
Fast Downward Stone Soup 2023

Clemens Büchner,1 Remo Christen,1 Augusto B. Corrêa,1 Salomé Eriksson,1 Patrick Ferber,1
Jendrik Seipp,2 Silvan Sievers1

1 University of Basel, Switzerland
2 Linköping University, Sweden

{clemens.buechner, remo.christen, augusto.blaascorrea, salome.eriksson, patrick.ferber, silvan.sievers}@unibas.ch,
jendrik.seipp@liu.se

Fast Downward Stone Soup (Helmert, Röger, and Karpas
2011) is a sequential portfolio planner, built on top of the
Fast Downward planning system (Helmert 2006, 2009). It
participated in three previous International Planning Com-
petitions (IPC): 2011 (Helmert et al. 2011), 2014 (Röger,
Pommerening, and Seipp 2014), and 2018 (Seipp and Röger
2018). In the last IPC, Fast Downward Stone Soup was the
winner of the satisficing and the cost-bounded tracks.

In this planner abstract, we present the Fast Downward
Stone Soup portfolio submitted to the sequential optimal
and satisficing tracks of IPC 2023. After two IPCs (2014
and 2018) without participating in the optimal track, this is
the first time after 12 years that an optimal version of Fast
Downward Stone Soup enters the competition. The proce-
dure used for building the portfolios is the same as in 2011,
2014, and 2018. Therefore, we only briefly explain this pro-
cedure here and refer the reader to the original paper for
more details (Helmert, Röger, and Karpas 2011). We high-
light also the configurations used for the optimal track port-
folio, and the new additions for the satisficing track.

Building the Portfolios
The Stone Soup algorithm requires the following informa-
tion as input:

• A set of planning algorithms A. We use a different set of
Fast Downward configurations depending on the track,
which we describe below.

• A set of training instances I, for which portfolio per-
formance is optimized. We use a set of 7330 instances,
described below.

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

– the plan cost c(A, I) of the plan that was found.

Our time limits depend on the track while the memory
limit is fixed to 8 GiB for generate this data. If algorithm
A fails to solve instance I within these bounds, we set
t(A, I) = c(A, I) = ∞.

The procedure computes a portfolio as a mapping P :
A → N0 which assigns a time limit (possibly 0 if the al-

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms}
repeat ⌊timeout/granularity⌋ times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Stone Soup algorithm for building a portfolio.

gorithm is not used) to each component algorithm. It is a
simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
the algorithm takes two parameters, granularity and timeout,
both measured in seconds. The timeout is an upper bound on
the total time for the generated portfolio, which is the sum of
all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

The search starts from a portfolio that assigns a time limit
of 0 seconds to all algorithms. In each hill-climbing step,
it generates all possible successors of the current portfolio.
There is one successor per algorithm A, where the only dif-
ference between the current portfolio and the successor is
that the time limit of A is increased by the given granularity.

We evaluate the quality of a portfolio P by computing
its portfolio score s(P ). The portfolio score is the sum of
instance scores s(P, I) over all instances I ∈ I. The func-
tion s(P, I) is similar to the scoring function used for the
International Planning Competitions since 2008. The only
difference is that we use the best solution quality among our
algorithms as reference quality (instead of taking solutions
from other planners into account): if no algorithm in a port-
folio P solves an instance I within its allotted runtime, we
set s(P, I) = 0. Otherwise, s(P, I) = c∗I/c

P
I , where c∗I is

the lowest solution cost for I of any input algorithm A ∈ A
and cPI denotes the best solution cost among all algorithms
A ∈ A that solve the instance within their allotted runtime
P (A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.



The hill-climbing phase ends when all successors would
exceed the given time bound. A post-processing step reduces
the time assigned to each algorithm by the portfolio. It con-
siders the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time
limit to the lowest value that would still lead to the same
portfolio score.

Training Benchmark Set
As benchmarks, we used all tasks and domains from previ-
ous IPCs, from Delfi (Katz et al. 2018), and from the 22.03
Autoscale collection (Torralba, Seipp, and Sievers 2021),
leading to a set of 92 domains with 7330 tasks. We used
Downward Lab (Seipp et al. 2017) to run all planners on
all benchmarks on Intel Xeon Silver 4114 2.2 GHz proces-
sors, imposing a memory limit of 8 GiB and a time limit of
30 minutes for optimal planners and 5 minutes for satisfic-
ing and agile planners. For each run, we stored its outcome
(plan found, out of memory, out of time, task not supported
by planner, error), the execution time, the maximum resident
memory, and if the run found a plan, the plan length and plan
cost. This data set is available online (Büchner et al. 2023).

After this first stage, we selected a subset of these tasks
for training. To even out the differences in domain sizes,
we only use up to 30 tasks per domain which are solved by
the fewest (but at least one) planners. For the satisficing/ag-
ile tracks, this results in 2405 remaining tasks. For opti-
mal, there are 1446 tasks without conditional effects and 245
tasks with conditional effects left.

Planning Algorithms
Satisficing Track
For the satisficing track, we collect our input planning al-
gorithms from several sources. First, we use the component
algorithms of the previous Fast Downward Stone Soup port-
folios that participated in the sequential satisficing track of
other IPCs (Helmert et al. 2011; Röger, Pommerening, and
Seipp 2014; Seipp and Röger 2018). In total, this gives us 87
different configurations.

Second, we add different combinations of hcea (Helmert
and Geffner 2008), hCG (Helmert 2006), hFF (Hoffmann
and Nebel 2001), and hLM (Richter, Westphal, and Helmert
2011) with greedy best-first search (GBFS) but using differ-
ent open-lists:

• For each one heuristic h ∈ {hcea, hCG, hFF}, we use one
configuration of (eager) GBFS with the ϵ-greedy open-
list (Röger and Helmert 2010) ordered by h. We also add
the same configurations but using lazy GBFS (Richter
and Helmert 2009).

• We use configurations using lazy GBFS alternating be-
tween three open-lists: [hFF, h, PAR(hFF, h)] where h ∈
{hcea, hCG, hLM} and PAR(hFF, h) is a Pareto open-list
using hFF and h (Röger and Helmert 2010).

• We add two other configurations using lazy GBFS: one
alternating between [ϵ-greedy(hFF), hLM] open-lists, and
one alternating between [hFF, ϵ-greedy(hLM)]. For each

of these two configurations, we also include configu-
rations with additional open-lists only containing states
generated by preferred operators.

All configurations using hLM have one version using reason-
able orders and one without them.

This makes for a total of 18 new configurations. Overall,
this leaves us with 105 planner configurations as input for
the hill-climbing procedure.

Optimal Track
For the optimal track, we distinguish whether planning algo-
rithms support conditional effects or not. We use A∗ with the
following heuristics without support for conditional effects:

• the blind heuristic
• BJOLP (Domshlak et al. 2011)
• Cartesian abstractions (Seipp and Helmert 2018):

– for subtasks induced by goals and fact landmarks (one
of four different limits: 10s, 60s, 300s generation time
or 1 million state-changing transitions in all abstrac-
tions)

– for subtasks only induced by goals (1 million transi-
tions)

– for subtasks only induced by fact landmarks (1 million
transitions)

• h2 (Haslum and Geffner 2000)
• hmax (Bonet and Geffner 2001)
• pattern databases (PDBs) (Culberson and Schaeffer

1998; Edelkamp 2001), all combined in the canonical
PDB heuristic (Haslum et al. 2007), computed with the
following pattern collections:

– CEGAR with a maximum size of 1 million states in
individual PDBs and 10 million states in all PDBs,
computation time limit of 10s/60s/300s with enabling
stagnation after 2s/12s/20s, enabling blacklisting af-
ter 75% of the computation time limit or on stagna-
tion, computing wildcard plans (Rovner, Sievers, and
Helmert 2019)

– hill climbing (Haslum et al. 2007) (thus leading to
iPDB) with a computation time limit for the main loop
of the algorithm of 10s/60s/300s

– interesting patterns of size 1/2/3 (Pommerening,
Röger, and Helmert 2013)

• LM-cut (Helmert and Domshlak 2009)
• merge-and-shrink heuristics (Helmert et al. 2014; Siev-

ers and Helmert 2021) with bisimulation-based shrink-
ing (Nissim, Hoffmann, and Helmert 2011) and a size
limit of 50000 states per abstraction, exact label reduc-
tion (Sievers, Wehrle, and Helmert 2014), one of two
merge strategies: SCC-DFP or SCC-sbMIASM (Sievers,
Wehrle, and Helmert 2016), and a computation time limit
for the main loop of the algorithm of 10s/60s/300s

• operator-counting heuristics (Pommerening et al. 2014)
with different types of constraints:



– post-hoc optimization constraints over interesting pat-
terns (size 1/2/3) (Pommerening, Röger, and Helmert
2013)

– delete relaxation constraints, leading to h+ (exact IP
model and LP relaxation) (Imai and Fukunaga 2015)

– state equation constraints (Pommerening et al. 2014)
– state equation constraints and LM-cut constraints

(Pommerening et al. 2014)
– state equation constraints, LM-cut constraints, and

delete relaxation constraints (LP relaxation) (Pom-
merening et al. 2014)

• diverse potential heuristics and potential heuristics opti-
mized for the initial state or all states (Seipp, Pommeren-
ing, and Helmert 2015)

We consider all of the above with and without pruning op-
erators during successor generation using atom-centric stub-
born sets (Röger et al. 2020). If activated, this feature is
turned off after the first 1000 expansions if less than 20%
of operators are pruned. This makes for a total of 74 plan-
ning algorithms.

For tasks with conditional effects, we cannot use stubborn
sets pruning and we only use those of the above algorithms
that support conditional effects: blind, hmax, and all merge-
and-shrink variants. This is a total of 8 planning algorithms.

Resulting Portfolios
The resulting satisficing portfolio uses 26 of the 105 pos-
sible algorithms, running them for 18–383 seconds. On the
training set of 2405 tasks, the portfolio achieves an overall
score of 2083.03, which is much better than the best compo-
nent algorithm with a score of 1490.94. For the agile track,
we use the same portfolio as for satisficing.

For the optimal track, the planner uses different portfolios
depending on the PDDL features present in a problem. If
the problem has axioms, then the portfolio consists of only
blind search for 1800 seconds. Otherwise, if the problem has
conditional effects, the portfolio uses 3 of the 8 algorithms,
running them between 229 and 1137 seconds. Finally, if the
problem has neither axioms nor conditional effects, then the
portfolio uses 9 of the 74 algorithms, running them for 83–
542 seconds. This configuration achieves an overal coverage
of 1538 from our training set of 1691 tasks. The best com-
ponent algorithm solved 994 of these tasks.

Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequential
order unspecified. With the simplifying assumption that all
planner runs use the full assigned time and do not commu-
nicate information, the order is indeed irrelevant. In reality
the situation is more complex.

First, the Fast Downward planner uses a preprocessing
phase that we need to run once before we start the port-
folio, so we do not have the full 1800 seconds available.1

1The preprocessing phase consists of converting the input
PDDL task (Fox and Long 2003) into a SAS+ task (Bäckström
and Nebel 1995) with the Fast Downward translator component.

Therefore, we treat per-algorithm time limits defined by the
portfolio as relative, rather than absolute values: whenever
we start an algorithm, we compute the total allotted time of
this and all following algorithms and scale it to the actually
remaining computation time. We then assign the respective
scaled time to the run. As a result, the last algorithm is al-
lowed to use all of the remaining time.

Second, in the satisficing setting we would like to use the
cost of a plan found by one algorithm to prune the search
of subsequent planner runs (in the optimal track we stop af-
ter finding the first plan). We therefore use the best solution
found so far for pruning based on g values: only paths in the
state space that are cheaper than the best solution found so
far are pursued.

Third, planner runs often terminate early, e.g., because
they run out of memory or find a plan. Since we would like
to use the remaining time to continue the search for a plan or
improve the solution quality, we sort the algorithms by their
coverage scores in decreasing order, hence beginning with
algorithms likely to succeed quickly.

Competition Results
Fast Downward Stonesoup 2023 was successful in the IPC
2023. In the satisficing and agile tracks, it claimed the
runner-up awards while it landed in 7th place (out of 22)
in the optimal track. We show competition results from the
satisficing, agile, and optimal track in Tables 1a, 1b, and 1c,
respectively. In contrast to the competition, we use the cover-
age score, i.e., number of solved tasks, to simplify our anal-
ysis. The tables show the overall coverage as well as reasons
for failure, split by individual domains. The competition
used several domains with modern PDDL features (e.g., ax-
ioms) that are not supported by several competing planners.
Therefore, the organizers also offered variants of these do-
mains where these features are compiled away (marked with
the suffix -norm in Tables 1a–1c). For the overall scores, as
in the competition, we use the domain variant with the better
score.

Satisficing Track
We observe that the domain variant does not make a signif-
icant difference for the satisficing portfolio, except for slith-
erlink. The feature that is compiled away there, are nega-
tive goal conditions. If used, our portfolio solves 0 tasks,
while when compiled away on the PDDL level, our port-
folio solves 6 of the 20 problems. This does not necessarily
mean that the algorithms available in Fast Downward are not
able to deal with this feature. Rather, we found that with the
feature present, the translator component of Fast Downward
runs out of memory for all available problems. This does not
happen when using the normalized versions of these prob-
lems.

There is another domain where our portfolio solves 0
problems, namely labyrinth. The challenge in labyrinth
seems to be grounding the planning tasks. And in fact, the
portfolio only starts the search component for the first four
(smallest) problems. In all other cases, again, the translator
of Fast Downward runs out of memory.



coverage

time-err

mem-err

folding 10 8 2
folding-norm 9 10 1
labyrinth 0 4 16
quantum-layout 20 0 0
recharging-robots 14 2 4
recharging-robots-norm 14 3 3
ricochet-robots 11 9 0
rubiks-cube 20 0 0
rubiks-cube-norm 20 0 0
slitherlink 0 0 20
slitherlink-norm 6 14 0

Sum of best (140) 81 37 22

(a) Satisficing

coverage

time-err

mem-err

folding 7 10 3
folding-norm 7 10 3
labyrinth 3 12 5
quantum-layout 20 0 0
recharging-robots 11 5 4
recharging-robots-norm 12 4 4
ricochet-robots 4 16 0
rubiks-cube 20 0 0
rubiks-cube-norm 19 1 0
slitherlink 4 16 0
slitherlink-norm 4 16 0

Sum of best (140) 70 58 12

(b) Agile

coverage

time-err

mem-err

folding 7 10 3
folding-norm 7 10 3
labyrinth 3 4 13
quantum-layout 13 7 0
recharging-robots 13 1 6
recharging-robots-norm 13 1 6
ricochet-robots 12 8 0
rubiks-cube 9 11 0
rubiks-cube-norm 9 11 0
slitherlink 0 0 20
slitherlink-norm 4 13 3

Sum of best (140) 61 54 25

(c) Optimal

Table 1: Number of solved tasks, out-of-time and out-of-memory errors per domain variant for the three tracks. The bottom row
aggregates over the domain variants with highest coverage.

Other domains where Stone Soup solves only around half
of the problems are folding and ricochet-robots. In folding,
there is only one IPC competitor with a slightly higher score,
suggesting that it is simply a hard set of problems. In con-
trast, the ricochet-robots domain is solved more successfully
by several other planners and marks the main shortcoming of
Stone Soup when compared to the winning planners, Maidu
and Levitron. The fact that ricochet-robots heavily relies on
0-cost actions may hint at our portfolio dealing badly with
them. We do not think that this feature is underrepresented in
our training set though, as roughly a quarter of the domains
used during training contain 0-cost actions.

Agile Track
Interestingly enough, we solve some of the labyrinth prob-
lems in the agile track, even though we run the same portfo-
lio as in the satisficing track with a tighter overall time limit.
Moreover, the translator does not run out of memory as of-
ten. This is because we turn off invariant generation in the
agile case. It usually takes a lot of time and apparently also
a lot of memory in the case of labyrinth.

For slitherlink we make a similar observation: The dif-
ference between the normalised and non-normalised variant
that is present in the satisficing track disappears in the agile
track, even though our approaches to the two tracks only dif-
fer in their usage of invariant generation during translation.

Optimal Track
We again observe almost no difference between the nor-
malized and non-normalized variants of the domains. Once
more, the only exception is slitherlink, where we know that
the translator component alone already exhausts the given
resource limits.

Looking at how many problems were solved by the best-
performing competitor on a per-domain basis, Stone Soup
has the largest deficits in labyrinth (3 vs. 8), ricochet-robots
(12 vs. 17), and slitherlink (4 vs. 7). Unfortunately, we can-
not really pin-point the underlying short-comings, but we

have seen in the other tracks that these domains and their
peculiarities in terms of PDDL features are somewhat trou-
blesome for our portfolios. Stone Soup also fails to shine in
the remaining domains, and does not reach top performance
in any of them.

Acknowledgments
For a portfolio planner, not those who combined the com-
ponents deserve the main credit but those who contributed
them. We therefore wish to thank all Fast Downward con-
tributors and the people who came up with the algorithms
we use in our portfolio. Furthermore, we sincerely thank the
organizers of the IPC 2023 classical tracks, Daniel Fišer and
Florian Pommerening, for their hard work running the com-
petition.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1): 5–33.
Büchner, C.; Christen, R.; Corrêa, A. B.; Eriksson, S.; Seipp,
J.; and Sievers, S. 2023. Code and experiment data for the
IPC 2023 planner “Fast Downward Stone Soup” (determin-
istic track). https://doi.org/10.5281/zenodo.8340920.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The Big Joint Optimal Landmarks Planner. In IPC 2011
Planner Abstracts, 91–95.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.



Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Haslum, P.; and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds., Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2000), 140–149. AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M.; and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. In ICAPS 2011 Workshop on Planning and Learning,
28–35.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In IPC 2011 Planner Abstracts,
38–45.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Imai, T.; and Fukunaga, A. 2015. On a Practical, Integer-
Linear Programming Model for Delete-Free Tasks and its
Use as a Heuristic for Cost-Optimal Planning. Journal of
Artificial Intelligence Research, 54: 631–677.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online Planner Selection for Cost-Optimal Planning.
In Ninth International Planning Competition (IPC-9): Plan-
ner Abstracts, 57–64.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing Perfect Heuristics in Polynomial Time: On Bisimulation
and Merge-and-Shrink Abstraction in Optimal Planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990. AAAI Press.

Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364. AAAI Press.

Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds., Proceed-
ings of the Twenty-Fourth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2014), 226–234.
AAAI Press.

Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 273–280. AAAI
Press.

Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). In IPC 2011 Planner Ab-
stracts, 50–54.

Röger, G.; and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Brafman, R.; Geffner, H.; Hoffmann, J.; and Kautz, H., eds.,
Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS 2010), 246–
249. AAAI Press.

Röger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020. An
Atom-Centric Perspective on Stubborn Sets. In Harabor, D.;
and Vallati, M., eds., Proceedings of the 13th Annual Sympo-
sium on Combinatorial Search (SoCS 2020), 57–65. AAAI
Press.

Röger, G.; Pommerening, F.; and Seipp, J. 2014. Fast Down-
ward Stone Soup 2014. In Eighth International Planning
Competition (IPC-8): Planner Abstracts, 28–31.

Rovner, A.; Sievers, S.; and Helmert, M. 2019.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning. In Lipovet-
zky, N.; Onaindia, E.; and Smith, D. E., eds., Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling (ICAPS 2019), 362–367. AAAI
Press.

Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.

Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New Op-
timization Functions for Potential Heuristics. In Brafman,
R.; Domshlak, C.; Haslum, P.; and Zilberstein, S., eds., Pro-
ceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling (ICAPS 2015), 193–
201. AAAI Press.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.



Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80–82.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
Label Reduction for Merge-and-Shrink Heuristics. In Brod-
ley, C. E.; and Stone, P., eds., Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI
2014), 2358–2366. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Analy-
sis of Merge Strategies for Merge-and-Shrink Heuristics. In
Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS
2016), 294–298. AAAI Press.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Goldman, R. P.;
Biundo, S.; and Katz, M., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling (ICAPS 2021), 376–384. AAAI Press.


