
(PARIS) Planning Algorithms for

Reconfiguring Independent Sets

Remo Christen1, Salomé Eriksson1, Michael Katz2, Emil Keyder3,
Christian Muise4, Alice Petrov4, Florian Pommerening1,

Jendrik Seipp5, Silvan Sievers1, and David Speck6

1University of Basel
2IBM T.J. Watson Research Center

3Invitae
4Queen’s University

5Linköping University
6University of Freiburg

1 Introduction

The general approach to all of the solver tracks was to model the ISR problem
as one of automated planning, and use a selection of state-of-the-art solvers to
solve these instances. Throughout this document, we describe the encoding,
solvers, and overall search setup.

2 Planning Encoding

There are two main encodings we considered – single and split. The former uses
a single action to move a token from one location to another, while the latter
uses two actions – one to pick up a token and another to place it. While the full
details on the Planning Domain Definition Language (PDDL) is out of scope
for this document, the snippets presented here are fairly self-explanatory. More
details on the PDDL standard can be found in [Haslum et al., 2019].

Figure 1 shows the PDDL code for a single action move, with comments
interleaved. Rather than define the actions in a lifted manner, we found that
generating the ground actions (along with the conditions necessary to retain the
independent set) was the most effective.

Figure 2 shows the pair of actions for the split encoding. Ultimately, we
found this encoding to be the most effective, and so was used for all tracks and
solvers.



Figure 1: PDDL example of a single action move.

Figure 2: PDDL example of a pair of split actions for moving a token.



Finally, the planning systems we used are all built on a common software
framework which first parses and preprocesses the PDDL into an intermediate
form known as SAS+ [Bäckström and Nebel, 1995]. To save on this computa-
tional effort, we instead directly encoded the input problem instances for the ISR
contest into the SAS+ format. While in general this may lead to a degradation
in performance (some planning problems benefit greatly from the preprocess-
ing), in the ISR setting it was far more effective to skip this initial phase of
planner technology.

3 Engine: Core Solver or Algorithm

We use sequential algorithm portfolios for each of the three solver tracks. That
is, we run a sequence of algorithms, each with an associated time limit. The
next section describes the algorithms that we use in our sequential portfolios.

3.1 Our algorithms

A∗+Landmarks We run an A∗ search [Hart et al., 1968] with a landmark
count heuristic [Karpas and Domshlak, 2009] that uses two different kinds of
landmarks: h1 landmarks [Keyder et al., 2010] and RHW landmarks [Richter
et al., 2008]. The landmark costs are combined with uniform cost partitioning
[Katz and Domshlak, 2008].

GBFS+Landmarks We run a greedy best-first search (GBFS) [Doran and
Michie, 1966] with a landmark count heuristic [Keyder et al., 2010] that com-
putes all landmarks of the delete-relaxed task [Bonet and Geffner, 2001] (h1

landmarks). The landmark costs are combined with uniform cost partitioning
[Katz and Domshlak, 2008].

Symbolic search We run a forward symbolic blind search [Torralba et al.,
2017, Speck et al., 2020a] using Binary Decision Diagrams [Bryant, 1986] as the
underlying data structure. The symbolic planner we use is SymK [Speck et al.,
2020b], which uses CUDD [Somenzi, 2015] as its decision diagram library. This
algorithm is optimal, sound, and complete, i.e., if it reports a plan, this is a
shortest plan, if it reports unsolvability, the task is indeed unsolvable, and given
sufficient resources, it will eventually find a shortest plan.

Symbolic top-k search We run a modified forward symbolic blind search
based on an algorithm called SymK-LL [von Tschammer et al., 2022], imple-
mented in the symbolic planner SymK [Speck et al., 2020b], which iteratively
finds and generates all loopless plans of a given task. However, we have made
the following two major adjustments to solve the problem of finding the longest
loopless plan feasible. First, once we find a goal state s⋆ reachable with a certain
cost c, we reconstruct only one loopless plan with cost c and ignore all other
plans leading to s⋆ or any other goal state reachable with c. Second, since the



split encoding introduced intermediate states in which a token is picked up, we
ignore these artificial states when evaluating whether a plan is loopless during
the plan reconstruction of SymK-LL. This algorithm has the interesting prop-
erty that it iteratively finds longer plans, starting with the shortest one, and
eventually finds the longest loopless plan if enough resources are available.

Numeric abstraction We abstract the problem to a numeric planning prob-
lem and check for unsolvability in the abstraction. Since this algorithm is new,
we describe it in more detail in Section 4.

We now describe our sequential algorithm portfolios. Our portfolio for the
existent track is identical to the one for the shortest track.

3.2 Portfolio for shortest and existent tracks

We list the algorithms and their time limits (the first to find a solution is saved
and the rest of the steps ignored):

1. Numeric abstraction: 10sec

2. Symbolic search: 70min

3. A∗+Landmarks: 70min

4. GBFS+Landmarks: 70min

5. Numeric abstraction: 14hr

3.3 Single best solver for shortest and existent tracks

The following single solver was used as a single-solver submission. It had the
best coverage among all solvers in the portfolio.

• GBFS+Landmarks: 70min

3.4 Portfolio for longest track

We list the algorithms and their time limits:

1. GBFS+Landmarks: 330 seconds

2. Symbolic top-k search: 70min

As a fall-back, if neither of the above approaches produced a solution longer
than the shortest/existent track, we used the solution to the shortest/existent
track as a default.



3.5 Single best solver for longest track

The following single solver was used as a single-solver submission. It had the
best coverage among all solvers in the portfolio. Note that we did not use the
”fallback” option for this single track submission.

• Symbolic top-k search: 70min

4 Numeric Abstraction

⟨3, 0⟩ ⟨2, 1⟩⟨2, 1⟩ ⟨1, 2⟩ ⟨0, 3⟩

Figure 3: Example coloring for numeric abstraction. The initial state is on the
left and the goal state on the right. Nodes are colored blue if they have a token
in the initial state but not the goal state and red if they have no token in the
initial state but a token in the goal state. The abstract state space is shown
below the instance. Dashed nodes are pruned.

The numeric abstraction component of our solver tries to detect if the task
is unsolvable by abstracting it to a numeric planning problem. Given an ISR
problem, we come up with a coloring of the vertices in the graph, i.e., a function
that maps each vertex of the graph to one color. Many different ways of coming
up with a good coloring are conceivable but here we opted for a simple strategy
that uses up to four colors:

• one for nodes that contain a token both in the initial state and in the goal
state;

• one for nodes that contain a token only in the initial state but not in the
goal state;

• one for nodes that contain a token only in the goal state but not in the
initial state; and

• one for nodes that are empty in the initial state and goal state.



Colors for situations that do not occur are not used. For example, the task
in Figure 3 only requires two colors with the method above.

Given a coloring, each configuration of tokens can be abstracted to a state
with one numeric variable per color that counts how many token currently are
on vertices with this color. For example, the initial state in Figure 3 has 3 tokens
on blue nodes and 0 on red nodes, so it can be represented as the numeric state
⟨3, 0⟩. The goal state has all three tokens on red nodes and none on blue, so it
can represented by ⟨0, 3⟩.

Moving any token from a node colored ci to a node colored cj changes the
abstract state from ⟨c1, . . . , ci, . . . , cj , . . . , cn⟩ to ⟨c1, . . . , ci−1, . . . , cj+1, . . . , cn⟩.
The main observation for this component is that if any solution to the full
problem exists, there has to be a solution in our abstraction as well. We thus
construct the state space of the abstraction in the following way.

For a state s = ⟨c1, . . . , cn⟩, we construct one successor for each pair of
different colors ci and cj that differs from s by a single token that moved from
ci to cj . In our running example, the initial state ⟨3, 0⟩ has a single successor
⟨2, 1⟩, and this state has two successors ⟨3, 0⟩ (which we skip because we have
already seen this state) and ⟨1, 2⟩. The latter state now has the abstract goal
state ⟨0, 3⟩ as a successor (see Figure 3).

Whenever we generate a state, we check whether such a state is possible
(independent of whether we are actually able to reach such a state). If it is not
possible to place the token on the respective colors in the way suggest, then we
do not have to consider it or its successors. In our running example, the state
⟨1, 2⟩ is not realizable: not matter where we place the blue token, it blocks two
of the three red nodes. We use a MIP solver to check if a state s is realizable
by checking if the following system of constraints have a solution:

xi + xj ≤ 1 for all edges ⟨i, j⟩ in the graph∑
i∈Nc

xi ≥ s[c] for all colors c

xi ∈ {0, 1} for all nodes i

where Nc is a set of all nodes with color c and s[c] is the amount of tokens
that should be on color c in state s. The abstract state s is realizable iff the
constraints have a solution.

If we generate a state that matches the goal state (⟨0, 3⟩ in our example),
we know that there is an abstract path to the goal state. In this case, we still
do not know if there is a real path to the goal state and return unknown (this
component of the solver is incomplete). However, if we expand the full abstract
state space without finding a path to an abstract goal state, there is no solution
to the abstract problem which also means there cannot be a solution to the
original problem. The abstract state space is usually small. In our running
example, it only has 4 states and we only have to explore 3 of them, as we
prune state ⟨1, 2⟩ before reaching a goal state.



We use this component in two places: first with a small time limit at the
start of the solver to handle all cases where we can quickly prove unsolvability.
Then again with a large time limit after all other components to catch unsolvable
instances that are hard to prove unsolvable.

5 Computation Environment

All evaluations were conducted on a single machine running Ubuntu 20.04 (eval-
uations done through the Docker image for the submission), with the following
specs:

• CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

• Cores: 16

• MEM: 128Gb

References

C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computa-
tional Intelligence, 11(4):625–655, 1995.

B. Bonet and H. Geffner. Planning as heuristic search. AIJ, 129(1):5–33, 2001.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

J. E. Doran and D. Michie. Experiments with the graph traverser program.
Proceedings of the Royal Society A, 294:235–259, 1966.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise. An Introduction
to the Planning Domain Definition Language. Morgan & Claypool, 2019.
ISBN 9781627058759. URL http://www.morganclaypoolpublishers.com/

catalog_Orig/product_info.php?products_id=1384.

E. Karpas and C. Domshlak. Cost-optimal planning with landmarks. In Proc.
IJCAI 2009, pages 1728–1733, 2009.

M. Katz and C. Domshlak. Structural patterns heuristics via fork decomposi-
tion. In Proc. ICAPS 2008, pages 182–189, 2008.

E. Keyder, S. Richter, and M. Helmert. Sound and complete landmarks for
and/or graphs. In Proc. ECAI 2010, pages 335–340, 2010.

http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1384
http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1384


S. Richter, M. Helmert, and M. Westphal. Landmarks revisited. In Proc. AAAI
2008, pages 975–982, 2008.

F. Somenzi. CUDD: CU decision diagram package - release 3.0.0.
https://github.com/ivmai/cudd, 2015. Accessed: 2022-03-24.

D. Speck, F. Geißer, and R. Mattmüller. When perfect is not good enough:
On the search behaviour of symbolic heuristic search. In Proc. ICAPS 2020,
pages 263–271, 2020a.

D. Speck, R. Mattmüller, and B. Nebel. Symbolic top-k planning. In Proc.
AAAI 2020, pages 9967–9974, 2020b.

Á. Torralba, V. Alcázar, P. Kissmann, and S. Edelkamp. Efficient symbolic
search for cost-optimal planning. AIJ, 242:52–79, 2017.

J. von Tschammer, R. Mattmüller, and D. Speck. Loopless top-k planning. In
Proc. ICAPS 2022, pages 380–384, 2022.


	Introduction
	Planning Encoding
	Engine: Core Solver or Algorithm
	Our algorithms
	Portfolio for shortest and existent tracks
	Single best solver for shortest and existent tracks
	Portfolio for longest track
	Single best solver for longest track

	Numeric Abstraction
	Computation Environment

