# PARIS: <br> Planning Algorithms for Reconfiguring Independent Sets 

Remo Christen Salomé Eriksson Michael Katz<br>Christian Muise Alice Petrov Florian Pommerening Jendrik Seipp Silvan Sievers David Speck<br>University of Basel IBM T.J. Watson Research Center Queen's University Linköping University

July 10, 2023

## Context

- CoRe Challenge 2022 (Combinatorial Reconfiguration)
- First iteration
- Submission PARIS based on planning

What's the problem?

## Combinatorial Reconfiguration - Examples

## Power Distribution

Reconfigure network while keeping all households connected.


## Combinatorial Reconfiguration - Examples

## Graph Coloring

Change from one coloring to another via colorings.


## Independent Sets

## Independent Set

A set of vertices such that no two are adjacent.


## Independent Set Reconfiguration

## Input

- graph
- initial set
- goal set





## Independent Set Reconfiguration

## Input

- graph
- initial set
- goal set





## Output

- sequence of token jumps



## Planning Encoding

## Single action

- move




## Competition

Solver Tracks

- Existent
- Shortest
- Single-engine
- Portfolio
- Longest

Graph Tracks

- 10
- 50
- 100

No resource limits; solutions are submitted

## Competition Results - Solver Tracks



Existent Track

- Any solution
- similar to agile IPC track


## Competition Results - Solver Tracks

|  | existent | shortest | longest |
| ---: | :---: | :---: | :---: |
| single-engine | 1 | 3 | 1 |
| portfolio | 1 | 3 | 2 |

## Existent Track

- Any solution
- similar to agile IPC track


## PARIS

- GBFS + Landmarks (70min)

Competitors
(2) Answer Set Programming
(3) Greedy heuristic search + Bounded Model Checking

## Competition Results - Solver Tracks



## Existent Track

- Any solution
- similar to agile IPC track


## PARIS

1. Counter abstraction (10s)
2. Symbolic search (70min)
3. $A^{*}+$ Landmarks $(70 \mathrm{~min})$
4. GBFS + Landmarks (70min)
5. Counter abstraction (14h)

## Competitors

2) IDA $^{*}+$ Breadth-first search

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$



## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$\rightarrow$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction - Motivation

- Grid instances
- $4 \times 4$ to $200 \times 200$
- 1-2 gaps
- $n \times n$ unsolvable if fewer than $n / 2$ gaps

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |$=$| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction

- Color the graph
- Count number of tokens on each color
- Abstract states:


| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

## Counter Abstraction

- Color the graph
- Count number of tokens on each color
- Abstract states:

- Encode independent set + count constraints as MIP

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

- If constraints unsatisfiable for abstract state $\rightarrow$ prune
- Fully explored abstract state space $\rightarrow$ unsolvable


## Competition Results - Solver Tracks



## Shortest Track

- Shortest solution among competitors
- similar to satisficing IPC track


## Competition Results - Solver Tracks

|  | existent | shortest | longest |
| ---: | ---: | ---: | ---: |
| single-engine | 1 | 3 | 1 |
| portfolio | 1 | 3 | 2 |

## Shortest Track

- Shortest solution among competitors
- similar to satisficing IPC track


## PARIS

- GBFS + Landmarks (70min)

Competitors
(1) Answer Set Programming
2) Reinforcement Learning

## Competition Results - Solver Tracks



## Shortest Track

- Shortest solution among competitors


## PARIS

1. Counter abstraction
2. Symbolic search
3. $A^{*}+$ Landmarks
4. GBFS + Landmarks
5. Counter abstraction
(70min)
(70min)
(70min)
(14h)

- similar to satisficing IPC track


## Competitors

(1) Greedy heuristic search + Bounded Model Checking
(3) Answer Set Programming

## Competition Results - Solver Tracks



Longest Track

- Longest loopless solution among competitors
- no IPC equivalent


## Competition Results - Solver Tracks



Longest Track

- Longest loopless solution among competitors • no IPC equivalent


## PARIS

- Symbolic top-k search (70min)


## Competitors

2 Answer Set Programming
(3) Bounded Model Checking

## Competition Results - Solver Tracks



Longest Track

- Longest loopless solution among competitors • no IPC equivalent


## PARIS

1. GBFS + Landmarks
2. Symbolic top-k search ( 65 min )

## Competitors

(2) Answer Set Programming

## Symbolic Top-k Search

- Run loopless symbolic top-k search
- Reconstruct one plan per cost
- Iteratively find longer plans



## Symbolic Top-k Search

- Run loopless symbolic top-k search
- Reconstruct one plan per cost
- Iteratively find longer plans



## Competition Results - Graph Track

|  | 10 | 50 | 100 |
| :---: | :---: | :---: | :---: |
| PARIS | 3 | 2 | 2 |

## Graph

- Find difficult graphs
- Fixed number of nodes
- Longest optimal sequence


## PARIS

- Great graphs (pretty)


## Competitors

1) Slightly "better" graphs (not pretty)

## The House Widget



- Optimal for $n=5$
- Cannot fit more than 2 tokens
- "Anchor" is occupied throughout flip
- Anchors fully connected and occupied during flip
- One flip at a time


- Rule 1: house $k+1$ must be on

- Rule 1: house $k+1$ must be on

- Rule 1: house $k+1$ must be on
- Rule 2 : houses $\geq k+2$ must be off

- Rule 1: house $k+1$ must be on
- Rule 2 : houses $\geq k+2$ must be off
- Start: 〈off, off, $\ldots$, off $\rangle$- Goal: 〈on, off, ..., off $\rangle$

