő 1984), path-dependent f -values
(Dechter and Pearl 1985), deferred evaluation (Helmert
2006), and partial expansion A∗ (Yoshizumi, Miura, and
Ishida 2000).

Transition Systems
We consider transition systems T = ⟨S,L, c, T, s0, S∗⟩,
where S is a finite set of states; L is a finite set of labels;
c : L → R≥0 is a cost function assigning each label a cost;
the set T ⊆ S×L×S contains labeled transitions ⟨s, ℓ, s′⟩;
s0 ∈ S is the initial state; and S∗ ⊆ S are goal states. For a
transition ⟨s, ℓ, s′⟩ ∈ T , we call s the origin, ℓ the label, and
s′ the target of the transition, and call s′ a successor of s.

A B C Dx

y

y x

Figure 1: Transition system of our running example.

A path from s to s′ is a sequence of transitions π =
⟨t1, . . . tn⟩ where the origin of t1 is s, the origin of ti+1 is
the target of ti for 1 ≤ i < n, and the target of tn is s′.
A path to s′ is a path from s0 to s′ and a solution (for s)
is a path (from s) to some state in S∗. The cost of a path
π = ⟨t1, . . . tn⟩ with ti = ⟨si, ℓi, s′i⟩ is c(π) =

∑n
i=1 c(ℓi).

A path (from s) to s′ is optimal, if it has a minimal cost
among all paths (from s) to s′. We denote the cost of an op-
timal path to s by g∗(s). We say a state is reachable if a path
to it exists and that T is solvable if it has a solution.

We assume that the transition system is encoded in a com-
pact form (e.g., a planning task), where we can access the
initial state, can generate the successors of a given state, and
can check whether a given state is a goal state.

A (static) heuristic is a function h : S → R≥0 ∪ {∞}.
The perfect heuristic h∗ maps each state s to the cost of an
optimal path from s to a goal state or to ∞ if no such path
exists. A heuristic h is admissible if h(s) ≤ h∗(s) for all s ∈
S, and consistent if h(s) ≤ c(ℓ)+h(s′) for all ⟨s, ℓ, s′⟩ ∈ T .
A heuristic is safe if h(s) = ∞ implies h∗(s) = ∞ and it is
goal-aware if h(s) = 0 for all goal states s ∈ S∗.

Running Example In the following, we give intuitions for
definitions and concepts based on the transition system T =
⟨{A,B,C,D}, {x, y}, {x 7→ 1, y 7→ 2}, T, A, {D}⟩ with
T = {⟨A, x,B⟩, ⟨A, y, C⟩, ⟨B, y, C⟩, ⟨C, x,D⟩}. Figure 1
visualizes T . We also need the concept of landmarks in our
examples (e.g., Hoffmann, Porteous, and Sebastia 2004). In
our context, a landmark for a state s is a label that occurs
in every solution for s. For example, x is a landmark for C,
while x and y are landmarks for A.

Dynamic Heuristics

Dynamic heuristics depend on information gained while
searching for a solution. In our running example, this
information is a partial function mapping states s ∈
{A,B,C,D} to sets of landmarks from 2{x,y}. We call the
set of all such functions the information space of our land-
mark example. In general, we consider dynamic heuristics to
depend on information from an arbitrary information space.

Koyfman et al. (2024) introduced the notion of dynamic
heuristics but in their definition, the information can change
arbitrarily between heuristic evaluations. We extend their
definition by considering more structured sources of infor-
mation where the possible modifications of information are
limited.

Definition 1. An information source src for a transition sys-
tem with states S and transitions T consists of an informa-

tion space Isrc, and the following constant and functions:

initial-infosrc ∈ Isrc,
updatesrc : Isrc × T → Isrc and
refinesrc : Isrc × S → Isrc.

Information is initialized to initial-infosrc and then mod-
ified with updatesrc and refinesrc. In our example, we could
start in a situation where we only know the landmarks of
the initial state: info0 = initial-infoLM = {A 7→ {x, y}}.
This information can be updated by considering transition
t = ⟨A, y, C⟩, thereby gaining information about C: while
x must also be a landmark for C, the same is not true
for y because the label of t is y. We can express this by
infou = updateLM(info0, t) = {A 7→ {x, y}, C 7→ {x}}.
Alternatively, we could refine info0, for example by comput-
ing landmarks for B: infor = refineLM(info0, B) = {A 7→
{x, y}, B 7→ {x, y}}. We consider expansion-based search
algorithms, which can only refine on known states and up-
date along transitions starting in known states. Such an algo-
rithm can never refine info0 on B without first updating on a
transition to B. The following definition formalizes this.
Definition 2. Let src be an information source for a tran-
sition system with states S and transitions T . An informa-
tion object infon ∈ Isrc is called reachable if there are
e1, . . . , en ∈ S ∪ T and info0, . . . , infon ∈ Isrc such that
info0 = initial-infosrc and for all 0 < i ≤ n

• if ei = s ∈ S then infoi = refinesrc(infoi−1, s),
• if ei = t ∈ T then infoi = updatesrc(infoi−1, t), and
• states ei ∈ S and the origins of transitions ei ∈ T are

either s0 or the target of a transition ej with j < i.
In our example above, info0 and infou are reachable. For

infor the sequence with e1 = B does not show that it is
reachable because B is not a target of a transition earlier
in the sequence. Information infor could still be reachable if
the same information can be produced along a different path,
say first updating info0 along ⟨A, x,B⟩ and then refining the
result on B. For the resulting information the sequence with
e1 = ⟨A, x,B⟩ and e2 = B shows reachability.

Dynamic heuristics are heuristics that depend on an infor-
mation object in addition to a state.
Definition 3. A dynamic heuristic over a transition system
T with states S depends on an information source src for T
and is a function

h : S × Isrc → R≥0 ∪ {∞}.

In our landmark example, a dynamic heuristic could
estimate the cost of each state by the sum of the la-
bel cost of its known landmarks or by 0 if no land-
marks are known. For example, hLM (A, info0) = 3 and
h(s, info0) = 0 for all s ∈ {B,C,D}. After updating
the information along ⟨A, y, C⟩ the heuristic becomes more
informed: hLM (A, info1) = 3, hLM (C, info1) = 1, and
hLM (B, info1) = hLM (D, info1) = 0.

Static heuristics can be seen as the special case for a con-
stant information source, i.e., one where update and refine do
not modify the information. Let us now define the dynamic
counterparts of common static heuristic properties.

Definition 4. Let h be a dynamic heuristic over a transition
system with states S and transitions T and over information
source src. We say h is

DYN-safe if h(s, info) = ∞ implies h∗(s) = ∞ for all
s ∈ S and all reachable info ∈ Isrc;

DYN-admissible if h(s, info) ≤ h∗(s) for all s ∈ S and all
reachable info ∈ Isrc;

DYN-consistent if h(s, info) ≤ c(ℓ) + h(s′, info) for all
⟨s, ℓ, s′⟩ ∈ T and all reachable info ∈ Isrc; and

DYN-goal-aware if h(s, info) = 0 for all s ∈ S∗ and all
reachable info ∈ Isrc.

As in the static case, a DYN-goal-aware and DYN-
consistent heuristic is DYN-admissible, and a DYN-
admissible heuristic is DYN-safe and DYN-goal-aware.
This can easily be shown by considering the static heuristics
that result from fixing the individual reachable info ∈ Isrc.

If updateLM and refineLM guarantee that all stored labels
are landmarks for their states, then hLM is DYN-admissible
(and thus DYN-safe and DYN-goal-aware). It is not DYN-
consistent because for example hLM (A, info0) = 3 > 2 +
0 = c(y) + hLM (C, info0).

We also define a new property that describes that heuristic
values can only increase over time.

Definition 5. A dynamic heuristic h over a transition system
with states S and transitions T and over information source
src is DYN-monotonic if h(s, info) ≤ h(s, update(info, t))
and h(s, info) ≤ h(s, refine(info, s′)) for all reachable
info ∈ Isrc, all s, s′ ∈ S, and all t ∈ T .

If updateLM and refineLM guarantee that landmarks are
never removed for any state, then hLM is DYN-monotonic.

Monotonicity is particularly desirable for any DYN-
admissible heuristic h as increasing values brings it closer
to h∗. Fortunately, we can easily ensure monotonicity for
h by using h′(s, info) = max(h(s, info), h(s, info′)) where
info′ is the information encountered so far that has lead to the
highest h-value for state s. Similar notions of monotonicity
have previously been described by Eifler and Fickert (2018)
and Franco and Torralba (2019). Note that this monotonicity
notion is different from the monotonicity introduced by Pohl
(1977), which is equivalent to consistency (Pearl 1984).

Progression-Based Heuristics
In our running example, information is only stored per state.
While this is not a general requirement of dynamic heuris-
tics, it is an interesting special case because it allows for
simpler definitions, local reasoning, and, in practical imple-
mentations, efficient storage of information. All our theoret-
ical results apply to dynamic heuristics in general but using
this special case makes it more natural to talk about several
existing techniques like LTL trajectory constraints (Simon
and Röger 2015) or landmark progression (Büchner et al.
2023), which our running example is based on.

We first define how information for a single state is mod-
ified on a low level (Definition 6), and then use these trans-
formations in the definition of a special type of information
source (Definition 8).

Definition 6. A progression source ps consists of an infor-
mation space Ips, and the following constant and functions:

initial-state-infops ∈ Ips,
progressps : Ips × T → Ips and

mergeps : Ips × Ips → Ips.

For our running example we can define the progres-
sion source LM where ILM = 2{x,y} is the informa-
tion space for a state and the initial state A is assigned
initial-state-infoLM = {x, y}. The progression of a set of
landmarks L for a state s along a transition t = ⟨s, ℓ, s′⟩
are the labels progressLM(L, t) = L \ {ℓ} because they are
guaranteed to be landmarks for s′ (while ℓ is not). If we get
two sets of landmarks L1, L2 for the same state, their union
mergeLM(L1, L2) = L1 ∪ L2 is guaranteed to contain only
landmarks for that state.

Beside our running example, we can also view two fun-
damental concepts in search, namely g-values and parent
pointers of states, as a progression source.
Definition 7. The parent source p is a progression source
with Ip = R≥0 × (T ∪ {⊥}) and

initial-state-infop = ⟨0,⊥⟩,
progressp(⟨g, t⟩, ⟨s, ℓ, s′⟩) = ⟨g + c(ℓ), ⟨s, ℓ, s′⟩⟩, and

mergep(⟨g, t⟩, ⟨g′, t′⟩) =
{
⟨g, t⟩ if g ≤ g′

⟨g′, t′⟩ otherwise.

We now define information sources that update per-state
information based on this procedure of progressing and
merging. This special case does not allow refinement be-
cause we want it to be as restrictive as possible while still
being useful.
Definition 8. Let ps be a progression source. The
progression-based information source srcps is an informa-
tion source for a transition system with states S and transi-
tions T where Isrcps is the set of partial functions info : S ⇀
Ips, and

initial-info = {s0 7→ initial-state-infops}
update(info, t) = infot for all info ∈ Isrcps and t ∈ T

refine(info, s) = info for all info ∈ Isrcps and s ∈ S

where infot for a transition t = ⟨s, ℓ, s′⟩ is the same as info
for all states other than s′ and maps s′ to{

progress(info(s), t) if info(s′) undefined
merge(progress(info(s), t), info(s′)) otherwise.

With this definition we get srcLM, the progression-based
information source built on the progression source LM. Pro-
gressing the initial set of landmarks {x, y} along ⟨A, x,B⟩
gives the landmarks {y} for B. Progressing this information
along ⟨B, y, C⟩ gives the empty set of landmarks for C, but
if we then also progress {x, y} along ⟨A, y, C⟩ this gives
new information {x} for C which has to be merged with the
existing information, so the information stored for C after
the progression is ∅ ∪ {x} = {x}. The application section
provides details on the full landmark progression technique.

Similarly, we also get srcp, a progression-based informa-
tion source for g-values and parent pointers. Note that for a
reachable parent information info with info(s) = ⟨g, t⟩, we
can show by induction that following parent pointers back
to ⊥ yields a path to s with cost of at most g. This will be
useful later.

Dynamic heuristics based on progression sources base the
heuristic value of a state on its stored information.

Definition 9. A progression-based heuristic is a dynamic
heuristic with a progression-based information source srcps
where h(s, info) = 0 if info(s) is undefined, and where
info(s) = info′(s) implies h(s, info) = h(s, info′) for all
pairs info, info′ ∈ Isrcps and all states s ∈ S.

Because of the way progression-based information
sources are updated, progression-based heuristics are always
0 for states not yet discovered in the search, i.e., states s
where info(s) is undefined. These default values can eas-
ily violate DYN-consistency and we therefore consider a
heuristic h to be partially DYN-consistent if h(s, info) ≤
c(π) + h(s′, info) for all paths π from s to s′ for which
info(s) and info(s′) are defined.

Dynamic Heuristic Search Framework
A typical approach to finding solutions in a transition system
is to explore it sequentially starting from the initial state s0.
Algorithm 1 implements such a forward search and main-
tains information during the exploration. Besides the search
direction, Algorithm 1 leaves choices such as the expansion
order open. This captures a wide range of instantiations that
may vary in how often they use, update or refine the infor-
mation within the search.

The algorithm maintains one information object infos[src]
for each source src, initializes it at the start, updates it when
exploring transitions, and optionally refines it for known
states. By keeping track of known states in Sknown it guar-
antees that exactly the reachable information according to
Definition 2 can occur in the algorithm. If at some point a
goal state is known, the problem is solvable. If not, and no
new states can be reached, then it is unsolvable. A simple
induction shows that Sknown contains reachable states.

Lemma 1. Every state in Sknown in Algorithm 1 is reachable.

We use this result to show that Algorithm 1 is sound.

Theorem 1. Any instantiation A of Algorithm 1 is sound.

Proof. Instantiation A only returns solvable if Sknown
contains a goal state s∗. Then Lemma 1 implies that s∗ is
reachable and the underlying problem is solvable.

Further, A only returns unsolvable if GENERATE UN-
KNOWN is not applicable (line 24) and thus that Sknown con-
tains all reachable states. Since no goal state is in Sknown
(line 23), this means no goal is reachable.

We would also like instantiations of Algorithm 1 to termi-
nate in a finite number of steps.

Theorem 2. An instantiation A of Algorithm 1 is complete
if all loops over GENERATE KNOWN and REFINE are finite.

Algorithm 1: Dynamic Heuristic Search Framework
Input: transition system ⟨S,L, c, T, s0, S∗⟩; set of information

sources Srcs
Output: solvable or unsolvable

1 infos← {src 7→ initial-infosrc | src ∈ Srcs}
2 Sknown ← {s0}
3 loop
4 choose applicable operation
5 switch (operation)
6 case GENERATE UNKNOWN:
7 choose t = ⟨s, ℓ, s′⟩ ∈ T such that s ∈ Sknown and

s′ /∈ Sknown
8 for each src ∈ Srcs do
9 infos(src)← updatesrc(infos(src), t)

10 Sknown ← Sknown ∪ {s′}
11 case GENERATE KNOWN:
12 choose t = ⟨s, ℓ, s′⟩ ∈ T such that s, s′ ∈ Sknown
13 for each src ∈ Srcs do
14 infos(src)← updatesrc(infos(src), t)
15 case REFINE:
16 choose s ∈ Sknown
17 for each src ∈ Srcs do
18 infos(src)← refinesrc(infos(src), s)
19 case DECLARE SOLVABLE:
20 ensure that Sknown contains a goal state
21 return solvable
22 case DECLARE UNSOLVABLE:
23 ensure that Sknown does not contain a goal state
24 ensure that there is no ⟨s, ℓ, s′⟩ ∈ T such that

s ∈ Sknown and s′ /∈ Sknown
25 return unsolvable

Proof. Whenever A chooses an operation, either GENER-
ATE UNKNOWN, DECLARE SOLVABLE, or DECLARE UN-
SOLVABLE is applicable: if a transition ⟨s, ℓ, s′⟩ ∈ T with
s ∈ Sknown and s′ /∈ Sknown exists, then GENERATE UN-
KNOWN is applicable, otherwise either DECLARE SOLV-
ABLE or DECLARE UNSOLVABLE is applicable depending
on whether a goal state is contained in Sknown or not.

Further, the number of times operation GENERATE UN-
KNOWN can be applied is bounded by |S| as it requires
s′ /∈ Sknown and adds s′ to Sknown when applied.

Since no infinite loops over GENERATE KNOWN and RE-
FINE occur in A, and because one of the remaining opera-
tions must be applicable, A must eventually terminate with
DECLARE SOLVABLE or DECLARE UNSOLVABLE.

Dynamic A∗

Algorithm 2 instantiates the dynamic heuristic search frame-
work as DYN-A∗, a generalization of A∗ for dynamic heuris-
tics that, as we will see, covers many existing techniques.

The algorithm depends on the progression-based infor-
mation source srcp, i.e. the parent source p, to track g-
values and parent pointers as well as on an information
source srch used by a dynamic heuristic h. Like regular A∗,
DYN-A∗ maintains open, a priority queue of states ordered
by f = g + h, and closed, a hash set of states.

Since information changes over time, we use the counters
i for iterations and j for steps within the iteration, to refer-
ence specific times t = ⟨i, j⟩. We then refer to information

Algorithm 2: DYN-A∗ with optional re-evaluation.
Input: transition system ⟨S,L, c, T, s0, S∗⟩; set of Srcs =
{srcp, srch}; dynamic heuristic h over srch; flag re-eval

Output: solution or unsolvable
1 infos← {src 7→ initial-infosrc | src ∈ Srcs}
2 i← 0; j ← 0 ▷ counters for iterations and steps within them
3 Sknown ← {s0}; closed← {}
4 open← new priority queue with elements

⟨state, gval , hval⟩, prioritizing lower f = gval + hval

5 if hi,j(s0) <∞ then
6 insert ⟨s0, gi,j(s0), hi,j(s0)⟩ into open
7 while open is not empty do
8 i← i+ 1; j ← 0
9 ⟨s, gval , hval⟩ ← pop highest priority element from open

10 if s ∈ closed then
11 continue
12 for each src ∈ Srcs do
13 infos(src)← refinesrc(infos(src), s)
14 j ← 1
15 if re-eval and hval < hi,j(s) then
16 if hi,j(s) <∞ then
17 insert ⟨s, gi,j(s), hi,j(s)⟩ into open
18 continue
19 closed← closed ∪ {s}
20 if s is a goal state then
21 return extracted solution according to srcp
22 for each t = ⟨s, ℓ, s′⟩ ∈ T do
23 if s′ ∈ Sknown then
24 old -g ← gi,j(s′)
25 else
26 old -g ← undefined
27 for each src ∈ Srcs do
28 infos(src)← updatesrc(infos(src), t)
29 j ← j + 1
30 Sknown ← Sknown ∪ {s′}
31 if hi,j(s′) =∞ then
32 continue
33 if old -g = undefined then ▷ first path to s′

34 insert ⟨s′, gi,j(s′), hi,j(s′)⟩ into open
35 else if old -g > gi,j(s′) then ▷ cheaper path to s′

36 if s′ ∈ closed then
37 closed← closed \ {s′}
38 insert ⟨s′, gi,j(s′), hi,j(s′)⟩ into open
39 return unsolvable

available to the algorithm at a particular time t by infost,
which is unambiguous since i or j always change immedi-
ately after infos is modified. Similarly, we use gt(s) to refer
to the g-value stored in infost(srcp) for state s, and ht(s) to
refer to h(s, infost(srch)).

For example, the initial state s0 is inserted into open in
line 6 with g0,0(s0) and h0,0(s0), then popped in line 9 in
the first iteration at time ⟨1, 0⟩. If its first successor s′ is not
pruned, it is inserted in line 34 with g1,2(s′) and h1,2(s′).
We say ⟨i, j⟩ < ⟨i′, j′⟩ if i < i′ or if i = i′ and j < j′.

Entries in open are sorted by their f -value at time of inser-
tion, not the current f -values of the contained states. Put dif-
ferently, if a heuristic improves during the search, this does
not directly affect entries already on open.
DYN-A∗ implements delayed duplicate detection, a tech-

nique often used in practice, e.g. in Fast Downward (Helmert
2006), that allows multiple entries for a state on open and
later eliminates duplicates in line 10. The alternative is to
detect duplicate states early (at the time of insertion) and
update open list entries when a cheaper path is found. How-
ever, the optimal time complexity of this version relies on an
efficient decrease-key operation which practical implemen-
tations of priority queues like binary heaps do not support.

Optionally, states whose heuristic value improved since
being inserted into open can be re-inserted with their new
heuristic value in line 17, an idea used by systems relying
on dynamic heuristics (e.g., Karpas and Domshlak 2009;
Zhang and Bacchus 2012; Eifler and Fickert 2018). We call
this modification re-evaluation and study the algorithm with
and without it. States that are neither detected as duplicates
nor re-evaluated are expanded. If a goal state is expanded, a
plan is constructed from the parent pointers stored in srcp,
otherwise all successors are considered.

Successors with a heuristic value of ∞ are skipped
(line 32) and unknown successors are inserted into open
(line 34). If we find a new path to a known successor s′, then
s′ is only placed on open if this new path is cheaper than the
one we already knew (line 35). In case s′ was already closed,
it is reopened (line 37); We will later show that, with some
restrictions on the heuristic, states are never reopened.

DYN-A∗ simulates A∗ if heuristic h is static, i.e.,
h(s, info) is independent of info. Note that the value of
re-eval has no effect on the algorithm in this case: re-
evaluation never occurs because hval = hi,j(s) in line 15.

Let us now connect DYN-A∗ to the generic framework.

Theorem 3. The algorithm DYN-A∗ using a DYN-safe dy-
namic heuristic is an instantiation of the dynamic heuristic
search framework.

Proof. We first show that DYN-A∗ only modifies infos and
Sknown in ways allowed by the framework. The initializa-
tion in line 1 is identical. The loop in lines 12–13 corre-
sponds to a REFINE operation. We know s ∈ Sknown at
this time because only known states are added to open. The
loop in lines 27–28 corresponds to GENERATE KNOWN if
s′ ∈ Sknown in line 23, and to GENERATE UNKNOWN other-
wise, in which case s′ is inserted into Sknown in line 30.

Next, we have to show that DYN-A∗ only terminates in
case the framework can terminate. Line 21 corresponds to
DECLARE SOLVABLE which is applicable due to the condi-
tion in line 20 and because s was inserted into Sknown before
inserted into open (and now popped from there).

Lastly, in cases where line 39 returns unsolvable, we
have to show that (a) no goal state is in Sknown and that
(b) there is no transition leaving Sknown.

Condition (a) holds because every state in Sknown was in-
serted into open at least once. Given that open is empty in
line 39, all entries have been popped in line 9. If there were a
goal state in Sknown, a DYN-safe heuristic assigns the state a
finite heuristic value and popping it would either re-evaluate
it (putting it back on open without closing it) or terminate
the search with a solution.

Condition (b) does not necessarily hold since DYN-A∗

can prune states with infinite heuristic values in lines 5, 16,

and 31. Executing line 39 does thus not directly correspond
to DECLARE UNSOLVABLE in the framework. Instead, we
show that it corresponds to repeated uses of GENERATE UN-
KNOWN followed by DECLARE UNSOLVABLE. Since the
heuristic is DYN-safe, no goal state is reachable from all
pruned states. We can thus use GENERATE UNKNOWN to
fully explore the state space reachable from s and will not
add a goal state to Sknown. For all states that were not pruned,
we can see with the same argument as above that they were
added to open and eventually expanded, adding all their un-
pruned successors to Sknown.

DYN-A∗ using a DYN-safe heuristic is sound due to The-
orems 1 and 3 and we can also show that it can be complete.
Theorem 4. DYN-A∗ is complete if chains of REFINE op-
erations converge, i.e., for all reachable info0, states s, and
infoi = REFINEsrch(infoi−1, s) with i > 0, there is an n ≥ 0
such that h(s, infon) = h(s, infon+1).

Proof. Using Theorem 2, we only need to show that there
are no infinite loops of REFINE and GENERATE KNOWN op-
erations. The former cannot happen because REFINE oper-
ations converge. The latter holds because known transitions
are only considered if we find a cheaper path and after gener-
ating a first path to a state there are only finitely many values
that can occur as cheaper path costs.

Optimality of Solutions
We first show that DYN-A∗ returns optimal solutions when
using a DYN-admissible heuristic. The proof generally fol-
lows the same line of reasoning as the one for A∗ with a
static admissible heuristic. Our situation is more compli-
cated because using delayed duplicate detection with dy-
namic heuristics means that there can be states on open
where both g-values and h-values are outdated because we
discovered both a cheaper path to and a higher heuristic
value for those states before popping them from the open
list. Additionally, we want to show optimality both with and
without re-evaluation which adds an additional source of
changes to the open list.

As in the static case (e.g., Hart, Nilsson, and Raphael
1968), our general strategy is to show that at any time before
termination, there is an entry on open that represents a prefix
of an optimal plan, and the algorithm can only terminate by
completing one of these prefixes. To state this formally, we
first define some auxiliary notation.
Definition 10. A state s is called settled in iteration i if it
was expanded in some iteration i′ < i with gi

′,0(s) = g∗(s).
Once a state is settled, we know a cheapest path to it and

have seen its successors along this path. If we consider an
optimal path, some prefix of it will be settled and the next
state along this path will be on open with an optimal g-value.
Lemma 2. Consider DYN-A∗ with a DYN-safe dynamic
heuristic in iteration i. Let s be a state settled in iteration i
and let s′ be a state where h∗(s′) < ∞ such that s is a pre-
decessor of s′ and there is an optimal path ⟨t1, . . . , tn⟩ to s′
with tn = ⟨s, ℓ, s′⟩, i.e., s′ can be reached optimally through
s. Then open contains an entry ⟨s′, gval , ·⟩ in iteration i and
gval = g∗(s′), or s′ is settled in iteration i.

Proof. Consider states s and s′ such that the conditions of
the lemma hold in iteration A. Because s is settled in itera-
tion A, it must have been expanded in an iteration B < A
with gB,0(s) = g∗(s).

Because s was expanded, iteration B reached line 19.
Also, DYN-A∗ did not terminate in line 21 in iteration B,
because otherwise iterationAwould not exist. Thus ⟨s, ℓ, s′⟩
was considered at a time ⟨B, j⟩, we found an optimal path
to s′, and gB,j(s′) = g∗(s′).

Let ⟨C, k⟩ be the first time that the g-value of s′ is reduced
to g∗(s′). (This happens at ⟨B, j⟩ at the latest but could also
have happened earlier.) At this time, either s′ was not known
or a cheaper path to it was found. Because h∗(s′) < ∞ and
h is DYN-safe, we have hC,k(s′) < ∞ and s′ was inserted
into open with a g-value of gC,k(s′) = g∗(s′). Any entry for
s′ added to open after ⟨C, k⟩ also has a g-value of g∗(s′).

If the entry ⟨s′, g∗(s′), ·⟩ inserted in iteration C is still on
open in iteration A, then the first alternative of the lemma’s
consequent is satisfied. Otherwise, one or more entries for s′
were popped from open after C and (a) re-evaluated, (b) ig-
nored because s′ was in closed, or (c) expanded. In case (a),
a new entry ⟨s′, g∗(s′), ·⟩ is added to open and the argument
restarts at the beginning of this paragraph, replacing C with
the iteration of this reinsertion. Case (b) can only happen if
s′ was expanded after C because Algorithm 2 ensures that
states inserted into open are not closed1 and only expand-
ing s′ can close it. It follows that s′ was expanded (case (c))
with g-value g∗(s′) in an iteration betweenC andA and thus
that s′ is settled in A, satisfying the second alternative of the
lemma’s consequent.

With DYN-admissible heuristics, this result implies that
there always is an entry with an f -value of at most the opti-
mal solution cost.
Lemma 3. Consider DYN-A∗ with a DYN-admissible dy-
namic heuristic h for a solvable transition system with ini-
tial state s0. Then open contains an entry ⟨·, gval , hval⟩ with
gval + hval ≤ h∗(s0) at the beginning of each iteration.

Proof. Consider an optimal solution π = ⟨t1, . . . , tn⟩
through states s0, . . . , sn, i.e., ti = ⟨si−1, ·, si⟩. Let sk be
the first state that is not settled in an iteration i. Note that sn
could not have been settled without DYN-A∗ terminating.

In case k = 0, we know that s0 is settled in iteration 1, so
imust be 0. Since h is DYN-admissible and hence h∗(s0) <
∞, the entry ⟨s0, 0, h0,0(s0)⟩ was inserted into open and is
the only entry at the beginning of iteration i. The lemma then
follows from the admissibility of h0,0.

In case k > 0, we know that sk−1 is settled in iteration i.
Moreover, ⟨tk+1, . . . , tn⟩ is a path from sk to a goal state
showing that h∗(sk) < ∞ and ⟨t1, . . . , tk⟩ is an optimal
path to sk. We can therefore use Lemma 2 in iteration i with
s = sk−1 and s′ = sk. Because sk is not settled in iteration
i, we know that there must be an entry ⟨sk, gval , hval⟩ on
open where gval = g∗(sk) and hval = hins(sk) for some
time ins . With the admissibility of hins , we get gval+hval =
g∗(sk) + hins(sk) ≤ g∗(sk) + h∗(sk) = h∗(s0).

1This is explicit except in line 34 where s′ cannot be closed
because it was just discovered.

In the context of graphs with unknown obstacles, Koyf-
man et al. (2024) show that a variant of A∗ returns optimal
solutions when using a dynamic heuristic that is PDA. As
PDA requires that a prefix of an optimal solution is closed
and its continuation exists on open, Lemma 3 directly fol-
lows. Showing that a heuristic is PDA thus requires rea-
soning about open and depends on the search behavior. Our
Lemmas 2 and 3 only depend on the heuristic being DYN-
admissible, which is independent of the search algorithm.

While there is an entry with f -value of at most h∗(s0) on
open, DYN-A∗ cannot yield a solution of cost c > h∗(s0).

Theorem 5. DYN-A∗ with a DYN-admissible dynamic
heuristic returns optimal solutions.

Proof. Assume the algorithm terminated with a solution of
cost c > h∗(s0) after popping ⟨s, gins(s), hins(s)⟩ from
open at time pop. Then gins(s) + hins(s) = gins(s) + 0 ≥
gpop(s) = c > h∗(s0). This contradicts Lemma 3 because
DYN-A∗ pops the entry in open with minimal f -value.

The results in this chapter also apply to A∗ as a special
case. A corollary is that A∗ with an admissible static heuris-
tic is also optimal when using delayed duplicate detection.

Reopening
A classic result for A∗ is that states are never reopened when
the heuristic is consistent. One way to prove this is by show-
ing that the sequence of f -values of popped open list entries
is monotonically increasing. If we then consider the projec-
tion of this sequence to a single state, we can use the fact that
the heuristic value h(s) of a static heuristic is constant to see
that multiple copies of a state are expanded in order of in-
creasing g-value. If the lowest g-value of a state is expanded
first, the state will never be reopened.

Interestingly, we can show that the intermediate result of
monotonically increasing f -values also holds for dynamic
heuristics with the right properties, but reopening may still
occur. Since the intermediate result is not useful in this set-
ting, we refer to the extended version of this paper for the
full proof (Christen et al. 2025).

Theorem 6. The sequence of f -values popped by DYN-A∗

from open is non-decreasing if it uses a DYN-admissible,
DYN-monotonic, and DYN-consistent dynamic heuristic.

Proof sketch. We show that any entry inserted into open has
an f -value at least as high as the value that was popped in the
same iteration. Since the popped element had the minimal f -
value at the time, this is sufficient to show that future pops
cannot have lower f -values.

Without re-evaluation DYN-A∗ may reopen states even
if the heuristic satisfies the conditions of Theorem 6. In
the example in Figure 2, states are expanded in the order
A,B,C,D,E, F . When A is expanded, F is added to the
open list with the suboptimal f -value of 8+0 andD is added
with a suboptimal value of 6 + 0. While B and C are added
to the open list, their heuristic values increase from 0 to 1.
Next B is expanded and discovers a new path to D along
which we find information to improve the heuristic value of

A
1

B
0→ 1

C
0→ 1

D
0→ 3

E
0→ 4

F
0

1

2

8

6

5

1

3

1

Figure 2: Example state space, showing that reopening can
occur with DYN-consistent heuristics. Edge costs are writ-
ten on the edges, heuristic values are written inside the
states. The heuristic is dynamic and the heuristic value of
a state with label x → y changes from x to y once it is
reached along the bold incoming edge.

D to 3. This path is not cheaper soD remains on open with a
value of 6+0. After expanding C and increasing the heuris-
tic value of E, open is ⟨⟨D, 6, 0⟩, ⟨E, 3, 4⟩, ⟨F, 8, 0⟩⟩. State
D is expanded first but adds nothing to open because F is
reached through a more expensive path than the one found
previously. Then E is expanded and finds the optimal path
to D. If we do not reopen D at this point, the algorithm ter-
minates with the suboptimal path ⟨⟨A, ·, F ⟩⟩.

Note that f -values of popped states increase monoton-
ically, the heuristic is monotonically increasing, admissi-
ble and consistent throughout the search, and only updated
along transitions (i.e., progression-based).

At the time D was expanded, its heuristic value was
higher than the one we used to insert it. If we would have
re-evaluated D at that time, it would have been re-inserted
into open with a value of 6+3 and we would have expanded
E first, finding a cheaper path to D before expanding it. In
that case, no reopening happens. We now show that this is
the case in general with re-evaluation.

Theorem 7. DYN-A∗ with re-eval enabled and using a
DYN-monotonic, DYN-consistent dynamic heuristic does
not reopen states.

Proof. Assume that a state sn is reopened at time reop. Con-
sider the path ⟨t1, . . . , tn⟩ to sn where ti = ⟨si−1, ℓi, si⟩ is
the parent pointer of si at time reop for all 0 < i ≤ n.
State sn must have been added to closed at some earlier
time cls < reop. Since gcls(s0) = c(⟨⟩) = 0 and gcls(sn) >
c(⟨t1, . . . , tn⟩), there must be a smallest j such that sj+1 sat-
isfies gcls(sj+1) > c(⟨t1, . . . , tj+1⟩). For all si with i ≤ j,
we then know gcls(si) = c(⟨t1, . . . , tj⟩).

Note that hcls(sn) < ∞ and thus hcls(si) < ∞ for all
i < n due to DYN-consistency. Also, since h is DYN-
monotonic, ht(si) <∞ for all times t < cls .

At some time exp < cls the g-value of sj was set to
c(⟨t1, . . . , tj⟩) and at that time, state sj must have been
added to open. Between exp and cls the algorithm could
not have expanded sj because that would explore transition
tj+1 and contradict gcls(sj+1) > c(⟨t1, . . . , tj+1⟩). Any re-
evaluation of sj that occurs between exp and cls will in-
sert sj back into open because hexp(sj) < ∞. Thus at time

cls there is an entry ⟨sj , gre(sj), hre(sj)⟩ on open that was
added at a time re with exp ≤ re < cls .

At time cls an entry ⟨sn, gins(sn), hins(sn)⟩ is popped
and expanded that was added earlier at time ins < cls .

gins(sn) + hcls(sn)

≤ gins(sn) + hins(sn) (1)
≤ gre(sj) + hre(sj) (2)
= c(⟨t1, . . . , tj⟩) + hre(sj) (3)

≤ c(⟨t1, . . . , tj⟩) + hcls(sj) (4)

≤ c(⟨t1, . . . , tj⟩) + c(⟨tj+1, . . . , tn⟩) + hcls(sn) (5)

≤ greop(sn) + hcls(sn) (6)

Step (1) holds because sn was expanded and not
re-evaluated at time cls; step (2) holds because
⟨sj , gre(sj), hre(sj)⟩ was on open but did not have
minimal f -value at time cls; step (3) holds because the
g-value of sj matches c(⟨t1, . . . , tj⟩) for all times between
exp and cls; step (4) holds by DYN-monotonicity; step (5)
holds by DYN-consistency; and step (6) holds because the
cost of the path defined through parent pointers is bounded
by the stored g-values.

In summary, we have gins(sn) + hcls(sn) ≤ greop(sn) +
hcls(sn), so gins(sn) ≤ greop(sn). This contradicts that sn
is reopened at time reop.

Note that this proof only relies on DYN-consistency be-
tween known states so this result also holds for partially
DYN-consistent heuristics. Furthermore, Koyfman et al.
(2024) define the property OPTEX for algorithms where ev-
ery expanded state has an optimal g-value. If the conditions
of Theorem 7 are satisfied, DYN-A∗ is OPTEX.

Applications
We now show how existing approaches, primarily from clas-
sical planning, fit our framework. We argue more formally
for the first application and go into less detail for the others.

Interleaved Search
Franco and Torralba (2019) consider interleaved search,
where search and computation of an abstraction heuristic are
alternated in progressively longer time slices. They refer to a
generic function HeuristicImprovement (HI) that re-
turns an improved abstraction within a given time limit, po-
tentially using additional information gained during search.

We represent this idea as a dynamic heuristic by first
defining the information source IS . Given a function HI
that takes a time limit and information from an informa-
tion source ADD , the information space IIS contains tu-
ples ⟨t, l, α,D, info⟩, where t tracks search time, l is the cur-
rent time limit, α the current abstraction with abstract dis-
tance table D, and info ∈ IADD is additional information.
The constant initial-infoIS is ⟨0, l0, α0, D0, initial-infoADD⟩
where HI(l0, initial-infoADD) returned α0 and D0. Call-
ing updateIS just replaces info with updateADD(info)
and leaves the other components unchanged. Calling
refineIS (⟨t, l, α,D, infoADD⟩, s) adds the time passed since

the last call to refineIS (or since program start) to t. If t > l,
it sets α and D to the result of HI(l, infoADD), sets l to 2 · l,
and finally sets t to 0. The dynamic heuristic hIS then cal-
culates the heuristic value of a state s as D(α(s)).

The properties of hIS naturally depend on HI. Franco and
Torralba describe an implementation based on symbolic pat-
tern databases (PDBs; Edelkamp 2002), let us call it hFT

IS ,
that samples states from the open list to guide the pattern se-
lection. We can approximate this with a nested information
source ADD that tracks sampled states in updateADD . They
enforce DYN-monotonicity by maximizing over known
PDBs, DYN-admissibility and DYN-consistency are also
guaranteed as each improvement call returns either a partial
PDB (Anderson, Holte, and Schaeffer 2007) or a full PDB,
making the resulting heuristics admissible and consistent.
Theorem 8. Interleaved search as described by Franco and
Torralba (2019) is optimal and does not reopen states.

Proof. DYN-A∗ with re-eval using hFT
IS with the HI func-

tion defined by Franco and Torralba models the behavior
of interleaved search. Optimality then follows from Theo-
rem 5 together with the DYN-admissibility of hFT

IS . Finally
no states are reopened due to Theorem 7 together with the
DYN-monotonicity and DYN-consistency of hFT

IS .

This confirms Franco and Torralba’s conjecture that re-
evaluation and monotonicity (plus DYN-admissibility and
DYN-consistency) ensure that no states are reopened.

Online Cartesian Abstraction Refinement
Eifler and Fickert (2018) refine additive Cartesian abstrac-
tions (Seipp and Helmert 2014), combined via cost par-
titioning, during search. Their refinement strategy guar-
antees DYN-admissibility, DYN-consistency, and DYN-
monotonicity. It is called for states popped from open when
a Bellman optimality equation detects a local error. The re-
sulting heuristic is then used in A∗ with re-evaluation. We
can define a suitable information source in a way analogous
to IS and show a result similar to Theorem 8.
Theorem 9. A∗ with re-evaluation using online Cartesian
abstraction refinement as described by Eifler and Fickert
(2018) is optimal and does not reopen states.

Landmark Progression
We have already seen a simplified version of landmark pro-
gression as our running example. In general landmarks are
not limited to single operators but denote properties that
hold along all plans of a given task. Since landmarks can-
not be computed efficiently in general (Hoffmann, Porteous,
and Sebastia 2004), applications generate a set of landmarks
only for the initial state and then progress this information
(e.g., Richter and Westphal 2010; Karpas and Domshlak
2009; Domshlak et al. 2011).

Büchner et al. (2023) formalize landmark progression in
the landmark best-first search (LM-BFS) framework, which
describes how landmark information is represented, ini-
tialized, progressed, and merged. These components can
be directly cast as a progression source and thus define a
progression-based information source. We can then define a

dynamic heuristic based on this landmark information. LM-
BFS can thus be viewed as an instantiation of DYN-A∗ with
re-evaluation, also making our framework applicable to its
instantiations, e.g. LM-A∗ (Karpas and Domshlak 2009).

Theorem 10. An instantiation of LM-BFS using a DYN-
admissible landmark heuristic and a priority queue ordered
by f = g + h is optimal.

LTL-A∗

Simon and Röger (2015) describe an A∗ search where each
state s is annotated with a linear temporal logic (LTL; Pnueli
1977) formula representing a trajectory constraint that must
be satisfied by any optimal path from s to a goal state.

We can define a progression source over LTL formulas
and associated g-values, where progression uses the rules
by Bacchus and Kabanza (2000). Simon and Röger define
the merging of two formulas φ and ψ as φ ∧ ψ if they
were reached with the same g-value, and as the formula with
lower g-value otherwise. We can do so by tracking g-values
when progressing and merging.

While this gives us a progression-based information
source, the heuristic described by Simon and Röger only
guarantees path-admissibility (Karpas and Domshlak 2012)
for some given information, from which neither DYN-
admissibility nor PDA follow directly.

A∗ with Lazy Heuristic Evaluation
Zhang and Bacchus (2012) introduce a modification of A∗

that uses two heuristics, say hC and hA, such that hC is
cheap and hA is accurate. When first inserting a state into
open, it is evaluated using hC . When a state is popped, it is
only expanded if its assigned h-value was calculated by hA,
otherwise it is evaluated using hA and re-inserted into open.

We represent this idea as a dynamic heuristic by first
defining the information source lazy over the space of func-
tions info : S → {C,A} as initial-infolazy = {s 7→ C |
s ∈ S}, updatelazy(info, t) = info, and refinelazy(info, s) =
info′ such that info′ = info except info′(s) = A.

The lazy evaluation heuristic depending on lazy then
maps a state s and information info to hinfo(s)(s).

Theorem 11. A∗ using lazy heuristic evaluation with two
admissible heuristics is optimal.

Proof. DYN-A∗ with re-eval using the lazy evaluation
heuristic models the behavior of A∗ with lazy heuristic eval-
uation. DYN-admissibility is given as the two static heuris-
tics are admissible. Applying Theorem 5 concludes the
proof.

The instantiation discussed by Zhang and Bacchus (2012)
using LM-Cut and MAXSAT is optimal as it satisfies the
conditions of the Theorem. We expect that the same result
can be shown for similar approaches such as selective max
(Domshlak, Karpas, and Markovitch 2012) or rational lazy
A∗ (Tolpin et al. 2013). Note that using consistent heuristics
does not guarantee DYN-consistency of the resulting lazy
evaluation heuristic, thus reopening may be necessary.

Path-Dependent f -Values
Dechter and Pearl (1985) investigate the optimality of best-
first search algorithms where the f -value of a state can de-
pend on the path to that state. This is similar to our notion
of dynamic heuristics although they consider static heuris-
tics and allow path-dependent evaluation functions f(π)
other than f = g + h. Such an evaluation function f(π)
can be interpreted in our framework as a dynamic heuristic
h(s, π) = f(π) − g(s) where paths are stored in an infor-
mation source that is updated with newly discovered paths.

Dynamic heuristics can accumulate information based on
all paths leading to a state, even more expensive ones. This
is not possible in their framework. In contrast, their frame-
work covers cases like weighted A∗ (Pohl 1970) that fit our
general framework but not DYN-A∗. While we could encode
them into a dynamic heuristic as discussed above, it might
not be useful to investigate the algorithm’s behavior in such
cases. Generalizing their results to dynamic heuristics is an
interesting line of future work.

Future Work
There are more applications that likely fit our framework.

Pathmax (Mérő 1984) is a technique to propagate h-
values from a transition’s origin to its target and vice versa.
Originally defined for the algorithm B’, Zhang et al. (2009)
show how pathmax can be applied to A∗, alongside the more
powerful bidirectional pathmax by Felner et al. (2005).

Deferred evaluation (Helmert 2006) assigns the heuristic
value of the state being expanded to its successors upon gen-
erating them. Once a successors is expanded itself, its true
heuristic value is calculated and forwarded to its successors.

Partial expansion A∗ (Yoshizumi, Miura, and Ishida 2000)
avoids inserting too many nodes into the open list by only
doing so for promising successors. Unpromising successors
are represented by re-inserting their parent node with up-
dated priority. This technique does not match the DYN-A∗

instantiation but it probably fits our general framework.

Conclusion
We investigated dynamic heuristics and explicitly modeled
information they are based on. We have shown sound-
ness and completeness results for a dynamic heuristic
search framework tracking such information and looked
into DYN-A∗, an instantiation extending A∗ with dy-
namic heuristics. DYN-A∗ is optimal with and without re-
evaluation when using a dynamic heuristic that is DYN-
admissible, a natural extension of admissibility. With re-
evaluation, it further does not reopen states when using a
heuristic that monotonically improves its values and is the
dynamic equivalent to consistent. These results extend the
classic results for static heuristics that many existing ap-
proaches appeal to despite using dynamic heuristics. We
have seen that such arguments are not always valid as re-
opening can occur even with a DYN-consistent heuristic.
By showing that existing approaches fit our framework, we
provide a formal basis for such claims.

In addition to the use cases discussed previously, studying
optimal efficiency results of DYN-A∗ would be interesting.

Acknowledgments
This research was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Unifying the The-
ory and Algorithms of Factored State-Space Search” (UTA).

References
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial Pattern
Databases. In Miguel, I.; and Ruml, W., eds., Proceedings of the
7th International Symposium on Abstraction, Reformulation and
Approximation (SARA 2007), volume 4612 of Lecture Notes in
Artificial Intelligence, 20–34. Springer-Verlag.
Bacchus, F.; and Kabanza, F. 2000. Using Temporal Logics to
Express Search Control Knowledge for Planning. Artificial In-
telligence, 116(1–2): 123–191.
Büchner, C.; Eriksson, S.; Keller, T.; and Helmert, M. 2023.
Landmark Progression in Heuristic Search. In Koenig, S.; Stern,
R.; and Vallati, M., eds., Proceedings of the Thirty-Third In-
ternational Conference on Automated Planning and Scheduling
(ICAPS 2023), 70–79. AAAI Press.
Christen, R.; Pommerening, F.; Büchner, C.; and Helmert, M.
2025. A Formalism for Optimal Search with Dynamic Heuristics
(Extended Version). arXiv:2504.21131 [cs.AI].
Dechter, R.; and Pearl, J. 1985. Generalized Best-First Search
Strategies and the Optimality of A∗. Journal of the ACM, 32(3):
505–536.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter, S.;
Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP: The Big
Joint Optimal Landmarks Planner. In IPC 2011 Planner Ab-
stracts, 91–95.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2012. Online
Speedup Learning for Optimal Planning. Journal of Artificial
Intelligence Research, 44: 709–755.
Edelkamp, S. 2002. Symbolic Pattern Databases in Heuristic
Search Planning. In Ghallab, M.; Hertzberg, J.; and Traverso, P.,
eds., Proceedings of the Sixth International Conference on Ar-
tificial Intelligence Planning and Scheduling (AIPS 2002), 274–
283. AAAI Press.
Eifler, R.; and Fickert, M. 2018. Online Refinement of Cartesian
Abstraction Heuristics. In Bulitko, V.; and Storandt, S., eds.,
Proceedings of the 11th Annual Symposium on Combinatorial
Search (SoCS 2018), 46–54. AAAI Press.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005. Dual
Lookups in Pattern Databases. In Kaelbling, L. P.; and Saffiotti,
A., eds., Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI 2005), 103–108. Professional
Book Center.
Franco, S.; and Torralba, Á. 2019. Interleaving Search and
Heuristic Improvement. In Surynek, P.; and Yeoh, W., eds.,
Proceedings of the 12th Annual Symposium on Combinatorial
Search (SoCS 2019), 130–134. AAAI Press.
Gelperin, D. 1977. On the Optimality of A∗. Artificial Intelli-
gence, 8(1): 69–76.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Transactions on Systems Science and Cybernetics, 4(2):
100–107.
Helmert, M. 2006. The Fast Downward Planning System. Jour-
nal of Artificial Intelligence Research, 26: 191–246.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered Land-
marks in Planning. Journal of Artificial Intelligence Research,
22: 215–278.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning with
Landmarks. In Boutilier, C., ed., Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2009),
1728–1733. AAAI Press.
Karpas, E.; and Domshlak, C. 2012. Optimal Search with In-
admissible Heuristics. In McCluskey, L.; Williams, B.; Silva,
J. R.; and Bonet, B., eds., Proceedings of the Twenty-Second In-
ternational Conference on Automated Planning and Scheduling
(ICAPS 2012), 92–100. AAAI Press.
Koyfman, D.; Shperberg, S. S.; Atzmon, D.; and Felner, A. 2024.
Minimizing State Exploration While Searching Graphs with Un-
known Obstacles. In Dastani, M.; Sichman, J. S.; Alechina, N.;
and Dignum, V., eds., Proceedings of the Twenty-Third Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2024), 1038–1046. IFAAMAS/ACM.
Mérő, L. 1984. A Heuristic Search Algorithm with Modifiable
Estimate. Artificial Intelligence, 23(1): 13–27.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.
Pnueli, A. 1977. The Temporal Logic of Programs. In Proceed-
ings of the 18th Annual Symposium on Foundations of Computer
Science (FOCS 1977), 46–57.
Pohl, I. 1970. Heuristic search viewed as path finding in a graph.
Artificial Intelligence, 1: 193–204.
Pohl, I. 1977. Practical and Theoretical Considerations in
Heuristic Search Algorithms. In Elcock, E. W.; and Michie, D.,
eds., Machine Intelligence 8, 55–72. Ellis Horwood.
Richter, S.; and Westphal, M. 2010. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. Journal of
Artificial Intelligence Research, 39: 127–177.
Seipp, J.; and Helmert, M. 2014. Diverse and Additive Cartesian
Abstraction Heuristics. In Chien, S.; Fern, A.; Ruml, W.; and Do,
M., eds., Proceedings of the Twenty-Fourth International Con-
ference on Automated Planning and Scheduling (ICAPS 2014),
289–297. AAAI Press.
Simon, S.; and Röger, G. 2015. Finding and Exploiting LTL Tra-
jectory Constraints in Heuristic Search. In Lelis, L.; and Stern,
R., eds., Proceedings of the Eighth Annual Symposium on Com-
binatorial Search (SoCS 2015), 113–121. AAAI Press.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Towards Rational Deployment of Multiple Heuristics
in A∗. In Rossi, F., ed., Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI 2013), 674–
680. AAAI Press.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A∗ with Partial Ex-
pansion for Large Branching Factor Problems. In Kautz, H.; and
Porter, B., eds., Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI 2000), 923–929. AAAI
Press.
Zhang, L.; and Bacchus, F. 2012. MaxSAT Heuristics for Cost
Optimal Planning. In Hoffmann, J.; and Selman, B., eds., Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial In-
telligence (AAAI 2012), 1846–1852. AAAI Press.
Zhang, Z.; Sturtevant, N. R.; Holte, R.; Schaeffer, J.; and Felner,
A. 2009. A∗ Search with Inconsistent Heuristics. In Boutilier,
C., ed., Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), 634–639. AAAI Press.

