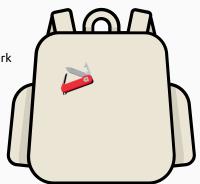
Hitting Set Heuristics for Overlapping Landmarks

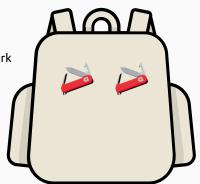
<u>Clemens Büchner</u> Remo Christen Salomé Eriksson Thomas Keller

June 7, 2024

Planning a Camping Trip with LAMA

Planning a Camping Trip with LAMA


• cheapest item from every landmark


• cheapest item from every landmark

• cheapest item from every landmark

• cheapest item from every landmark

- cheapest item from every landmark
- *h*^{LAMA} = 17

- cheapest item from every landmark
- $h^{LAMA} = 17$
- That's more stuff than necessary!

- cheapest item from every landmark
- $h^{LAMA} = 17$
- That's more stuff than necessary!
- remove duplicates: $h^{HS}=15$

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

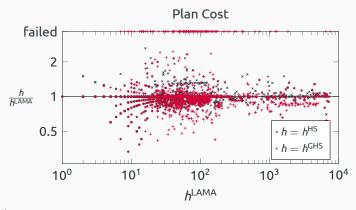
- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

•
$$h^{GHS} = 10$$



Greedy Best First Search

	(total)	hLAMA	h ^{HS}	hGHS
Coverage	(2323)	1680	1742	1718

Greedy Best First Search

	(total)	hLAMA	h ^{HS}	hGHS
Coverage	(2323)	1680	1742	1718

Full LAMA Configurations

- open lists for multiple heuristics
- preferred operators
- improve plans by restarting weighted A* search

	Coverage	Score
h^{LAMA}	2056	1957.8
hHS	2052	1952.0
hGHS	2068	1987.3

score per task: $0 \le \frac{c^*}{c} \le 1$

Summary

- overlapping landmarks express synergies
- hitting set heuristics exploit these synergies
- tradeoff between heuristic accuracy and computation time
- plan quality improves with more accurate heuristics in practice

Hitting Set Problem

Definition

Given:

- universe U
- set of sets $S \subset 2^U$
- cost function cost: $U \rightarrow \mathbb{R}^+_0$

cost(≥>) = 2

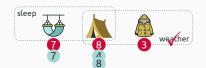
Problem:

- Find hitting set $H \subseteq U$ s.t. $H \cap S \neq \emptyset$ for all $S \in S$.
- minimal hitting set: no cheaper hitting set exists

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved



- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

•
$$h^{GHS} = 12$$

