
LM-BFS: A Framework for Landmarks in Planning

Clemens Büchner and Thomas Keller
University of Basel, Switzerland

clemens.buechner@unibas.ch, tho.keller@unibas.ch

Abstract

It is usually prohibitively expensive to recompute landmarks
in every state of a heuristic search algorithm that bases its
heuristic estimate on landmarks. Successful planning systems
like LAMA compute landmarks just for the initial state in-
stead and only keep track for each state encountered during
search which landmarks of the initial state are accepted or re-
quired again. The LM-A∗ algorithm describes a similar idea
for cost-optimal heuristic search. However, it lacks support
for reasonable orderings, which have recently been shown to
be informative when cyclic dependencies between landmarks
are exploited in the heuristic computation.
We propose the novel LM-BFS framework for best-first
heuristic search with landmark-based heuristics which allows
to describe a variety of algorithms in terms of five com-
ponents: landmark generation, landmark graph progression,
landmark graph merging, landmark graph extension, and ex-
ploration strategy. We use LM-BFS to show that considering
reasonable orderings in the landmark graph progression com-
ponent leads to flawed landmark graphs in LAMA, and pro-
pose a novel landmark graph extension that captures the same
information flawlessly. We observe empirically that consider-
ing reasonable orderings in the extension rather than the pro-
gression component has a positive effect both for LAMA and
for cost-optimal planning.

Introduction
Algorithms based on landmarks have yielded state-of-the-art
performance in classical planning for over a decade (Richter,
Helmert, and Westphal 2008; Helmert and Domshlak 2009).
Landmarks denote properties shared by every solution of
a classical planning task. The literature describes several
methods for generating landmarks (Zhu and Givan 2003;
Hoffmann, Porteous, and Sebastia 2004; Keyder, Richter,
and Helmert 2010). Some of these methods additionally
produce landmark orderings which provide information on
the order in which landmarks are reached. Orderings were
originally used to decompose the planning task into several
smaller sub-tasks with the landmarks as sub-goals (Porte-
ous, Sebastia, and Hoffmann 2001). However, this approach
is incomplete. An alternative approach turns landmarks into
a heuristic that guides a search algorithm.

One possibility to obtain a heuristic estimate for every
state encountered in search is to recompute landmarks from

scratch in every state. As this is usually prohibitively ex-
pensive, successful landmark-based planning systems like
the LAMA planner (Richter and Westphal 2010) compute
a landmark graph (consisting of landmarks and landmark
orderings) only once for the initial state. Whenever a state
is expanded, the landmark graph is progressed by keeping
track of landmarks that have been accepted on a path to the
state and of landmarks that are guaranteed to be required
again. The LM-count heuristic of LAMA estimates the goal
distance of a state as the number of landmarks that have not
been satisfied on any path leading to that state. LM-count
is inadmissible and plans computed by LAMA do hence not
come with any guarantee with respect to solution quality.

Karpas and Domshlak (2009) propose a closely related
heuristic search algorithm that guarantees optimality. Their
heuristic computes a cost partitioning among the possible
achievers of landmarks and performs state space exploration
with LM-A∗, an A∗ variant that keeps track of fact and ac-
tion landmarks that are accepted and required again. The
bookkeeping procedures of LAMA and LM-A∗ are mostly
identical, with the exception that the latter ignores reason-
able orderings when deciding which landmarks are accepted
and required again. This is because the LAMA approach is
flawed in the sense that it is possible that landmarks are not
marked as accepted even though they are no longer required
in every plan (and are hence no longer a landmark). While
this does not affect the satisficing LAMA planner, it might
render the heuristic of Karpas and Domshlak inadmissible
and can hence lead to violations of the optimality guarantee
of LM-A∗.

Büchner, Keller, and Helmert (2021) show that reason-
able orderings hold valuable information that can help im-
prove admissible heuristics. Unlike LAMA and LM-A∗, they
embed their cyclic landmark heuristics in an algorithm that
recomputes the landmark graph in every state.

In this paper, we propose a framework that not only allows
to consider reasonable orderings without recomputing land-
marks in every step, but also gives structure to landmark-
based best-first heuristic search algorithms in general. The
LM-BFS framework allows to instantiate a variety of algo-
rithms (including LM-A∗ and LAMA) in terms of five com-
ponents: landmark generation, landmark graph progression,
landmark graph merging, landmark graph extension, and ex-
ploration strategy. We introduce these components and pro-

vide possible instantiations from related work.
Furthermore, we use the LM-BFS framework to show

that considering reasonable orderings in the landmark graph
progression component leads to flawed landmark graphs in
LAMA. We then derive a landmark graph extension strategy
that takes reasonable orderings into account and maintains
correctness of the computed landmark graph. We conclude
the paper with an empirical study of the discussed landmark
progression and extension methods. It provides evidence
that considering reasonable orderings in cost-optimal plan-
ning has a positive effect even for landmark heuristics that
do not exploit cycles. Moreover, we show that our new land-
mark graph extension method can be substituted in LAMA
in a way that we observe improvements when comparing it
to the original LAMA implementation.

Background
Classical Planning We consider classical planning in the
SAS+ formalism (Bäckström and Nebel 1995), where a
planning task is given as a 4-tuple Π = 〈V, s0, G,A〉. V
is a finite set of finite domain state variables v with asso-
ciated domain dom(v). An atom v 7→ d is a value assign-
ment of value d ∈ dom(v) to v ∈ V . A partial variable
assignment is a set of atoms, each for a different variable. A
state is a variable assignment defined on all variables v ∈ V .
We say s(v) = d if v 7→ d ∈ s to denote that variable v
has value d in state s. s0 is the initial state, and the goal G
is a partial variable assignment. A is a finite set of actions
a = 〈pre, eff , cost〉, where precondition pre(a) and effect
eff (a) are partial variable assignments and cost(a) ∈ R+

0 is
the cost of a.

An action a ∈ A is applicable in state s if pre(a) ⊆ s.
Applying an applicable a in s results in the state s′ = sJaK
where s′(v) = d for all v 7→ d ∈ eff (a) and s′(v) = s(v)
otherwise. An action sequence π = 〈a1, . . . , an〉 is appli-
cable in s = s1 if si+1 = siJaiK for all i = 1, . . . , n and
each action ai is applicable in si. The state that results from
applying an action sequence π in s is written as sJπK. An
s-plan is an action sequence π such that G ⊆ sJπK. The cost
of an s-plan π = 〈a1, . . . , an〉 is the sum over the action
costs of the sequence: cost(π) =

∑n
i=1 cost(ai). An s-plan

is optimal if it has minimal cost among all s-plans.

Landmarks, Orderings, and Landmark Graphs A
landmark for a state s is a propositional formula ϕ over
atoms that holds at some point during the execution of ev-
ery s-plan. Hence, for every s-plan π = 〈a1, . . . , an〉 there
exists an 0 ≤ i ≤ n such that sJ〈a1, . . . , ai〉K |= ϕ. We
say that ϕ is added at time i in π iff sJ〈a1, . . . , ai〉K |= ϕ
and sJ〈a1, . . . , ai−1〉K 6|= ϕ. Furthermore, ϕ is first added at
time i in π iff sJ〈a1, . . . , aj〉K 6|= ϕ for all 0 ≤ j < i. A
landmark that holds in s is considered to be added at time 0.

We write i = first(ϕ, π) to denote that ϕ is first added at
time i in π. Similarly, we write j = last(ϕ, π) to denote the
last time j at which ϕ is added in π. Note that first(ϕ, π) =
last(ϕ, π) if ϕ is added exactly once in π. We say that a
landmark ϕ for s is required if last(ϕ, π) > 0 for all s-plans
π. This can be either because it does not hold in s (i.e., must

Algorithm 1: The LM-BFS algorithm.
1 graphs[s0] := compute landmark graph(s0)
2 open.insert(s0)
3 while open 6= ∅ do
4 s = open.pop()
5 if G ⊆ s then return extract plan(s);
6 G = graphs[s]
7 foreach 〈a, s′〉 ∈ succ(s) do
8 G′ := progress landmark graph(G, a, s′)
9 G′′ :=merge landmark graphs(graphs[s′],G′)

10 graphs[s′] := extend landmark graph(G′′, s′)
11 open.insert(s′)

be first added at time i > 0) or because we can infer that it
must be added again at a later time.

A landmark ordering denotes a dependency between two
landmarks. Given landmarks ϕ and ψ for a state s, there is a
natural ordering ϕ→n ψ iff first(ϕ, π) < first(ψ, π) for all
s-plans π. A natural ordering is a greedy-necessary ordering
ϕ →gn ψ if ϕ is a precondition to add ψ for the first time,
i.e., first(ψ, π) = i demands that sJ〈a1, . . . , ai−1〉K |= ϕ for
π = 〈a1, . . . , ai, . . . , an〉. A reasonable ordering ϕ →r ψ
exists iff first(ϕ, π) ≤ last(ψ, π) in all s-plans. Note that it
is possible and sometimes even necessary that first(ψ, π) <
first(ϕ, π) even though there is a reasonable ordering ϕ →r

ψ (Hoffmann, Porteous, and Sebastia 2004). In this case, ψ
must be added more than once.

Given a set of landmarks L and a set of landmark or-
derings O for state s, the corresponding landmark graph
G = 〈L,O〉 is a directed graph with a vertex for every land-
mark in L and an edge for every ordering in O. An edge
from node ϕ to ψ is labeled with the type t ∈ {gn,n, r} of
the corresponding ordering ϕ →t ψ (i.e., greedy-necessary,
natural, or reasonable). A path in G is a chain of edges
π = ϕ1 →t1 . . .→tn ϕn+1 such that ϕi →ti ϕi+1 ∈ O for
1 ≤ i ≤ n. A path is a cycle if ϕ1 = ϕn+1.

Landmark Framework
We propose LM-BFS, a complete framework for using
landmarks in planning. It generalizes LM-A∗ (Karpas and
Domshlak 2009) using landmarks in a generic best-first state
space search. Algorithm 1 shows the pseudo code for LM-
BFS. It involves five components that can be implemented
in different ways:

1. computing landmarks for a given state (line 1),
2. progressing a landmark graph based on the last state tran-

sition (line 8),
3. merging landmark graphs to combine their information

(line 9),
4. extending a landmark graph for the current state (line 10),

and
5. exploring the state-space based on landmark heuristics

(lines 4 and 11).
The literature mainly studies two of these components: on

the one hand, it asks the question how to find landmarks for

a specified state (component 1). On the other hand, it asks
how they can be used for planning (component 5). In the re-
mainder of this section, we summarize some of the described
methods for these two problems. There are also examples for
components 2, 3, and 4 in the literature. However, the aspect
to see them as interchangeable components is new and we
discuss them in more detail in the next section.

Landmark Generation Hoffmann, Porteous, and Sebas-
tia (2004) show that deciding whether ϕ is a landmark for
a state in a planning task is PSPACE-complete. Therefore,
finding all landmarks is usually infeasible. The following
list summarizes popular approximation techniques from the
literature:
• Richter, Helmert, and Westphal (2008) apply an iterative

back-chaining approach starting in the goal. Goal atoms
are trivial landmarks. The procedure checks for every
landmark which actions generate it. Common precondi-
tions of these actions are added as new landmarks un-
til a fix-point is reached. Additionally, Richter, Helmert,
and Westphal identify landmarks in the domain transition
graph for each single variable.

• Zhu and Givan (2003) propose a forward-propagation of
landmark-labels in the relaxed planning graph (RPG).
Atoms that hold initially are trivial landmarks, the accord-
ing nodes in the RPG are labeled with themselves. Action
nodes in the RPG receive all landmark labels of their pre-
conditions, atom nodes receive the intersection of labels
annotated to their achievers. All labels annotated to goal
nodes of the RPG are landmarks. This technique addition-
ally generates action landmarks which denote actions that
must occur in every plan.

• Keyder, Richter, and Helmert (2010) build upon the
method of Zhu and Givan but in the Πm transformation
of a planning task Π. Atoms of Πm represent conjunc-
tions of atoms for Π. If such a conjunction is a landmark
for Πm, then it is also a landmark for Π. This technique is
unique in the sense that the landmarks can model delete
effects of Π if m ≥ 2.

Any combination of these methods can be used to compute
the landmark graph for s0 in line 1 of Algorithm 1.

Exploration Strategy The exploration strategy compo-
nent of our LM-BFS framework mostly covers two impor-
tant aspects of best-first heuristic search algorithms: (i) a
method that derives a heuristic estimate from a given land-
mark graph to insert a search node into the open list, and (ii)
a method that determines which node from the open list is
expanded next.

The following list contains landmark heuristics described
in the literature that can be used for (i):
• Richter, Helmert, and Westphal (2008) propose the land-

mark count heuristic (LM-count) which simply takes the
amount of required landmarks as heuristic estimate. LM-
count is inadmissible as applying a single action can
add multiple landmarks. Hence, it is not suited for cost-
optimal planning.

• Karpas and Domshlak (2009) compute a cost partitioning
over the required landmarks, where each action shares its
cost among all landmarks it adds. The cost to add that
landmark is the sum over all costs assigned to it by its
achievers. Summing up the costs for all required land-
marks is an admissible estimate of the cost to reach the
goal. Bonet and Helmert (2010) show that the optimal
cost partitioning is the dual view of the linear program-
ming relaxation of the minimum hitting set over the pos-
sible achievers.

• Büchner, Keller, and Helmert (2021) observe that a cyclic
dependency between landmarks – which can only occur
in the presence of reasonable orderings – means that at
least one of the landmarks in the cycle has to be achieved
twice. They propose the cyclic landmark heuristic, which
exploits this information in the form of additional con-
straints for the linear programming relaxation of the min-
imum hitting set.

Landmarks that are not required do not hold interesting in-
formation for heuristics. To avoid that the heuristic needs to
decide itself which landmarks are required, landmark graphs
used to compute it should ideally only contain required land-
marks. Hence, we demand this property from the output of
all other functions used by LM-BFS.

Typical implementations of (ii) include the A∗ algorithm
for optimal planning as in LM-A∗ and greedy best-first
search or weighted A∗ for satisficing planning (both of
which are used in different phases of LAMA). LM-BFS is
a special case of best-first search as it is important that path-
dependent heuristics are supported. As we will see, the land-
mark graph of a state (and hence also the corresponding
heuristic value) depends on the set of explored paths lead-
ing to that state. Stronger theoretical guarantees (e.g., with
respect to optimality) can be achieved with LM-BFS if the
open list is always ordered according to the available infor-
mation when a node is popped, and not according to the in-
formation that was available when a node is inserted. As it
is prohibitively expensive to reorder the open list in every
step, we instead re-evaluate the heuristic for a state s when
it is popped. If the heuristic value does not change, s is ex-
panded, and it is re-inserted into the open list with its new
heuristic value otherwise.

Landmark Progression Between States
As we attempt to use landmarks for heuristic search, we
need landmarks for every state encountered during search.
The simplest approach to do so is by replacing lines 8–10 of
Algorithm 1 with compute landmark graph(s′). However,
Büchner (2020) finds that generating landmarks dominates
the running time with this approach. Hence, this is not a fea-
sible solution in practice.

Richter and Westphal (2010) introduce an alternative that
uses the similarity of landmark graphs of similar states.
More specifically, they compute exactly one landmark graph
for the initial state and henceforth update it according to
the observations during search. For example, if ϕ is a re-
quired landmark in s and action a has an effect such that
eff (a) |= ϕ, then ϕ might not be required in s′ = sJaK any-

x 7→ > y 7→ > z 7→ >r gn

Figure 1: Example landmark graph with 3 landmarks and 2
orderings.

more. Hence, the actions or paths between two states s and
s′ can determine the differences of the according landmark
graphs to some extent.

Both LM-A∗ (Karpas and Domshlak 2009) and the LAMA
planner (Richter and Westphal 2010) use such inference
techniques. They are both instantiations of LM-BFS and we
explain how they implement components 2, 3, and 4 of our
framework in this section. First, however, we introduce an
example planning task which is later used to explain how
these methods work in practice.

Consider a planning task Π = 〈V,A, s0, G〉 where

• V = {x, y, z} with dom(v) = {>,⊥} for all v ∈ V;

• A = {a1, a2, a3} such that

– a1 = 〈{y 7→ ⊥}, {y 7→ >}, 1〉,
– a2 = 〈{y 7→ >, z 7→ ⊥}, {z 7→ >}, 1〉, and
– a3 = 〈{x 7→ ⊥, z 7→ >}, {x 7→ >, y 7→ ⊥}, 1〉;

• s0 = {v 7→ ⊥ | v ∈ V}; and

• G = {v 7→ > | v ∈ V}.
To simplify the notation, we write V for v 7→ > and ¬V for
v 7→ ⊥ for all v ∈ V .

Figure 1 shows a landmark graph for s0. Note that it is
possible to identify more landmarks and orderings for this
problem (e.g., (Y ∧Z)→gn (X ∧¬Y)). Nevertheless, most
landmark generators are incomplete and might as well end
up with the depicted graph. The landmarks can be justified
because all corresponding atoms are required in the goal but
do not hold in s0. Hence, they must be added at some time
i > 0 in all plans. Action a3 is the only action produc-
ing X , but it also destroys Y (i.e., it has the effect ¬Y).
Thus, Y must be last added after X and hence first(X,π) ≤
last(X,π) ≤ last(Y, π) which justifies the reasonable or-
dering X →r Y . Action a2 justifies the greedy-necessary
ordering Y →gn Z because it is the only action producing
Z and it has the precondition Y .

The only and therefore optimal plan for Π is π =
〈a1, a2, a3, a1〉. The states (represented as tuples 〈x, y, z〉)
we need to consider are

• s0 = 〈⊥,⊥,⊥〉 as given above,

• s1 = s0Ja1K = 〈⊥,>,⊥〉,
• s2 = s1Ja2K = 〈⊥,>,>〉,
• s3 = s2Ja3K = 〈>,⊥,>〉, and

• s4 = s3Ja1K = 〈>,>,>〉.
We show that π satisfies all ordering constraints of the land-
mark graph in Figure 1:

1. None of the landmarks hold in s0.

2. Y is first added at time 1 when applying a1.

3. Z is first added at time 2 when applying a2; Y →gn Z is
satisfied because first(Y, π) < first(Z, π).

4. X is first added at time 3 when applying a3, but s3 does
not satisfy the goal since a3 also has the effect ¬Y .

5. Y is added (for the second and also the last time) at time 4
when applying a1 (again); the goal is reached and X →r

Y is satisfied because first(X,π) ≤ last(Y, π).

LM-A∗ Karpas and Domshlak (2009) propose the LM-A∗

algorithm where each state s is associated with a set of paths
Π from s0 to s (i.e., s0JπK = s for all π ∈ Π). Given a
landmark graph G0 = 〈L0,O0〉 for the initial state, one can
compute landmarks for s by inference over Π. For exam-
ple, if π = 〈a1, . . . , an〉 is such a path and ϕ ∈ L0 is not
added at any time i ≤ n, then it is a required landmark for
s. While this argument for a single path is originally de-
scribed by Richter, Helmert, and Westphal (2008), Karpas
and Domshlak show that considering multiple paths is more
informative.

Another way of thinking about this is the following: if
all (explored) paths from s0 to s add a landmark ϕ, then
ϕ is probably not a required landmark for s. Karpas and
Domshlak mark these landmarks as accepted. The follow-
ing recursive formula collects accepted landmarks for a path
π = 〈a1, . . . , an〉:

acc(〈〉) = {ϕ ∈ L0 | s0 |= ϕ} (1)

acc(π) = {ϕ ∈ L0 | s0JπK |= ϕ} ∪ acc(π′) (2)

where π′ = 〈a1, . . . , an−1〉. Given a set of paths Π to state s
(i.e., s0JπK = s for all π ∈ Π), a landmark is only accepted
in s if it is accepted on each path individually:

acc(s,Π) =
⋂
π∈Π

acc(π). (3)

Computing Equation 3 requires a mapping from states to
sets of paths. However, the number of such paths can be ex-
ponential which renders this requirement infeasible in prac-
tice. Fortunately, the context of best-first search allows us to
refine the accepted landmarks for s iteratively without the
need to store paths explicitly. Algorithm 2 implements LM-
A∗ as described above in the LM-BFS framework. To do so,
we need the notion of accepted landmarks incorporated into
the landmark graphs. We redefine landmark graphs as triples
G = 〈L+,L−,O〉 so that L+ are the accepted landmarks
in the corresponding state s, L− are required landmarks of
s, and O is a set of orderings between L+ ∪ L−. Initially,
L+
s0 = acc(〈〉) and L+

s = L0 for all s 6= s0.1 During search,
generating s as a successor indicates that a new path π to s
has been expanded and should be added to Π. Whenever this
happens, we update L+ and L− for the last transition in π
(lines 1–5) and merge it with findings from previous encoun-
ters with s (lines 6–10). Hence, we can derive Equation 3 for
each s incrementally without the need to store a single path.

All algorithms discussed in this paper share the landmark
graph merging strategy that is presented in Algorithm 2. We

1This is because we have no information about any s except s0.

Algorithm 2: Implementation of LM-A∗ in the LM-
BFS framework.

1 progress landmark graph(〈L+,L−,O〉, a, s′)
2 accept := {ϕ ∈ L− | s′ |= ϕ}
3 L′+ := L+ ∪ accept
4 L′− := L− \ accept
5 return 〈L′+,L′−,O〉

6 merge landmark graphs(〈L+
1 ,L

−
1 ,O1〉, 〈L+

2 ,L
−
2 ,O2〉)

7 L+ := L+
1 ∩ L

+
2

8 L− := L−1 ∪ L
−
2

9 O := O1 ∪ O2

10 return 〈L+,L−,O〉
11 extend landmark graph(〈L+,L−,O〉, s′)
12 LG := {ϕ ∈ L+ | s′ 6|= ϕ and ϕ ∈ G}
13 Lgn := {ϕ ∈ L+ | ∃ϕ→gn ψ ∈ O and ψ 6∈ L+}
14 L′− := L− ∪ LG ∪ Lgn

15 return 〈L+,L′−,O〉

s1: x 7→ > y 7→ > z 7→ >r gn

s2: x 7→ > y 7→ > z 7→ >r gn

s3: x 7→ > y 7→ > z 7→ >r gn

s4: x 7→ > y 7→ > z 7→ >r gn

Figure 2: Evolution of the landmark graph from Figure 1
using the path-dependent landmark progression.

still consider merging an adjustable component of the LM-
BFS framework as it is not hard to come up with cases where
different methods could be better suited. For instance, in an
LM-BFS instantiation where different landmark graphs are
merged, it could pay off to remove a landmark ϕ if it shares
its orderings with another landmark ψ and if ψ =⇒ ϕ,
or to remove a reasonable ordering between two landmarks
if there is also a greedy-necessary ordering between these
landmarks. We do not pursue these ideas any further in this
paper but plan to turn our attention to them in future work.

In the landmark graph progression and merging compo-
nents, we have not taken landmarks that are required again
into account. Richter, Helmert, and Westphal (2008) con-
sider a landmark ϕ as required again if the following criteria
are satisfied: (i) ϕ does not hold in s and ϕ must hold in the
goal or (ii) ϕ does not hold in s and there exists an order-
ing ϕ →gn ψ such that at least one path to s does not add
ψ. Karpas and Domshlak (2009) use the same idea in their
LM-A∗ algorithm, and it is the only part that is still missing

in our description of an instantiation of the algorithm in the
LM-BFS framework.

In the LM-BFS framework, we separate updating the
landmark graph based on the last state transition (in the land-
mark graph progression component) from computing land-
marks that are required again (in the landmark graph exten-
sion component). Lines 11–15 contain the pseudo code that
adds all landmarks to L− that are considered to be required
again by LM-A∗. Combined with an exploration strategy
that corresponds to A∗ and a landmark generation compo-
nent that uses the cost partitioning-based landmark heuris-
tic of Karpas and Domshlak (2009), the LM-A∗ algorithm
is fully specified as an instantiation of the LM-BFS frame-
work.

Before we proceed, let us briefly look at how LM-A∗

changes the landmark graph in the example from Figure 1.
In Figure 2, landmarks depicted with solid border are in L−
while all others are not. Note that it is not always possible to
determine if a landmark is part of L+: landmarks with non-
solid borders are know to be in L+, whereas landmarks with
solid borders can be part of L+ or not. Landmarks Y , Z, and
X are removed from L− by the landmark graph progression
component in s1, s2, and s3, respectively. Since a3 deletes
Y which is required in the goal, Y is added to L+ in the
landmark graph extension component of s3. Y holds again
in the goal state s4, so it is again removed from L− which
becomes empty at this point.

LAMA The LAMA planner (Richter and Westphal 2010)
uses a path-dependent landmark progression similar to LM-
A∗. In fact, the LM-A∗ algorithm was described subsequent
to the LAMA planner. We have swapped the order in this
paper because LAMA uses an additional layer of inference
based on orderings. Namely, every ordering ϕ →t ψ where
ϕ has not yet been added denotes that ψ is required. If the
ordering is natural (or stronger), it is simply impossible to
add ψ before ϕ in any plan. If the ordering is reasonable, it
means that ϕ cannot be added while ψ holds. Therefore, if
ψ holds, it must be deleted and added again after ϕ (or at the
same time).

Richter and Westphal incorporate this finding in the ac-
ceptance criterion of LAMA.

acc(〈〉) = {ϕ ∈ L0 | s0 |= ϕ and 6 ∃(ψ →t ϕ) ∈ O0} (4)
acc(π) = {ϕ ∈ L0 | s0JπK |= ϕ and (5)

∀(ψ →t ϕ) ∈ O0 : ψ ∈ acc(π′)} ∪ acc(π′)

Algorithm 3 is the according implementation of the land-
mark progression in LM-BFS. It differs from the progress
function in Algorithm 2 in line 2 where it only accepts the
landmarks with no unaccepted parents. The other compo-
nents (i.e., merging and extending landmark graphs) are im-
plemented identical to LM-A∗.

Applying this slightly different progression to the exam-
ple of Figure 1 affects the landmark graph as shown in Fig-
ure 3. Even though Y holds in s1, it is not accepted since
X 6∈ L+ and therefore Y is not removed from L−. When
transitioning to s2, Z also has an unaccepted parent (i.e.,
Y 6∈ L+) and is not accepted. Since X has no parents, it

Algorithm 3: The LAMA progression in the LM-
BFS framework.

1 progress landmark graph(〈L+,L−,O〉, a, s′)
2 accept := {ϕ ∈ L− | s′ |= ϕ and

∀ψ →t ϕ ∈ O : ψ ∈ L+}
3 L′+ := L+ ∪ accept
4 L′− := L− \ accept
5 return G′ = 〈L′+,L′−,O〉

s1: x 7→ > y 7→ > z 7→ >r gn

s2: x 7→ > y 7→ > z 7→ >r gn

s3: x 7→ > y 7→ > z 7→ >r gn

s4: x 7→ > y 7→ > z 7→ >r gn

Figure 3: Evolution of the landmark graph from Figure 1
using the LAMA landmark progression.

is removed from L− and added to L+ when added through
a3. Finally, Y is accepted in the transition to s4 as this time,
X ∈ L+. We note that Z ∈ L− for all states, even in the
goal state s4. Therefore, LAMA considers Z to be required
even though it is not when we reach the goal.

Theorem 1. The LAMA progression is unsound.
Let s be a state of a planning task and let s′ = sJaK be
the result of applying action a in s. Furthermore, let G be
a landmark graph for s containing only required landmarks
and let G′ be the result of applying Algorithm 3 for G, a, and
s′.

Some nodes in G′ might not constitute required landmarks
for s′.

The example outlined above proves Theorem 1. The un-
derlying problem occurs in the transition from s1 to s2. It is
true that the reasonable ordering justifies that Y is required
(i.e., Y ∈ L−) because it must be deleted to addX and must
then be added again to reach the goal. However, when Z
is added, Y was already first added. Therefore, the greedy-
necessary ordering Y →gn Z is satisfied and Z should be
accepted at this point (i.e., it should be added to L+). LAMA
makes a faulty deduction here because it assumes that land-
marks that have not been accepted previously cannot have
been first added. While this is indeed the case for Equa-
tions 1 and 2, it is not so for Equations 4 and 5. Therefore
it is wrong to decide which orderings are not satisfied based
on LAMA’s accepted landmarks.

Ultimately, the LAMA progression applied to our running
example yields a heuristic value of 1 in the goal when using

the LM-count heuristic. Richter and Westphal point out this
possibility in their planner description:

“However, the heuristic may also assign a non-zero
value to a goal state. This happens if plans are found
that do not obey the reasonable orderings2 in the land-
mark graph, in which case a goal state may be reached
without all landmarks being accepted.” (Richter and
Westphal 2010, pp. 149)

We see in the example, however, that the problem can occur
for arbitrary states, as Z ∈ L− in s2, s3, and s4.

Richter and Westphal try to avoid having such prob-
lematic orderings in their landmark graphs. For example,
they do not consider reasonable orderings ϕ →r ψ where
s0 6|= ϕ but s0 |= ψ. This is because these orderings de-
note that first(ψ, π) < first(ϕ, π) for all plans π and there-
fore no plan obeys that ordering. Furthermore, Richter and
Westphal ensure that landmark graphs are acyclic because
a cycle also means that a reasonable ordering must be dis-
obeyed (Büchner, Keller, and Helmert 2021). Our example
shows, however, that these conditions are not sufficient to
ensure that all plans obey the remaining reasonable order-
ings. Therefore, the issue persists and LAMA considers some
landmarks to be required even if they are not.

Due to the assumption that landmark graphs obey all rea-
sonable orderings, LAMA makes use of another type of land-
mark orderings called obedient-reasonable orderings. They
are originally introduced by Hoffmann, Porteous, and Sebas-
tia (2004) and are only valid if each plan obeys all reasonable
orderings. Again, our example shows that this is not neces-
sarily the case and therefore obedient-reasonable orderings
are not valid. We currently see no use case for them in cost-
optimal planning. Whether or not they can be used in some
way or another is an open question that we leave for future
work.

The take home message here is that the LAMA progres-
sion is not suitable for cost-optimal planning because it can
yield unsound landmarks. Since LAMA is a satisficing plan-
ner, though, using an inadmissible heuristic is not necessar-
ily problematic. On the contrary, LAMA has shown great
success in the International Planning Competitions 2008 and
2011. However, in some cases such as our example, it suffers
from the flaws in its landmark progression. Furthermore, it
imposes limitations on the landmark graph which make it
less informed than it could be.

Admissible Reasonable Orders We have seen that the
reason why reasonable orders lead to false landmarks is be-
cause some landmarks that have been encountered are not
marked as accepted. Essentially, all landmarks ϕ from which
we know that first(ϕ, π) lies before s on all known paths π
from s0 to s must be part of the set L+ of s, and all land-
marks ϕ from which we know that last(ϕ, π) lies after s on
all known paths from s to a goal state s? must be part of the
set L− of s. It is the violation of this essential invariant of
the LM-BFS framework that leads to the flawed landmark
graph of LAMA.

2A plan π disobeys a reasonable ordering ϕ →r ψ if
first(ψ, π) < first(ϕ, π).

Algorithm 4: The reasonable order landmark graph
extension in the LM-BFS framework.

1 extend landmark graphs(〈L+,L−,O〉, s′)
2 LG := {ϕ ∈ L+ | s′ 6|= ϕ and ϕ ∈ G}
3 Lgn := {ϕ ∈ L+ | ∃ϕ→gn ψ ∈ O and ψ 6∈ L+}
4 Lr := {ϕ ∈ L+ | ∃ψ →r ϕ ∈ O and ψ 6∈ L+}
5 L′− := L− ∪ LG ∪ Lgn ∪ Lr

6 return 〈L+,L′−,O〉

s1: x 7→ > y 7→ > z 7→ >r gn

s2: x 7→ > y 7→ > z 7→ >r gn

s3: x 7→ > y 7→ > z 7→ >r gn

s4: x 7→ > y 7→ > z 7→ >r gn

Figure 4: Evolution of the landmark graph from Figure 1
using the fixed LAMA landmark progression.

As it turns out, it is surprisingly simple to fix this: re-
turning to the landmark graph progression component that
is used in LM-A∗ ensures that all landmarks which have
been seen on all paths to s are in L+, and using the land-
mark graph extension component that is given in Algorithm
4 (which differs from Algorithm 2 only by the adding line 4
and merging the result in line 5) adds all landmarks to L−
from which we know that they are required again due to their
open reasonable ordering.

Figure 4 shows the effect of applying this fixed version of
the LAMA progression to our running example. We see that
all landmarks remain in L− of s1 for the same reasons as in
Figure 3, but unlike in the LAMA progression, Y is also part
of L+ of s1. In s2, we see that the flaw of the LAMA land-
mark progression is fixed: Z is correctly removed from L−
in the landmark graph progression and it is not added again
in the landmark graph extension since Y is in L+. In the fol-
lowing two steps, the algorithm correctly removes the land-
marks X and Y from L−, yielding an LM-BFS algorithm
that both classifies landmarks correctly as accepted and re-
quired again and is able to deal with reasonable orderings.

Experimental Evaluation
The Fast Downward planner (Helmert 2006) uses landmarks
along the lines of LM-BFS. We implement the discussed
landmark progressions in version 20.06 of Fast Downward.
We refer to them as LM-A∗, LAMA, and ARO for the ad-
missible reasonable orderings. Since ARO is not limited to
acyclic graphs, we also consider AROc which keeps cycles in
the landmark graph. Furthermore, LAMAo denotes the orig-

inal version of LAMA which considers obedient-reasonable
orderings. Experiments are conducted on Intel Xeon-Silver
4114 processors running on 2.2 GHz with a time limit of 30
minutes and a memory limit of 3.5 GB.

Cost-Optimal Planning One contribution of this paper is
the applicability of reasonable orderings for cost-optimal
planning. We generate landmarks for the initial state us-
ing the following methods: LMRHW (Richter, Helmert, and
Westphal 2008), LMh1

(Keyder, Richter, and Helmert 2010),
and LMBJOLP (Domshlak et al. 2011). We use the optimal
cost partitioning heuristic described by Karpas and Domsh-
lak (2009) combined with an A∗ exploration strategy. Eval-
uating LAMA in this context is pointless, as it renders the
heuristic inadmissible due to the unsound landmarks. In-
stead, we evaluate LM-A∗, ARO, and AROc on 1827 bench-
mark tasks from the optimal tracks of the International Plan-
ning Competitions 1998–2018.

The only difference between LM-A∗ and ARO is the con-
sideration of reasonable orderings. Hence, the set of required
landmarks can only become larger in ARO due to the addi-
tional landmark graph extension. Since AROc does not dis-
card orderings for cycles, it considers even more reasonable
orderings which can lead to even more required landmarks.
A super-set of a set of landmarks can only yield equal or
higher heuristic estimates using the optimal cost partition-
ing heuristic. Therefore, AROc dominates ARO, which in turn
dominates LM-A∗, for the same sets of paths to each state.

All tested landmark generators benefit from the additional
information of ARO and AROc. However, the task coverage
is merely unaffected with an increase between 0 and 4 from
LM-A∗ to ARO and between 1 and 5 from LM-A∗ to AROc.
Both ARO and AROc have a slight advantage in terms of the
average running time, but it does not seem to be systematic,
as there are many instances where LM-A∗ is faster. Memory
is never a limitation, though ARO and AROc also perform
slightly better in this category. This is most likely due to the
significantly smaller number of expanded states before the
last f -layer. Figure 5 plots the expansions for all considered
landmark generators and compares LM-A∗ with AROc. Tasks
where both methods expand the same amount of states are
filtered out.

Satisficing Planning In a second experiment, we compare
the LAMA configuration of Fast Downward with different
landmark graph progressions. LAMA uses an anytime search
which aims to find a (potentially sub-optimal) plan fast and
improve it until the time or memory limit is reached, or it
cannot further improve the solution (Richter and Westphal
2010). It uses the FF heuristic (Hoffmann and Nebel 2001)
and the LM-count heuristic (Richter, Helmert, and Westphal
2008).

We evaluate the different LM-BFS instantiations consid-
ering reasonable orderings on the 2772 planning tasks from
the satisficing tracks of the International Planning Compe-
titions 1998–2018. Our baseline is the LAMAo progression
as the original LAMA planner considers obedient-reasonable
orderings. The reported numbers denote the average from 5

100 101 102 103 104 105 106

100

101

102

103

104

105

106

0 uns.
0

uns.

LM-A∗

A
R
O
c

LMBJOLP

LMh1

LMRHW

Figure 5: Number of expanded states before the last f -layer.

runs with different successor orderings to smooth out ran-
dom noise effects.

Problem coverage is merely unaffected by the choice of
progression strategy. While LAMAo and LAMA solve 2381
tasks on average, both ARO and AROc solve 2379 tasks. In
terms of running times, we observe a slight advantage for
LAMAo and LAMA which does not seem to be systematic,
though. In terms of memory and state expansions, we ob-
serve the opposite, a minor improvement of ARO and AROc.
These measures all propose that there is no significant dif-
ference between the compared progression strategies.

There is, however, a difference in terms of plan quality.
Table 1 provides insights concerning the plan quality, i.e.,
the cost of the best plan found before the planner terminates.
It compares pair-wise which strategy finds a cheaper plan
in how many tasks. Interestingly, LAMA without obedient-
reasonable orderings performs almost the same as LAMAo;
the plan cost differs in only 7.4 tasks on average with a
slight advantage for LAMA over LAMAo. Since an analysis
of obedient-reasonable orderings is out of the scope of this
paper, we do not investigate this further.

There are more tasks with different plan costs when com-
paring to ARO and AROc. However, neither technique strictly
dominates the others in this regard. Yet, we can observe a
pattern, namely that AROc consistently improves upon the
plan quality with between 55 and 60 more tasks with cheaper
solution costs in all comparisons. In summary, these results
indicate that the admissible reasonable orderings progres-
sion can replace the LAMA progression with no major draw-
backs. Moreover, it imposes no constraints on the used land-
mark graphs which means it benefits even more if better
landmark generators for s0 become available in the future.

Conclusion
In this paper we propose the LM-BFS framework. It denotes
a best-first search for planning based on landmarks and con-
sists of five interchangeable components: (1) landmark gen-
eration, (2) landmark graph progression based on state tran-
sitions, (3) landmark graph merging, (4) landmark graph ex-
tension, and (5) exploration strategies based on landmark

L
A
M
A
o

L
A
M
A

A
R
O

A
R
O
c

LAMAo – 2.4 98.0 352.8
LAMA 5.0 – 99.6 355.0
ARO 103.4 101.4 – 269.4
AROc 411.6 410.0 324.6 –

Table 1: Per-task comparison of the final plan cost. Each cell
denotes how many tasks (on average) were found to have
a lower cost in the row method compared to the column.
The winner of each pairwise comparison is highlighted in
boldface.

heuristics. The literature introduces planning systems that
are instantiations of this framework: LM-A∗ (Karpas and
Domshlak 2009) is an optimal search strategy and LAMA
(Richter and Westphal 2010) is a satisficing planner.

Both of these planning techniques compute a landmark
graph for the initial state and infer landmarks for all other
states based on the search history. This analysis is done by
deciding which landmarks are accepted to reach a state s
and also which landmarks are required again to reach the
goal from s. LAMA uses one additional criteria compared to
LM-A∗. Namely, it deduces that some landmarks are added
too early in the sense that they must be added again later.
However, the implementation of this idea is flawed which
can lead to unsound landmarks in some cases. We propose
a novel landmark graph extension component that incor-
porates the same idea but is guaranteed to generate sound
landmarks at all times. Our empirical evaluation shows that
LAMA does not suffer from this change. Furthermore, this
allows for the first time to use reasonable orderings for cost-
optimal planning without the need to recompute landmark
graphs in every state. We provide evidence that doing so has
a positive effect on planner performance.

Acknowledgments
We thank Augusto B. Corrêa, Patrick Ferber, and Malte
Helmert for their feedback during the writing process. We
have received funding for this work from the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639). Moreover, this research was partially
supported by TAILOR, a project funded by the EU Hori-
zon 2020 research and innovation programme under grant
agreement no. 952215.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.

Bonet, B.; and Helmert, M. 2010. Strengthening Landmark
Heuristics via Hitting Sets. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 329–334.
IOS Press.

Büchner, C. 2020. Generalization of Cycle-Covering
Heuristics. Master’s thesis, University of Basel.
Büchner, C.; Keller, T.; and Helmert, M. 2021. Exploiting
Cyclic Dependencies in Landmark Heuristics. In Goldman,
R. P.; Biundo, S.; and Katz, M., eds., Proceedings of the
Thirty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2021), 65–73. AAAI Press.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The Big Joint Optimal Landmarks Planner. In IPC 2011
planner abstracts, 91–95.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research 22: 215–278.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In Boutilier, C., ed., Proceedings of the
21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), 1728–1733. AAAI Press.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for And/Or Graphs. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), 335–340. IOS Press.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
Extraction, Ordering, and Usage of Landmarks in Planning.
In Cesta, A.; and Borrajo, D., eds., Proceedings of the Sixth
European Conference on Planning (ECP 2001), 174–182.
AAAI Press.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.
AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39: 127–177.
Zhu, L.; and Givan, R. 2003. Landmark Extraction via Plan-
ning Graph Propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.

