PARIS: Planning Algorithms for Reconfiguring Independent Sets

Remo Christen Salomé Eriksson Michael Katz Christian Muise Alice Petrov Florian Pommerening Jendrik Seipp Silvan Sievers **David Speck**

University of Basel IBM T.J. Watson Research Center Queen's University Linköping University

Combinatorial Reconfiguration

Reconfiguration Problem

Transform a solution into another solution so that **all intermediate steps are also solutions**.

Power Distribution

Reconfigure network while keeping all households connected.

Many such **reconfiguration problems** can be cast to and analyzed using the **Independent Set Reconfiguration (ISR)** problem.

Independent Set (IS)

A set of vertices/nodes of a graph such that **no two are adjacent**.

Independent Set Reconfiguration

Input

- Graph
- Initial set
- Goal set

Output

• Sequence of token jumps

Independent Set Reconfiguration

Input

- Graph
- Initial set
- Goal set

Output

• Sequence of token jumps

Classical Planning

Compact Description of State Spaces

- State variables: Describe the world
- States: Assignments to these variables
- Actions: Define transitions between states
- $\rightsquigarrow~$ **Objective**: Find a plan from an initial state to a goal state

Theoretical Contribution

Sound, complete, and optimality preserving formulations of ISR as planning problem.

Theoretical Contribution

Sound, complete, and optimality preserving formulations of ISR as planning problem.

• State variables: Binary variable for each node to represent token presence

• Single action: Move token (IS condition encoded as precondition)

Alternative Formulation

Split action representation \rightsquigarrow more natural and more compact!

Alternative Formulation

Split action representation ~> more natural and more compact!

 State variables: Binary variable for each node to represent token presence
 + a binary variable for token holding

- **Pick-up action**: Pick-up a token (precondition: gripper is empty)
- Place action: Place a token respecting IS condition

Combinatorial Reconfiguration Competition

- Toolbox of classical planning applicable
 - Search algorithms, heuristics, pruning techniques,
- 1st Combinatorial Reconfiguration Competition in 2022

Combinatorial Reconfiguration Competition

- Toolbox of classical planning applicable
 - Search algorithms, heuristics, pruning techniques, ...
- 1st Combinatorial Reconfiguration Competition in 2022

Solver Tracks		
ExistentShortestLongest	×	Single-enginePortfolio
 Solutions a 	are su	pmitted

• All teams used different resources

Existent Track

• Any solution + Unsolvability • similar to *agile* IPC track + Unsolvability IPC

PARIS

• GBFS + Landmarks (70min)

Competitors

Answer Set Programming

Greedy heuristic search + Bounded Model Checking

Existent Track

• Any solution + Unsolvability

 \bullet similar to *agile* IPC track + Unsolvability IPC

PARIS

- 1. Counter abstraction
- 2. Symbolic search (70min)
- 3. A^* + Landmarks
- 4. GBFS + Landmarks (70min)
- 5. Counter abstraction (14h)

Competitors

(10s)

(70min)

 $\mathsf{IDA}^* + \mathsf{Breadth}$ -first search

(10s) (70min)

(70min)

(70min)

(14h)

Shortest Track

- Shortest solution among competitors
- similar to *satisficing* IPC track

PARIS

• GBFS + Landmarks (70min)

PARIS-Portfolio

- 1. Counter abstraction
- 2. Symbolic search
- 3. A^* + Landmarks
- 4. GBFS + Landmarks
- 5. Counter abstraction

Competitors-Single

Answer Set Programming

Competitors-Portfolio

 $\mathsf{IDA}^* + \mathsf{Breadth}\text{-}\mathsf{first} \; \mathsf{search}$

Longest Track

• Longest loopless solution among competitors • no IPC equivalent

PARIS

• Symbolic top-k search (70min)

PARIS-Portfolio

- 1. GBFS + Landmarks (5min)
- 2. Symbolic top-k search (65min)

Competitors

Answer Set Programming

How meaningful are these results since each team/approach was able to use different resources?

		exist	ent	shortest		longest	
		+	_	+	_	+	_
Per-task comparison	JUNKA.	168	21	158	13	217	13
• PARIS vs. other competitors:	Reconf.	76	0	61	0	205	1
• Better: +	Recongo	82	0	39	0	210	3
• Worse: –	Telematik	19	0	17	9	202	1
	Toda	111	0	198	0	210	47

Conclusions

Summary:

- Combinatorial reconfiguration problem
- \rightsquigarrow Independent set reconfiguration (ISR)
 - Formulations of ISR as classical planning
 - Complete, sound, optimality preserving
 - State-of-the-art empirical performance

Future Work:

- **Planning techniques**: Improving our understanding of effective planning techniques for ISR
- **Strengthening Synergy**: Drawing stronger connections between the fields of reconfiguration and planning