
PARIS: Planning Algorithms for Reconfiguring Independent Sets

Remo Christen,1 Salomé Eriksson,1 Michael Katz,2 Christian Muise,3
Alice Petrov,3 Florian Pommerening,1 Jendrik Seipp,4 Silvan Sievers,1 David Speck4

1 University of Basel, 2 IBM T.J. Watson Research Center, 3 Queen’s University, 4 Linköping University
{remo.christen, salome.eriksson, florian.pommerening, silvan.sievers}@unibas.ch, michael.katz1@ibm.com,

{christian.muise, 17ap87}@queensu.ca, {jendrik.seipp, david.speck}@liu.se

Abstract

Combinatorial reconfiguration studies how one solution of a
combinatorial problem can be transformed into another. The
transformation can only make small local changes and may
not leave the solution space. An important example is the in-
dependent set reconfiguration (ISR) problem, where an inde-
pendent set of a graph (a subset of its vertices without edges
between them) has to be transformed into another one by a se-
quence of modifications that remove a vertex or add another
that is not adjacent to any vertex in the set. The 1st Combina-
torial Reconfiguration Challenge (CoRe Challenge 2022) was
a competition focused on the ISR problem. Our team partici-
pated with two solvers that model the ISR problem as a plan-
ning problem and employ different planning techniques for
solving it. They successfully competed in the challenge and
were awarded 4 first, 3 second, and 3 third places across 9
tracks. In this work, we show how to model ISR problems
as planning tasks and describe the planning techniques used
in our solvers. For a fair comparison of ISR approaches, we
re-run the entire competition under equal computational con-
ditions. Besides showcasing the success of planning technol-
ogy, we hope that this work will create a cross-fertilization of
the two research fields.

1 Introduction
Combinatorial reconfiguration studies the space of solutions
for combinatorial problems. The task is to transform one
solution of a combinatorial problem into a different one,
without leaving the space of solutions. Each transformation
can only make a small local change to the current solu-
tion. The term was coined by Ito et al. (2008) who show
that there is a host of problems derived from NP-complete
(combinatorial) problems that fall into the category of
combinatorial reconfiguration problems and that they are
PSPACE-complete. Two prominent examples for reconfig-
uration tasks are propositional satisfiability (Ito et al. 2011)
and graph k-coloring (Cereceda 2007). But probably the
most well-studied representative of combinatorial reconfig-
uration tasks is the independent set reconfiguration (ISR)
problem (Kaminski, Medvedev, and Milanic 2012).

An independent set of a graph is a subset of its vertices
such that no two vertices of the subset share an edge. Re-
configuring an independent set means replacing one vertex
in the subset with another one such that the new subset is

still an independent set. The ISR problem is to find a se-
quence of such reconfiguration steps to reach a given target
configuration from a given start configuration. The problem
is PSPACE-complete (Nishimura 2018), which means it is
as hard as automated planning (Bylander 1994).

The 1st Combinatorial Reconfiguration Challenge (CoRe
2022)1 is a competition that compares practical combinato-
rial reconfiguration algorithms. Its first instantiation targeted
the ISR problem, featuring different tracks. We participated
in the competition using two solvers that model ISR prob-
lems as planning tasks and use various planning techniques
for solving them. Among the seven teams that participated,
our solvers achieved 4 first, 3 second, and 3 third places
across all tracks, winning the majority of awards.

In this work, we present the ISR problem and explain
how we can model it as a planning problem. We describe
the technology used in our solvers, which is mostly based
on planning techniques, including a technique for detect-
ing unsolvable problems which we believe to be useful for
unsolvability planning in general. Furthermore, since com-
petitors of the competition ran their solvers themselves us-
ing different hardware and resource limits, we re-ran all of
them under equal computational conditions and report the
results in this work. Besides showcasing the success of plan-
ning technology, we also introduce a problem that is new to
our community. We believe this will lead more planning re-
searchers to develop ideas for the ISR problem and create a
cross-fertilization of the fields.

2 Background
A graph is a pair G = ⟨V,E⟩, where V is a set of vertices
and E ⊆ {{u, v} | u, v ∈ V, v ̸= u} is a set of edges
between the vertices. An independent (vertex) set of a graph
G is a subset of vertices I ⊆ V such that no two vertices in
the subset I are edges of G, i.e., for all v, u ∈ I it holds that
{v, u} ̸∈ E.

2.1 Independent Set Reconfiguration
Similar to Kaminski, Medvedev, and Milanic (2012), we
consider an independent set as a set of tokens placed on
the vertices of a graph G, called token configuration, such

1https://core-challenge.github.io/2022

5

1

2 3

41

3

5

1

2 3

4

2

4

Figure 1: Visualization of the independent set reconfigura-
tion problem described in Example 1 with a graph consisting
of five nodes, two tokens depicted in black, the start indepen-
dent set Is (left), and the target independent set It (right).

that no two tokens are adjacent. The token jump reconfig-
uration rule describes how to transform one token configu-
ration into another, moving a token from one vertex to any
other unoccupied vertex, so that the resulting configuration
again describes an independent set. Note that the token can
jump, i.e., it does not have to move along an edge. Given the
reconfiguration rule, we define a reconfiguration sequence
ρ = ⟨I0, . . . , In⟩ as a sequence of non-repeating indepen-
dent sets, where each set Ii with 1 ≤ i ≤ n results from a
single token jump from the previous set Ii−1. The length |ρ|
of a reconfiguration sequence ρ = ⟨I0, . . . , In⟩ is the num-
ber of token jumps inducing the sequence, i.e., |ρ| = n. The
Independent Set Reconfiguration decision problem (Kamin-
ski, Medvedev, and Milanic 2012) is defined as follows.
Definition 1 (Independent Set Reconfiguration) Given a
graph G and two independent sets Is and It, the inde-
pendent set reconfiguration (ISR) decision problem is to
determine whether there exists a reconfiguration sequence
ρ = ⟨Is, . . . , It⟩.

The ISR problem is one of the most prominent repre-
sentatives of combinatorial reconfiguration. It is known to
be PSPACE-complete for general input graphs (Kaminski,
Medvedev, and Milanic 2012; Nishimura 2018) and formed
the central problem of CoRe 2022.
Example 1 Figure 1 shows an ISR problem with the start
set Is = {1, 3} and the target set It = {2, 4}. A solu-
tion to this problem is the reconfiguration sequence ρ =
⟨{1, 3}, {3, 5}, {2, 5}, {2, 4}⟩, where first the token at node
1 is moved to node 5, then the token at node 3 is moved to
node 2, and finally the token at node 5 is moved to node 4.
This sequence has a length of |ρ| = 3, since it performs three
jumps and is the shortest sequence that solves the problem.

2.2 Combinatorial Reconfiguration Challenge
Similar to the International Planning Competition (IPC),
CoRe 2022 featured different tracks. They can be separated
into two main categories: graph tracks and solver tracks.

Graph Tracks In the graph tracks the objective was to
construct an ISR instance such that the shortest reconfigu-
ration sequence is as long as possible. For CoRe 2022 there
were three graph tracks, one each for graphs with 10, 50
and 100 nodes, and the team that constructed the instance
with the longest shortest reconfiguration sequence won the
respective track.

Solver Tracks In total, there were three different solver
tracks in CoRe 2022: the existent, the shortest and the
longest track, each further subdivided into a single solver
sub-track and a portfolio solver sub-track. In the existent
track, each solver that provided a reconfiguration sequence
for or detected unsolvability of an ISR instance received one
point. In contrast, the shortest and longest tracks considered
the quality of the solutions, and solvers that provided the
shortest/longest (among the participants) reconfiguration se-
quence for an instance received one point.2 The winning
solver for each track was the one that received the most
points across all benchmark ISR instances.

Note that the names shortest and longest are somewhat
misleading. The aim in these tracks is to find a solution,
aiming at as short/long loopless solutions as possible, but
no guarantees on optimality are needed. To draw parallels
between these tracks and International Planning Competi-
tion (IPC) tracks, the shortest track is actually more similar
in that respect to the satisficing IPC track. Currently, there is
no equivalent in planning competitions to the longest track.
The existent track is somewhat similar to the agile IPC track.

2.3 Classical Planning
In this paper, we propose to model the ISR problem as a clas-
sical planning problem. For this, we consider the Planning
Domain Definition Language (PDDL) (McDermott et al.
1998) and the SAS+ formalism (Bäckström and Nebel
1995) to describe classical planning problems. A (classical)
planning problem is a concise representation of a transition
system with a single initial state, a compact description of
the set of goal states, and a set of actions with preconditions
and effects that describe the transitions. The objective is to
derive a course of action that transforms the initial state into
one of the goal states. While the full details of PDDL are be-
yond the scope of this paper and are not necessary to follow
the content of the paper, the excerpts presented in this pa-
per suffice to present our contributions. For a more detailed
account, we refer the reader to Haslum et al. (2019).

An SAS+ task formally is a tuple ⟨V,A, I,G⟩, where
V is a finite set of variables V , each with a finite domain
dom(V), A is a finite set of actions, I is the initial state, and
G is the goal. Partial variable assignments p map a subset of
variables vars(p) ⊆ V to values in their domain. Variable
assignments s with vars(s) = V are called states. A par-
tial variable assignment p is satisfied in a state s if p and s
agree on vars(p). Each action a ∈ A consists of a precondi-
tion pre(a) and an effect eff(a), both partial variable assign-
ments. An action is applicable in a state if its precondition
is satisfied, and applying it updates the state with values de-
fined in its effect. A planner finds a sequence of actions that
is sequentially applicable and leads from the initial state I
to some state satisfying the partial variable assignment G.

3 Graph Track
The graph track was dedicated to finding challenging ISR
instances. Our entry finished tied for third in the n = 10 in-

2Reconfiguration sequences must be non-repeating. Therefore,
participants must search for loopless solutions in the longest track.

Figure 2: Reconfiguration sequence from off to on.

stance, and second place for the n ∈ {50, 100} instances.
Drawing from the notion of “gadgets” in computational
complexity, we leverage a five-node subgraph called the
“house widget” in order to encode bit flips in a graph and
thus require an exponential plan length (exponential in the
number of widgets included). Each subgraph consists of a
4-cycle with two adjacent nodes leading to a 5th node called
the anchor. Figure 2 shows this widget and all of its maxi-
mally independent sets. We call the configuration on the left
off and the configuration on the right on. The sequence in
Figure 2 is the (only) way for a house widget to “flip its bit”.

The house widget has a number of properties that make
it ideal to use as a building block in creating exponential
sequences: (1) the graph has an optimal “long” shortest re-
configuration sequence to flip its bit for ISR instances with
5 nodes, and (2) each step of the reconfiguration sequence
consists of a maximum independent set. Also, (3) this recon-
figuration sequence is unique and (4) the anchor is occupied
throughout the entire sequence of flipping the widget with
the exception of the starting state and ending state. Finally,
(5) the solution space is a path, and thus the behaviour of the
widget is predictable.

We treat our house widget as an individual bit and con-
nect several of them in a way that ensures exponential so-
lutions. First, we make the anchors a fully connected sub-
graph, guaranteeing that no two houses can switch states si-
multaneously. The order of bit flips is then enforced by con-
necting a house’s anchor to the bits previously seen in the
sequence. Figure 3 shows the connection that allows house 1
to switch only when house 2 is set to on. We add these con-
nections in an iterative way, with the addition of every new
house widget. As our base case, the first house has an initial
configuration of off and a goal of on. Suppose we have a se-
quence of k houses generated; we add house k+1 according
to the following:
1. We can only flip house k+1 when the goal of house k is

satisfied.
2. The new initial state is to have all houses off, and the new

goal is to have only the house k + 1 on.
This forces the plan length to double with each new house:

achieve the old goal of the k-house sequence, flip house
k+ 1, and then go back to the initial state of the k house se-
quence. Thus, we have a set of subgraphs connected in such
a way that forces exponential growth in plan length with
every added house subgraph. Putting everything together,
graphs are generated as follows:
1. Create k houses.
2. Make the anchors of all houses a fully connected sub-

graph of order k.

(1) (2)

Figure 3: House 1 is unable to flip unless house 2 is on.

3. Add edges according to the iterative method above.

3.1 Building on Planning Technology

What we present above is the culmination of extensive ex-
ploration and intuition-building on the problem of generat-
ing difficult planning instances for the ISR domain. Even
though the final solution was free of planning technology,
the journey to a competitive entry was ripe with planning-
based insight. In the following, we highlight some of the
planning elements that proved essential to this exploration.

Similar to the early exploration in the solver tracks, the
PLANUTILS library (Muise et al. 2022) allowed us to ex-
plore the instances we were generating easily with different
planners. Beyond that, we gained insight by leveraging state-
of-the-art planners to compute the worst-case goal configu-
rations. To evaluate solutions for the graph track, we used
a manually modified version of Fast Downward’s A∗ search
with the blind heuristic, effectively giving us breadth-first
search (BrFS), in the following way:

1. Compute a target state with the furthest distance from the
initial state, by exhaustively expanding the search space
with BrFS (we modified the planner to output one such
target state).

2. Use this newly-found state as a new initial configuration.

3. Repeat step 1 to find a new candidate initial state.

For some solution attempts, the above approach allowed
us to find not only a reasonable goal choice but an initial
state candidate as well. Finding pairs of states that are maxi-
mally far apart is closely related to the computation of upper
bounds for factored state-space search (Abdulaziz, Gretton,
and Norrish 2017), a problem that is NEXPTIME-hard.

Finally, the generated problems are meant to yield very
long shortest plans. We were able to use the breadth-first
search from above to verify the shortest plan lengths. E.g.,
in a matter of a few minutes, the planner can find the shortest
solution for our n = 100 instance with a length of 3,145,725
actions. In summary, the maturity of the technology pro-
duced by the planning community had a direct impact on
our ability to iterate on ideas for the graph tracks quickly.

Listing 1: Single PDDL encoding using one move action.
(:action move

:parameters (?l1 ?l2 - loc)
:precondition (and

; Source has token
(tokened ?l1)
; Destination is free
(free ?l2)
; Destination’s neighbors are free
(forall (?l3 - loc) (imply

(and (not (= ?l1 ?l3))
(edge ?l2 ?l3))

(free ?l3))))
:effect (and

; Source is free
(not (tokened ?l1)) (free ?l1)
; Destination has token
(tokened ?l2) (not (free ?l2))))

3.2 Other Graph Construction Algorithms
Despite our guarantee of exponential growth, there was one
approach submitted by Bousquet, Durain, and Pierron (the
tpierron team) that outperformed our construction. While
we use our widget even for small graphs, the tpierron team
brute-force the n = 10 case, focusing on the diameter of the
graph generated by reconfiguration sequences.

For n = 50 and n = 100, the tpierron team uses a larger,
more complex widget that has a longer reconfiguration se-
quence than ours. While we connect widgets of size 5, they
connect widgets of size 10 in such a way that results in 4 · d
transitions in the previous graph G, where d is the length of
the reconfiguration sequence in the original graph G. That
is, for every new widget added, the sequence is increased by
a factor of 4 and 10 additional transitions are forced in the
added widget to construct G′. Thus, they produce a sequence
that grows at a rate of 4d+ 10.

They then connect widgets in a way that requires a com-
plete sequence of transitions in the original graph for a par-
tial sequence of transitions in the added widget. In contrast,
we connect widgets in a way that requires a complete se-
quence of transitions between all widgets, i.e., each house
widget must completely flip before another can be adjusted.

They do so while retaining the requirement that tokens
can only move following the maximum reconfiguration se-
quence in both G and G′. As a result, in the n = 50 sce-
nario, the tpierron team achieved a reconfiguration sequence
length of 3410 compared to our length of 3069, and in the
n = 100 case, they reached a length of 3495250 compared to
our length of 3145725. For more details on their submission,
see “Graph track description” by Nicolas Bousquet, Bastien
Durain, and Theo Pierron in the Core 2022 booklet (Soh,
Okamoto, and Ito 2022).

4 Planning Encoding
The planning domain definition language (PDDL) is the

de-facto standard language for modeling planning tasks
(Haslum et al. 2019), and most planning tools are built with
PDDL as their input language. The ISR problem can be

Listing 2: Split PDDL encoding using two actions.
(:action pick

:parameters (?l1 - loc)
:precondition (and

; Not holding a token
(handfree)
; Source has token
(tokened ?l1))

:effect (and
; Holding a token
(not (handfree)) (holding)
; Source is free
(free ?l1) (not (tokened ?l1))))

(:action place
:parameters (?l1 - loc)
:precondition (and

; Holding a token
(holding)
; Destination is free
(free ?l1)
; Destination’s neighbors are free
(forall (?l2 - loc) (imply

(edge ?l1 ?l2) (free ?l2))))
:effect (and

; Not holding a token
(not (holding)) (handfree)
; Destination has token
(not (free ?l1)) (tokened ?l1)))

encoded in PDDL by introducing a single lifted action to
move a token from one location to another. Listing 1 shows
the PDDL code for this move action, with comments inter-
leaved. We call this the single encoding. While the encoding
itself is quite compact, grounding these tasks is slow. In an
ISR instance with n nodes, n2 move actions have to be cre-
ated. As we are dealing with graphs of up to 40000 nodes,
this can be problematic. To overcome this issue, we tested
two approaches. The first is manual pre-grounding, called
single-grounded. This does not help with the quadratic num-
ber of actions but avoids overhead creating the SAS+ rep-
resentation. The second approach, called split, is to split the
move action into two actions, pick and place. It is presented
in Listing 2. In this encoding, we only need 2n actions but
plans are twice as long and have to be post-processed. Even
this encoding can be slow to ground and can be sped up sig-
nificantly with pre-grounding, which we call split-grounded.
Ultimately, we found the split-grounded encoding to be the
most efficient, and so we used it for all tracks and solvers.

The planning systems we used are all built on the Fast
Downward planning system (Helmert 2006), which first
translates the input PDDL into SAS+ (Bäckström and Nebel
1995) before searching for a plan. While we used the afore-
mentioned PDDL encodings for the bulk of the development
work for the contest, our final submission directly encodes
the input tasks into the split SAS+ format to save on the
computational effort required by this translation.

We encode a given ISR problem ⟨G, Is, It⟩ with a graph
G = ⟨V,E⟩, as an SAS+ task ⟨V,A, I,G⟩ in the following
way. The variables V = V ∪ {hand} contain one binary

variable for each node in the graph to represent if there is a
token on this node, and a binary variable hand to represent if
we are currently holding a token. The domain of all variables
is {free, occupied}. The initial state is I = {v 7→ occupied |
v ∈ Is} ∪ {v 7→ free | v ∈ V \ Is} ∪ {hand 7→ free}, and
the goal is G = {v 7→ occupied | v ∈ It} ∪ {v 7→ free | v ∈
V \ It} ∪ {hand 7→ free}. Note that specifying the occupied
nodes in the goal would also be sufficient but specifying a
value for all variables can help the planners realize that there
is exactly one goal state.

The actions are analogous to the ones shown in Listing 2.
There is an action pick(v) ∈ A for every v ∈ V and it has the
precondition pre(pick(v)) = {v 7→ occupied, hand 7→ free}
and effect eff(pick(v)) = {v 7→ free, hand 7→ occupied}.
I.e., picking up a token is possible from all nodes that
have a token, as long as we are not already holding one.
Additionally, there is an action place(v) ∈ A for every
v ∈ V and it has the precondition pre(place(v)) = {v 7→
free, hand 7→ occupied} ∪ {v′ 7→ free | {v, v′} ∈ E} and
effect eff(place(v)) = {v 7→ occupied, hand 7→ free}. So
placing a held token is only possible on positions that cur-
rently have no token and have only free neighbors. The latter
ensures every reachable configuration is an independent set.

5 Finding Solutions
We use sequential algorithm portfolios for each of the three
solver tracks. That is, we run a sequence of algorithms, each
with an associated time limit. The next section describes the
algorithms that we use in our sequential portfolios.

5.1 Planning Algorithms
After testing various planning heuristics from the litera-
ture in exploratory experiments, we found that landmark-
based heuristics to work well on ISR tasks. Relaxation-based
heuristics, such as FF (Hoffmann and Nebel 2001) and Red-
black (Domshlak, Hoffmann, and Katz 2015) did not con-
tribute to search performance. Interestingly, both for satisfic-
ing and optimal planning, it is best to combine the landmark
costs admissibly.

A∗+Landmarks We run an A∗ search (Hart, Nilsson, and
Raphael 1968) with a landmark count heuristic (Karpas and
Domshlak 2009) that uses two different kinds of landmarks:
h1 landmarks (Keyder, Richter, and Helmert 2010) and
RHW landmarks (Richter, Helmert, and Westphal 2008).
The landmark costs are combined with uniform cost parti-
tioning (Katz and Domshlak 2008), which ensures that the
resulting heuristic is admissible. As a result, this algorithm
is optimal, sound, and complete, i.e., if it reports a plan, this
is a shortest plan, if it reports unsolvability, the task is indeed
unsolvable, and given sufficient resources, it will terminate.

GBFS+Landmarks We run a greedy best-first search
(GBFS) (Doran and Michie 1966) with a landmark count
heuristic (Karpas and Domshlak 2009) over h1 landmarks
(Keyder, Richter, and Helmert 2010). Again, the landmark
costs are combined with uniform cost partitioning. This al-
gorithm is sound and complete, but not optimal.

Symbolic Search We run a forward symbolic blind search
(Torralba et al. 2017; Speck, Geißer, and Mattmüller 2020)
using Binary Decision Diagrams (Bryant 1986) as the under-
lying data structure. The symbolic planner we use is SymK
(Speck, Mattmüller, and Nebel 2020), which uses CUDD
(Somenzi 2015) as its decision diagram library. This search
is optimal, sound and complete.

Symbolic Top-k Search The problem of finding a plan
that is as long as possible is not commonly considered in
the planning community, but only in the context of approx-
imating the longest possible solution in SAT-based plan-
ning (Abdulaziz, Gretton, and Norrish 2017). Interestingly,
the search for the longest path in a compactly represented
graph is NEXPTIME-hard (Papadimitriou and Yannakakis
1986) and is therefore considered more complex than ordi-
nary satisficing or optimal planning, which are known to be
PSPACE-hard (Bylander 1994). Cohen, Stern, and Felner
(2020) investigated heuristic search for finding the longest
path for a given explicitly represented graph. While this is
an interesting line of research to be applied in the context of
planning, in the CoRe 2022 challenge we were interested in
finding a long plan, but not necessarily the longest.

To find long plans, we run a forward symbolic blind
search based on the algorithm SymK-LL (von Tschammer,
Mattmüller, and Speck 2022), implemented in the symbolic
search planner SymK (Speck, Mattmüller, and Nebel 2020),
which iteratively finds and generates all loopless plans for
a task. However, we have made the following adjustments
to find long loopless plans. First, once we find a goal state
reachable with cost c, we reconstruct only one loopless plan
with cost c and ignore all other plans with the same cost.
Second, since the split encoding introduces intermediate
states in which a token is held, we ignore these artificial
states when evaluating if a plan is loopless during the plan
reconstruction of SymK-LL. This algorithm iteratively finds
longer plans, starting with the shortest one, and eventually
finds the longest loopless plan, given enough resources.

Counter Abstraction We abstract the problem to a plan-
ning problem that counts how many tokens are in certain po-
sitions and check for unsolvability in the abstraction. Since
this algorithm is new, we describe it in more detail in Sec-
tion 5.6. We now describe our sequential algorithm portfo-
lios. Our portfolio for the existent track is identical to the
one for the shortest track.

5.2 Portfolio for shortest and existent Tracks
The competition enforced no resource constraints and left it
up to the competitors for how long they want to run their
solvers. We decided on the following time limits for our
portfolio based on some initial test that showed diminish-
ing returns for higher limits. If one step in the portfoilo finds
a solution, the remaining steps are skipped.
1. Counter abstraction: 10 seconds
2. Symbolic search: 70 minutes
3. A∗+Landmarks: 70 minutes
4. GBFS+Landmarks: 70 minutes
5. Counter abstraction: 14 hours

⟨3, 0⟩ ⟨2, 1⟩⟨2, 1⟩ ⟨1, 2⟩ ⟨0, 3⟩

Figure 4: Example coloring for the counter abstraction ap-
proach. Top: initial state (left) and goal state (right). Nodes
are colored blue if they have a token in the initial state but
not the goal state and red if they have no token in the initial
state but a token in the goal state. Bottom: the abstract state
space. Dashed nodes are pruned.

Note that we use counter abstractions twice: first with a
small time limit at the start of the portfolio to handle all
cases where we can quickly prove unsolvability. Then again
with a large time limit after all other components to catch
unsolvable instances that are hard to prove unsolvable.

5.3 Single Solver for shortest and existent Tracks
We ran GBFS+Landmarks for 70 minutes as our single-
solver submission because it has the highest coverage among
all solvers in the portfolio.

5.4 Portfolio for longest Track
Our portfolio for the longest track ran two components: (1)
GBFS+Landmarks: 330 seconds; and (2) Symbolic top-k
search: 70 minutes. When GBFS+Landmarks finds a solu-
tion, we use the cost of that solution as the lower solution
bound for the subsequent symbolic top-k search, so that only
solutions that are longer than the solution we already have
are reconstructed. As a fallback, if neither of the two ap-
proaches produced a solution longer than the shortest/ex-
istent tracks, we used the solution to the shortest/existent
tracks as a default.

5.5 Single Solver for longest Track
We ran symbolic top-k search for 70 minutes as our single-
solver submission for the longest track. Note that we did not
use the “fallback” option for this single-track submission.

5.6 Counter Abstraction
The counter abstraction component of our solver tries to de-
tect if the task is unsolvable by abstracting it to a planning
problem that counts the number of tokes in certain locations.
This idea is inspired by counter abstractions in the area of
model checking (e.g., Wahl and Donaldson 2010). Similar
ideas where proposed in the area of planning as well (Rid-
dle et al. 2016). In model checking, counter abstractions are
usually used for symmetry reduction, whereas we do not re-
quire the abstracted parts to be symmetric to each other.

Given an ISR problem, we produce a coloring of the ver-
tices in the graph, i.e., a function that maps each vertex of the
graph to one color. Many different ways of coming up with

a good coloring are conceivable but we opted for a simple
strategy that uses up to four colors: one each for nodes that
• contain a token both in the initial and in the goal state;
• contain a token only in the initial but not in the goal state;
• contain a token only in the goal but not in the initial state;
• are empty in the initial and goal state.

Colors for situations that do not occur are not used. For
example, the task in Figure 4 only requires two colors.

Given a coloring, each original state can be abstracted
to a state with one counter variable per color that tracks
how many tokens currently are on vertices with this color.
For example, the initial state in Figure 4 has 3 tokens on
blue nodes and 0 on red nodes, so it can be represented as
the state ⟨3, 0⟩. The goal has all three tokens on red nodes
and none on blue, so it can be represented by ⟨0, 3⟩. Mov-
ing a token from a node colored ci to a node colored cj
changes the abstract state from ⟨c1, . . . , ci, . . . , cj , . . . , cn⟩
to ⟨c1, . . . , ci − 1, . . . , cj + 1, . . . , cn⟩. The main observa-
tion is that if any solution to the full problem exists, there
has to be a solution in the abstraction as well. We thus con-
struct the state space of the abstraction in the following way.

For a state s = ⟨c1, . . . , cn⟩, we construct one successor
for each pair of unique colors ci and cj that differs from s by
a single token that moved from ci to cj . In our running exam-
ple, the initial state ⟨3, 0⟩ has a single successor ⟨2, 1⟩, and
this state has two successors ⟨3, 0⟩ (which we skip because
we have already seen this state) and ⟨1, 2⟩. The latter state
now has the abstract goal ⟨0, 3⟩ as a successor (Figure 4).

Whenever we generate a state, we check whether such a
state is possible (independent of whether it is reachable). If
it is not possible to place the tokens on the respective col-
ors in the required way, we do not have to consider it or its
successors. In our running example, the state ⟨1, 2⟩ is not re-
alizable: no matter where we place the blue token, it blocks
two of the three red nodes. We use a mixed-integer program
(MIP) solver to test if a state s is realizable by checking if
the following system of constraints has a solution:

xi + xj ≤ 1 for all edges ⟨i, j⟩ in the graph∑
i∈Nc

xi ≥ s[c] for all colors c

xi ∈ {0, 1} for all nodes i,

where Nc is the set of all nodes with color c and s[c] is the
amount of tokens that should have color c in state s. The ab-
stract state s is realizable iff the constraints have a solution.

If we generate a state that matches the goal state (⟨0, 3⟩
in our example), we know that there is an abstract plan. In
this case, we still do not know if there is a real plan and re-
turn unknown (this component of the solver is incomplete).
However, if there is no solution to the abstract problem, there
cannot be a solution to the original problem. The abstract
state space is usually small enough to explore completely. In
our running example, it only has 4 states, and we only have
to explore 3 of them, as we prune state ⟨1, 2⟩.

While the MIP we use to check for realizability of abstract
states is specific to ISR, the rest of the technique is domain-
independent, and we will explore this further in the future.

existent shortest longest CoRe 2022 limits

#c #e #c #e c score e score #c #e c score e score time (s) mem (GB) cores

ReconfAIGERation 257 246 152 214 201.36 214.00 54 29 83.02 29.00 10000 128 4
junkawahara 122 175 110 130 110.00 130.00 21 29 44.16 56.88 600 32 1
PARIS 334 322 275 275 282.74 280.12 143 233 183.24 251.53 62610 16 32∗

telematik tuhh 326 303 280 267 280.00 267.00 27 32 76.51 87.95 144000 60 2
toda5603 207 211 134 77 164.36 117.76 31 70 60.45 108.20 ∼ 10000 32 1
recongo 244 240 238 236 238.00 236.00 115 26 155.93 26.00 12600 96 1

Table 1: Coverage results from both the competition (c) and our experiments (e). # indicates the total number of problems
solved or found to be the shortest/longest. “score” refers to the IPC-style calculation over all of the problems (see text for
further details). The last column reports the limits used by the teams in the competition. If different limits were used in different
tracks, we report the maximum. Our solver mostly runs on 1 core but the MIP solver used by numerical abstractions used 32.

5.7 Other Competitors
Across all solver tracks, seven teams competed at CoRe
2022, including our team (PARIS). Three of them were clas-
sified as portfolios: our portfolio, the submission by Turau
and Weyer (telematik tuhh), and the one by Froleyks, Yu,
and Biere (ReconfAIGERation) in the existent track.

The solver telematik tuhh tackles the problem by search-
ing in the space of independent sets with two algorithms run-
ning concurrently: an iterative deepening A∗ search using
the number of misplaced tokens as heuristic value for find-
ing optimal solutions, and a breadth-first search for detecting
unsolvability. These algorithms are enhanced by domain-
specific successor generation and memory optimization.

In the existent track ReconfAIGERation first transforms
the problem to circuits represented as and-inverter graphs in
the AIGER format (Biere, Heljanko, and Wieringa 2011),
and then solves them with ABC (Brayton and Mishchenko
2010), a model checker that runs several algorithms concur-
rently. In the other tracks it represents tasks as SAT formu-
las encoding increasingly longer reconfiguration sequences.
The resulting bounded model checking problems are solved
by the incremental SAT solver CaDiCaL (Biere et al. 2020).

Among non-portfolio entries, the one by Yamada, Kato,
Kosuge, Takeuchi, and Banbara (recongo) achieved strong
results. They translate instances into answer set programs
and leverage clingo (Gebser et al. 2019) as an off-the-shelf
solver. Toda (toda5603) employs a modular strategy by ini-
tially running a greedy search and directly returning its sub-
optimal solution upon success. If it does not reach the goal,
the problem is recast to a bounded model checking task
where the state reached by the search is the initial state. This
step is further informed by edge clique covers computed by
ECC (Conte, Grossi, and Marino 2020) and solved by the
bounded model checker NuSMV (Cimatti et al. 2002).

Kawahara and Yamazaki (junkawahara) work with fami-
lies of independent sets, such as the initial independent set,
or the family of all independent sets. They represent such
families as zero-suppressed binary decision diagrams (ZDD;
Minato 1993) and generate successors using set operations
on ZDDs implemented using Graphillion (Inoue et al. 2016).

Lastly, Blé, Cui, Wu, and Zhong (tigrisg) rely on a
state-action-reward-state-action approach. We refer to Soh,
Okamoto, and Ito (2022) for the full solver descriptions.

6 Evaluation
In our experimental setup, we converted the docker images
of each competing solver to singularity images (for im-
proved performance) and ran all solvers in a unified setup
with 2 hours timeout, 60 GB memory and 10 cores. All eval-
uations were run on Intel Xeon Silver 4114 processors run-
ning at 2.2 GHz. We could not include team tigris in the ex-
periment since we could not run their docker container, and
their team lost contact with the person who created it. In the
PARIS portfolio we adjusted the resource allocation to dis-
tribute the time allocation to its components proportionally
to the overall time limit rather than hard-coded, and fixed a
bug (described below).

The shift in evaluation methodology is worth highlight-
ing. In contrast with the contest parameters (where competi-
tors were welcome to run their methods on their own hard-
ware without any real resource constraints), we wanted to
have a uniform analysis of the various approaches. This mit-
igates any bias that may stem from one team’s computing
infrastructure being more formidable than another. We can
also see in the last columns of Table 1 that teams allocated
very different amounts of resources to their solvers. By fix-
ing one set of limits, we might bias the results towards a
solver but we tried to select limits sufficiently high that all
solvers can show their strengths.

Table 1 compares the coverage results we obtained with
the ones from the competition. For the existent track, cov-
erage dropped in most cases compared to the competition
since the competition gave no restrictions on resource us-
age and most submissions had a significantly higher timeout.
Teams junkawahara and toda5603 are the exceptions due to
lower limits in the competition: the former used only 10 min-
utes and the latter only 32GB memory. However, the relative
ordering of performance among the solvers remains.

For the shortest and longest tracks, solvers only gained
coverage for a task if their solution was the best one amongst
all competitors. This makes an analysis between the compe-
tition and our evaluation difficult since different best solu-
tions might have been found. We note that for shortest, Re-
confAIGERation shows improved performance, most likely
because their submission used only 32GB of memory while
we used 60GB. For longest, both ReconfAIGERation and re-
congo dropped significantly since they used a much higher

existent shortest longest

+ - + - + -

ReconfAIGERation 70 1 56 0 201 1
junkawahara 181 10 150 10 215 14
telematik tuhh 22 10 10 8 200 1
toda5603 106 1 191 0 209 46
recongo 77 1 35 1 208 3

Table 2: Per-task comparison showing how often PARIS per-
formed better (+) or worse (-).

time/memory limit in the competition; while PARIS per-
formed significantly better. The latter is because in the com-
petition, our submission for longest used the solutions from
shortest as a seed to find longer plans, and we accidentally
passed information that was processed incorrectly when we
did not find a solution for shortest. For this experiment, we
instead recomputed a (not necessarily shortest) plan in the
beginning and handled the case of no found plan correctly.

We also included a scoring function that gives partial
points for finding some solution; for shortest it is the ra-
tio of the minimal reported solution and the found solution
(analogous to the quality score used in IPC), for longest it
is the ratio of the found solution and the maximal reported
solution. The score suggests that in shortest, many solvers
compute only minimal length solutions since their score is
identical to their coverage. The picture is quite different for
longest, showing that solvers that performed poorly often
did find a decently long solution but not the longest overall.

Table 2 reports the number of tasks PARIS solved that oth-
ers did not (+) and vice versa (-). Overall junkawahara is the
most complimentary to our approach, with telematik tuhh
also solving some problems we could not on shortest, and
toda5603 solving the most problems we did not on longest.

Figure 5 shows how many tasks each solver solves within
a given time limit. In most cases, many problems are solved
early on with more problems only trickling in slowly. The
exceptions are the portfolio approaches, showing a sharp in-
crease in coverage around the time the next component is
started. A more sophisticated interleaving of the portfolio
components could be used to smooth this process. We note
that PARIS-l utilizes the full runtime on most problems.
This is because it iteratively searches for longer plans, rarely
terminating early, but producing longer and longer plans.

Finally, we reran each component of our existent port-
folio separately to analyze their contribution. Mimicking
our competition submission, we analyze how many tasks
a component solves within 70 minutes and 16GB while
none of the previous components could. Symbolic search
solved 228 problems, A∗+Landmarks added another 45,
GBFS+Landmarks 16 more and finally the counter abstrac-
tion detected 37 problems as unsolvable. In the competi-
tion the higher timeout for this component lead to 9 more
problems detected unsolvable, bringing the total coverage
up to 335. We also compared how many tasks could only
be solved by a single approach: 16 for symbolic search, 0
for A∗+Landmarks, 16 for GBFS+Landmarks and 37 for the
counter abstraction. While A∗+Landmarks is dominated by

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

50

100

150

200

250

300

350

Runtime (seconds)

C
ov

er
ag

e

PARIS-es recongo-e
PARIS-l recongo-s
telematik tuhh recongo-l
ReconfAIGERation-e toda5603
ReconfAIGERation-s junkawahara
ReconfAIGERation-l

Figure 5: Number of tasks solved within a given time limit.
If the same team had dedicated solvers for certain tracks, the
track is indicated in the letter(s) behind the hyphen.

GBFS+Landmarks, it returns optimal solutions, making it
an important contributor for the shortest track. The counter
abstraction was invaluable for detecting unsolvabilty, as no
other component could decide any of the tasks solved by it.

7 Conclusions
In this paper, we introduced the independent set reconfigu-
ration problem, one of the most-studied problems of com-
binatorial reconfiguration, as a testbed for planning algo-
rithms. We modeled this problem as a planning task and
adapted different planning techniques for solving it, includ-
ing a new technique for detecting unsolvable ISR problems
that we think can be generalized to unsolvability planning
in general. The resulting solvers participated successfully
in the 1st Combinatorial Reconfiguration Challenge (2022),
winning the majority of awards in multiple tracks. We re-
ran all solvers of the competition under equal computational
conditions for a more thorough analysis and investigated
the strengths and weaknesses of our planning-based solvers.
Our findings show that the independent set reconfiguration
problem is an interesting and challenging problem for plan-
ning, and our algorithms are currently among the best ap-
proaches for solving it. We believe these findings will lead
more planning researchers to develop ideas for the ISR prob-
lem and create a cross-fertilization of the fields.

References
Abdulaziz, M.; Gretton, C.; and Norrish, M. 2017. A State-
Space Acyclicity Property for Exponentially Tighter Plan Length
Bounds. In Proc. ICAPS 2017, 2–10.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–655.
Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020. CaD-
iCaL, Kissat, Paracooba, Plingeling and Treengeling Entering
the SAT Competition 2020. In Proc. SAT Competition 2020, 51–
53.
Biere, A.; Heljanko, K.; and Wieringa, S. 2011. AIGER 1.9 And
Beyond. Technical Report 11/2, Johannes Kepler University, In-
stitute for Formal Models and Verification.
Brayton, R.; and Mishchenko, A. 2010. ABC: An Academic
Industrial-Strength Verification Tool. In Proc. CAV 2010, 24–40.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, 35(8):
677–691.
Bylander, T. 1994. The Computational Complexity of Proposi-
tional STRIPS Planning. AIJ, 69(1–2): 165–204.
Cereceda, L. 2007. Mixing graph colourings. Ph.D. thesis, Lon-
don School of Economics and Political Science.
Cimatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.; Pistore,
M.; Roveri, M.; Sebastiani, R.; and Tacchella, A. 2002. NuSMV
2: An OpenSource Tool for Symbolic Model Checking. In Proc.
CAV 2002, 359–364.
Cohen, Y.; Stern, R.; and Felner, A. 2020. Solving the Longest
Simple Path Problem with Heuristic Search. In Proc. ICAPS
2020, 75–79.
Conte, A.; Grossi, R.; and Marino, A. 2020. Large-scale clique
cover of real-world networks. Information and Computation,
270: 104464. Special Issue on 26th London Stringology Days
& London Algorithmic Workshop.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-Black
Planning: A New Systematic Approach to Partial Delete Relax-
ation. AIJ, 221: 73–114.
Doran, J. E.; and Michie, D. 1966. Experiments with the Graph
Traverser program. Proceedings of the Royal Society A, 294:
235–259.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T. 2019.
Multi-shot ASP solving with clingo. Theory and Practice of
Logic Programming, 19(1): 27–82.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Transactions on Systems Science and Cybernetics, 4(2):
100–107.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C. 2019.
An Introduction to the Planning Domain Definition Language.
Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool.
Helmert, M. 2006. The Fast Downward Planning System. JAIR,
26: 191–246.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation Through Heuristic Search. JAIR, 14: 253–302.
Inoue, T.; Iwashita, H.; Kawahara, J.; and Minato, S. 2016.
Graphillion: software library for very large sets of labeled
graphs. Software Tools for Technology Transfer, 18: 57–66.

Ito, T.; Demaine, E. D.; Harvey, N. J. A.; Papadimitriou, C. H.;
Sideri, M.; Uehara, R.; and Uno, Y. 2008. On the Complexity of
Reconfiguration Problems. In Proc. ISAAC 2008, 28–39.
Ito, T.; Demaine, E. D.; Harvey, N. J. A.; Papadimitriou, C. H.;
Sideri, M.; Uehara, R.; and Uno, Y. 2011. On the complex-
ity of reconfiguration problems. Theoretical Computer Science,
412(12-14): 1054–1065.
Kaminski, M.; Medvedev, P.; and Milanic, M. 2012. Complex-
ity of independent set reconfigurability problems. Theoretical
Computer Science, 439: 9–15.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning with
Landmarks. In Proc. IJCAI 2009, 1728–1733.
Katz, M.; and Domshlak, C. 2008. Structural Patterns Heuristics
via Fork Decomposition. In Proc. ICAPS 2008, 182–189.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and Com-
plete Landmarks for And/Or Graphs. In Proc. ECAI 2010, 335–
340.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – The Plan-
ning Domain Definition Language – Version 1.2. Technical Re-
port CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control, Yale University.
Minato, S. 1993. Zero-Suppressed BDDs for Set Manipulation
in Combinatorial Problems. In Proc. DAC 1993, 272–277.
Muise, C.; Pommerening, F.; Seipp, J.; and Katz, M. 2022.
Planutils: Bringing Planning to the Masses. In ICAPS 2022 Sys-
tem Demonstrations and Exhibits.
Nishimura, N. 2018. Introduction to Reconfiguration. Algo-
rithms, 11(4): 52.
Papadimitriou, C. H.; and Yannakakis, M. 1986. A note on suc-
cinct representations of graphs. Information and Control, 71(3):
181–185.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
Revisited. In Proc. AAAI 2008, 975–982.
Riddle, P.; Douglas, J.; Barley, M.; and Franco, S. 2016. Improv-
ing Performance by Reformulating PDDL into a Bagged Repre-
sentation. In ICAPS 2016 Workshop on Heuristics and Search
for Domain-independent Planning, 28–36.
Soh, T.; Okamoto, Y.; and Ito, T. 2022. Core Challenge 2022
Solver and Graph Descriptions. arXiv:2208.02495 [cs.AI].
Somenzi, F. 2015. CUDD: CU decision diagram package - re-
lease 3.0.0. https://github.com/ivmai/cudd. Accessed: 2023-04-
03.
Speck, D.; Geißer, F.; and Mattmüller, R. 2020. When Perfect
Is Not Good Enough: On the Search Behaviour of Symbolic
Heuristic Search. In Proc. ICAPS 2020, 263–271.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic Top-k
Planning. In Proc. AAAI 2020, 9967–9974.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S. 2017.
Efficient Symbolic Search for Cost-optimal Planning. AIJ, 242:
52–79.
von Tschammer, J.; Mattmüller, R.; and Speck, D. 2022. Loop-
less Top-K Planning. In Proc. ICAPS 2022, 380–384.
Wahl, T.; and Donaldson, A. 2010. Replication and Abstraction:
Symmetry in Automated Formal Verification. Symmetry, 2: 799–
847.

