
Hitting Set Heuristics for Overlapping Landmarks in Satisficing Planning

Clemens Büchner, Remo Christen, Salomé Eriksson, Thomas Keller
University of Basel, Switzerland

{clemens.buechner, remo.christen, salome.eriksson, tho.keller}@unibas.ch

Abstract
Landmarks are a core component of LAMA, a state-of-the-
art satisficing planning system based on heuristic search. It
uses landmarks to estimate the goal distance by summing up
the costs of their cheapest achievers. This procedure ignores
synergies between different landmarks: The cost of an ac-
tion is counted multiple times if it is the cheapest achiever
of several landmarks. Common admissible landmark heuris-
tics tackle this problem by underapproximating the cost of a
minimum hitting set of the landmark achievers. We suggest
to overapproximate it by computing suboptimal hitting sets
instead if admissibility is not a requirement. As our heuristics
consider synergies between landmarks, we further propose
to relax certain restrictions LAMA imposes on the number
of landmarks and synergies between them. Our experimen-
tal evaluation shows a reasonable increase in the number of
landmarks that leads to better guidance when used with our
new heuristics. Equipped with our heuristics, a LAMA-like
configuration beats LAMA both in terms of problem coverage
and plan quality.

Introduction
Classical planning aims to find a sequence of actions lead-
ing from an initial state to a goal state in a deterministic
transition system (Ghallab, Nau, and Traverso 2004). To this
day, LAMA (Richter and Westphal 2010) is a competitive ap-
proach to finding suboptimal solutions for classical planning
problems. This was recently demonstrated at the Interna-
tional Planning Competition (IPC) 2023, where LAMA was
used as a baseline; it beat all competitors in the agile track
(finding any solution quickly) and almost made the podium
in the satisficing track (finding cheap solutions).

LAMA approaches planning as a series of explicit heuris-
tic searches, guided by the hFF and hsum heuristics. The for-
mer sums up the costs of best achievers of relevant atoms
in the delete-relaxation to estimate the goal distance (Hoff-
mann and Nebel 2001), the latter sums up the costs of
the cheapest achiever of each landmark (Richter and West-
phal 2010). The landmarks considered by LAMA are sets of
atoms such that one atom from each set must hold in some
state along all plans. Since an action may achieve multiple
landmarks, adding up the costs of each individual cheapest
achiever may overestimate the true cost to satisfy all land-
marks. Common admissible landmark heuristics for optimal
planning avoid this overcounting by underapproximating the

cost of a minimum hitting set (Bonet and Helmert 2010;
Pommerening et al. 2014; Büchner, Keller, and Helmert
2021), since an exact computation is NP-complete (Karp
1972). We instead study two approaches that overapproxi-
mate this cost by finding suboptimal hitting sets computable
in polynomial time in the number of landmarks, and use their
cost as an inadmissible heuristic for satisficing planning. Our
first approach fixes one cheapest achiever for each landmark,
making the set of these fixed achievers a hitting set. The sec-
ond uses a known greedy approximation. Using an estab-
lished approximation factor, the second approach can even
be turned into an admissible heuristic, making it applicable
to optimal planning as well.

Beyond proposing new landmark heuristics, we also
revisit the algorithm LAMA employs to find landmarks.
LAMA’s landmark generation restricts landmarks to be dis-
joint sets of atoms with cardinality 4 or less (Richter,
Helmert, and Westphal 2008). These restrictions ensure that
the landmark generation algorithm is polynomial in the task
representation. However, limiting the number of landmarks
also limits the informedness of the heuristic. We thus re-
lax both restrictions. Firstly, we remove the requirement for
disjointedness, since our heuristics are designed to consider
interactions between landmarks. Secondly, we increase the
maximal cardinality. These changes still guarantee a poly-
nomial bound, albeit with a larger factor. We discard domi-
nated landmarks to keep the number of landmarks small and
maintainable in practice.

Finally, we compare our heuristics and landmark gener-
ation changes against existing methods. We first compare
our adapted landmark generation against the one in LAMA,
focusing on how the method affects the different heuris-
tics. Then, we analyze our heuristics in a LAMA-style plan-
ning system. While our first approach achieves higher cov-
erage in the single search setting, it can also lead to higher
plan costs. Our second approach, however, takes longer to
compute but finds better plans. Based on this insight, we
combine different approaches synergistically; in the spirit of
LAMA, we push to find solutions fast with fast-to-compute
heuristics and improve them with better-informed heuristics.
This leads to a configuration that outperforms LAMA both in
terms of coverage and IPC quality score. We also apply our
greedy hitting set approach to the optimal setting, but cannot
match the state of the art.

Background
We consider classical planning in the SAS+ formalism
(Bäckström and Nebel 1995). A planning task is a 4-tuple
Π = ⟨V,A, I,G⟩ where V is a finite set of finite-domain
state variables; A is a finite set of actions (or operators);
I is a state; and G is a partial state. Each variable v ∈ V
has an associated finite domain dom(v). An atom (or fact)
v 7→ d is an assignment mapping a variable v ∈ V to a
value in its domain dom(v). A partial state s is a set of
atoms, each over a different variable. With vars(s) = {v |
v 7→ d ∈ s for some d} we denote the variables defined by
s, and s(v) denotes the value d of v in s. A partial state is
called a state if vars(s) = V . Each action a ∈ A is a triple
⟨pre(a), eff(a), cost(a)⟩ where precondition pre(a) and ef-
fect eff(a) are partial states, and cost(a) ∈ R+

0 denotes the
cost of a.

An action a ∈ A is applicable in state s if pre(a) ⊆ s. Ap-
plying an applicable action a in s leads to the successor state
s′ = sJaK where s′(v) = d if v 7→ d ∈ eff(a) and s′(v) =
s(v) otherwise. An action sequence π = ⟨a1, . . . , an⟩ is ap-
plicable in s if a1 is applicable in s, a2 is applicable in sJa1K
and so forth, and we denote the resulting state by sJπK. If
sJπK ⊇ G, then π is called an s-plan. The cost of π is de-
fined as cost(π) =

∑n
i=1 ai. If π is an s-plan and cost(π) is

minimal among all s-plans, then we call π an optimal plan.
The aim of classical planning is to find an I-plan (also just
called plan). Likewise, the aim of optimal classical planning
is to find an optimal I-plan.

A landmark for a state s of a planning task Π =
⟨V,A, I,G⟩ is a property that needs to be satisfied along all
s-plans. Related work often distinguishes landmarks based
on atoms and landmarks based on actions. We rely on both
concepts in this paper. In particular, we consider disjunctive
fact landmarks and disjunctive action landmarks. A disjunc-
tive fact landmark lF for s is a set of atoms (facts) such
that all s-plans π = ⟨a1, . . . , an⟩ visit a state containing
some atom in lF , i.e., there exists an s′ ∈ {sJ⟨a1, . . . , ai⟩K |
0 ≤ i ≤ n} with s′ ∩ lF ̸= ∅.1 Similarly, a disjuncitve
action landmark lA ⊆ A is a set of actions such that
lA ∩ {a1, . . . , an} ̸= ∅ for all s-plans. We will use that a
disjunctive fact landmark lF for a state s that is not satisfied
in s (i.e., s ∩ lF = ∅) can be translated into a disjunctive
action landmark for s; for example, we can use the set of ac-
tions that contain one of the atoms in lF as an effect for this
purpose, that is lA = {a ∈ A | eff(a) ∩ lF ̸= ∅}.

The LAMA Planner
Since our contributions were developed and evaluated in the
context of the LAMA planner, we first give an overview on
how LAMA works and has evolved over time. LAMA is a
classical planning system designed by Richter and Westphal
(2010) as an extension of Fast Downward (Helmert 2006). It
aims to find a suboptimal plan fast and keeps searching for
shorter plans while time permits. LAMA successfully partic-
ipated in the satisficing track of the IPC since the 6th edition.

1The term “disjunctive” in the name indicates that the idea can
be generalised to arbitrary formulas over atoms which must hold in
some state along the state trace of each plan.

It won the competition in the years 2008 and 2011 and was
later used as a baseline planner. Most recently, in the IPC
2023 it turned out to still perform comparatively well: In the
satisficing track the scores were determined by plan quality,
cheaper plans leading to higher scores, and only 3 out of 22
competitors obtained higher overall scores than LAMA. In
the agile track the scores were determined by how quickly
a plan is found, shorter times leading to higher scores, and
LAMA ended up with a higher score than all competitors.

Core Features
The success of LAMA can be attributed to many of the var-
ious ideas embedded in the system. At its core, LAMA is a
heuristic forward search algorithm making use of (1) an any-
time search algorithm, (2) multiple heuristics, and (3) pre-
ferred operators among other techniques. One of its core
features is the use of a landmark heuristic (Richter, Helmert,
and Westphal 2008) which is the main link to this paper.

Anytime Search The search employed by LAMA does not
stop once it finds a solution. Instead, it restarts the search
from the initial state in a slightly different configuration,
trying to find a cheaper solution while time remains. More
specifically, LAMA starts with a greedy best-first search (Do-
ran and Michie 1966) and heuristics agnostic to action costs
to find any short (rather than cheap) solution as fast as possi-
ble. We sometimes call this the first iteration of LAMA. If the
first iteration is successful within the given resource limits,
LAMA stores the found plan and restarts the search from the
initial state with a weighted A∗search (Pohl 1970) that takes
action costs into account. Whenever a cheaper plan is found,
it is again stored and another weighted A∗search starts with a
lower weight than before. The search stops when no cheaper
plan can be found, or when the time or memory limit im-
posed from the outside is exhausted.

Multiple Heuristics LAMA uses a so-called multi-
heuristic search (Helmert 2006; Röger and Helmert 2010)
where the open list of the search algorithm(s) is actually a
set of queus, each ordered by a different heuristic. When
choosing the next state to expand, the search alternates be-
tween the available queues. The generated successors are
then evaluated with all heuristics independently and inserted
into the corresponding queues. The heuristics used in LAMA
are a cost-sensitive variant of the FF heuristic hFF (Hoff-
mann and Nebel 2001; Keyder and Geffner 2008) and a
path-dependent heuristic counting the number of landmarks
that remain to be achieved to reach the goal (Zhu and Givan
2003). With the introduction of action costs, later versions
of LAMA considered a cost-sensitive variant of this heuristic
that we call hsum in this paper because it sums up the costs
of the cheapest landmark achievers (Richter and Westphal
2010).

Preferred Operators Some heuristics derive information
about the underlying planning problem beyond the estimated
cost to reach the goal from a given state. Helmert (2006) in-
troduces the notion of preferred operators to flag successor
states reached through such operators as interesting indepen-
dent of their heuristic value. LAMA makes use of this idea

by maintaining additional queues in the open list containing
only states reached through preferred operators. In partic-
ular, LAMA uses an additional queue for each heuristic in
its open list and alternates between all of them. (Note that
these additional queues contain all states reached through
preferred operators, independent of which heuristic declared
the operator preferred.) This makes it more likely to ex-
pand states reached through preferred operators. Further-
more, whenever a state is expanded that leades to progress
in terms of the heuristic value, the corresponding queue is
boosted: for a given number of turns, the choice of state to
expand next is based exclusively on this queue within the
open list (Richter and Helmert 2009).

Both heuristics used in LAMA can be used to decide pre-
ferredness of operators. In the case of hFF, operators are pre-
ferred if they occur in the relaxed plan used for the heuristic
estimate. For hsum, LAMA prefers operators that are applica-
ble and reach an unreached landmark for which all predeces-
sors in the so-called landmark graph are already reached. If
no such operator exists, then it prefers operators that occur
in a relaxed plan to a “nearest acceptable landmark” (Richter
and Westphal 2010). Unlike hFF, hsum does not generate this
information as a side product when computing the heuristic
value for a given state. Computing preferred operators based
on landmarks is rather an extra step that can be executed on
top of the heuristic computation, iterating over all applicable
operators and marking all that meet the above criteria.

Landmark Generation
Given that landmarks lie at the core of LAMA and also at
the intersection with this paper, we deem it useful to repeat
how landmarks are computed in LAMA. It computes a set
of disjunctive fact landmarks for the initial state along with
orderings between them. (We ignore landmark orderings be-
cause they are not important for our contributions.) Then, it
progresses which landmarks remain to be achieved along the
paths expanded during search. The distance estimate of hsum

is then based on the landmarks that remain to be achieved
in the future of any encountered state. We refer to Büchner
et al. (2023) for a discussion of landmark progression and
focus on the landmark generation here.

LAMA’s landmark generator finds disjunctive fact land-
marks in a backwards fashion, as illustrated in Algorithm 1
(Richter, Helmert, and Westphal 2008). It first creates a fact
landmark for each goal atom (line 1), and then iteratively
finds new landmarks (line 2): Given landmark l (line 3), it
tries to find a (small) set of atoms that contains at least one
precondition of all actions achieving l (line 5). Since any of
these preconditions needs to be satisfied in order to reach l,
this set of atoms forms a disjunctive fact landmark. Note that
considering all possible sets F is not feasible; LAMA only
considers sets where all atoms stem from the same predicate
symbol (Richter and Westphal 2010).

The number of landmarks is limited to be polynomial in
the task representation through several mechanisms. Most
importantly for us, the generator disallows overlap between
the disjunctive fact landmarks (line 8), that is, every atom
appears in at most one landmark. Note that this can still lead
to overlap when translated to disjunctive action landmarks,

Algorithm 1: Simplified LAMA landmark generation with-
out orderings and reasoning on domain transition graphs.

Input: planning task ⟨V,A, I,G⟩
Output: set of disjunctive fact landmarks L

1: open,L ← set of goal facts in G as singletons
2: while open ̸= ∅ do
3: l← open.pop()
4: A ← first achievers of l
5: for all sets of facts F /∈ L where F ∩ pre(a) ̸= ∅ for

all a ∈ A do
6: if |F | = 1 then
7: L ← {l′ ∈ L | F ∩ l′ = ∅}
8: if |F | ≤ 4 and F ∩ l′ = ∅ for all l′ ∈ L then
9: L ← L ∪ {F}

10: open.insert(F)
11: return L

since two atoms may be achieved by the same action. Fur-
thermore, the generator limits the disjunction size of land-
marks to 4 (line 8). This makes sense on an intuitive level
since smaller disjunctions are harder to satisfy. Moreover, a
larger landmark blocks more facts from being used in other
landmarks, potentially resulting in fewer landmarks overall.
If both of these conditions are satisfied, the newly found is
added to the set of landmarks (line 9) and inserted into the
open list (line 10).

In the special case where a newly found landmark consists
of a single atom (line 6), instead of discarding it, LAMA dis-
cards the previously found landmark that overlaps with it
(line 7). The reasoning behind this is again that the smaller
disjunction is harder to satisfy, rendering the newly found
landmark more informative.

LAMA further uses information from the domain transi-
tion graph of each variable (i.e., the atomic projection on
each variable) to derive more landmarks (Richter and West-
phal 2010). More specifically, whenever a landmark F is
added in line 9 such that |F | = 1, the following procedure is
applied: If the singleton atom v 7→ d ∈ F cannot be reached
in the domain transition graph without passing a state corre-
sponding to another atom v 7→ d′, then F ′ = {v 7→ d′} is
also a (disjunctive) fact landmark. We leave this aspect out
of Algorithm 1 for the sake of simplicity.

Evolution
The code base of LAMA was originally based on Fast Down-
ward, in which it has since been integrated. Since
Fast Downward is under active development, what we con-
sider to be the LAMA planner today also underwent some
significant changes.2 We briefly summarize some major dif-
ferences between LAMA as it is described in the original pa-
per by Richter and Westphal (2010) and the version under-
lying this paper.

One major change is the way landmark information is pro-
gressed along the search space. Büchner et al. (2023) show

2See in particular https://issues.fast-downward.org/issue987
concerned with landmarks.

that LAMA’s original landmark progression applies incor-
rect inference in determining which landmarks remain to be
achieved. They further suggest a principled and sound pro-
gression which has since been implemented in Fast Down-
ward. Before this change, cycles in the landmark graphs
(i.e., cyclic dependencies according to the orderings be-
tween landmarks) were an issue because LAMA would never
consider the involved landmarks reached. LAMA therefore
systematically removed orderings from the landmark graph
until it was acyclic. With the sound progression, this issue
no longer persists and Fast Downward no longer breaks up
cycles in the landmark graph. While this may lead to more
orderings, today’s implementation no longer considers the
so-called obedient-reasonable orderings leading to fewer or-
derings in some cases; on the one hand, Büchner et al. leave
it an open question how to deal with obedient-reasonable
orderings in a principled way, on the other hand their useful-
ness in practice is questionable.

We describe above how LAMA derives preferred oper-
ators. This procedure has also changed since the original
version. Today, landmark heuristics in Fast Downward con-
sider operators preferred if they achieve any landmark re-
quired in the future of a given state, not only when this land-
mark is achieved for the first time. Further, it is no longer
a requirement that all predecessors in the landmark graph
of this landmark are already achieved. If no applicable op-
erator can achieve a landmark, then no operators are pre-
ferred. Since the main use case of preferred operators from
landmark heuristics within Fast Downward is LAMA, and
LAMA already considers preferred operators from relaxed
plans through hFF, computing relaxed plans to the nearest
landmark and considering the corresponding operators pre-
ferred was found to not affect performance in any meaning-
ful way. In general, experiments have shown that using pre-
ferred operators based on landmarks is not beneficial in the
context of LAMA. Therefore, the recommended configura-
tion of LAMA only uses hFF to determine preferred operators
and does not apply the extra step to compute preferred oper-
ators from hsum. Note that there are still four queues in the
open list of LAMA, though, as the states preferred by hFF

also end up in a queue ordered by the evaluation function
based on hsum for these states.

Hitting Set Heuristics
We now turn over to view landmarks as sets of actions
rather than atoms. Recall that even though LAMA ensures
that disjunctive fact landmarks are disjoint, translating them
to disjunctive action landmarks may lead to overlaps be-
cause a single action may achieve several atoms occurring in
different disjunctive fact landmarks. LAMA considers each
landmark to have a cost that corresponds to the cheap-
est action in the landmark, i.e., cost(l) = mina∈l cost(a).
Now consider a state s and an associated set of landmarks
L. The landmark heuristic hsum used in LAMA returns the
sum of all landmark costs: hsum(s) =

∑
l∈L cost(l). While

hsum is fast to compute, it ignores the possibility that land-
marks may overlap, meaning that several landmarks can be
achieved by one action. For example, if we have two land-
marks l1 = {a1, a2} and l2 = {a1, a3}, with cost(a1) = 1

Algorithm 2: Greedy Hitting Set Heuristic hghs

Input: set of landmarks L
Output: heuristic estimate hghs

1: hghs ← 0
2: while L ≠ ∅ do
3: select a ∈ A with minimal cost(a)

|{l∈L|a∈l}|
4: hghs ← hghs + cost(a)
5: L ← L \ {l ∈ L | a ∈ l}
6: return hghs

and cost(a2) = cost(a3) = 2, hsum returns a heuristic
value of cost(a1) + cost(a1) = 2, while a single applica-
tion of a1 with a cost of 1 satisfies both landmarks. Con-
sidering an alternative cost function cost′ with cost′ = cost
except cost′(a1) = 3, hsum computes a heuristic value of
cost′(a2) + cost′(a3) = 4, even though we achieve both
landmarks by applying a1 with a cost of only 3.

In order to account for overlapping landmarks, we aim to
find a set of actions that achieves all landmarks. This can be
modeled as a weighted hitting set problem: Given a universe
of elements U and a set S consisting of sets of elements from
U , along with a cost function cost : U → R, a hitting set is a
set H ⊆ U that “hits” each element of S, that is H ∩ S ̸= ∅
for all S ∈ S. The cost of H is the sum of all its elements,
i.e., cost(H) =

∑
u∈H cost(u). By setting U = A, S = L,

and cost as the action cost function, finding a set of actions
that achieves all landmarks means finding a hitting set for L.
The cost of the hitting set can then be used as the heuristic
value. Additionally, and in contrast to hsum, the hitting set
can be used to identify preferred operators with almost no
overhead by considering all applicable actions in the hitting
set as preferred.

Using hitting sets to compute landmark heuristics is not a
new idea. Several approaches have been proposed to under-
approximate the cost of a minimum hitting set for optimal
planning (e.g., Bonet and Helmert 2010; Pommerening et al.
2014; Büchner, Keller, and Helmert 2021). We instead focus
on satisficing planning where admissibility is not a concern
for heuristic design. Finding a minimum hitting set is an NP-
complete problem (Karp 1972), so we suggest to find subop-
timal hitting sets and use their cost to overapproximate the
cost of a minimum hitting set.

Starting from hsum, a straightforward way to calculate a
hitting set while maintaining computational efficiency is to
start with the collection of actions that hsum would sum over,
and then remove all duplicates. The resulting collection is a
set because there are no duplicates, and it hits all landmarks
because only duplicate actions are removed. We denote the
resulting heuristic “hitting sum”, or hhs. Since hsum is based
on landmark costs which are only implicitly linked to ac-
tions, we pick the first minimal cost action according to a
fixed ordering for hhs.

While this approach avoids the problem of counting
the same action multiple times (illustrated by the example
with cost function cost) the problem of summing multiple
cheaper actions instead of a single expensive action (illus-
trated by the example with cost function cost′) still persists.

To also address this second issue, we instead use a well-
known greedy approximation of small hitting sets, originally
described for the set cover problem (Chvátal 1979), which
is equivalent to the hitting set problem (Ausiello, D’Atri,
and Protasi 1980). Algorithm 2 is an adaption written in the
hitting set perspective and computes our greedy hitting set
heuristic hghs. It iteratively selects actions such that the ra-
tio between the cost of the action and the number of newly
covered landmarks is minimal, until all landmarks are cov-
ered. In the example with cost function cost′, this approach
selects a1 in line 3 during the first iteration already because
it appears in two landmarks, rendering its ratio cost(a1)

2 = 3
2

lower than cost(a2)
1 = cost(a3)

1 = 2 for a2 and a3 which only
appear in one landmark each.

Derived Variables

Since the landmark generation method considered in this pa-
per is based on disjunctive fact landmarks rather than dis-
junctive action landmarks, it is important to be able to trans-
form the former into the latter. For planning tasks defined
in SAS+, this transformation is straightforward, as outlined
in the background section. For other formalisms, computing
the achievers of an atom can become difficult. In such cases,
a valid alternative is to overapproximate the set of achievers.
This ensures that the resulting disjunctive action landmark
is still a landmark, but it might render the heuristic less in-
formed than having the exact set of achievers.

One example where computing the set of achievers
is difficult is the PDDL feature called derived variables
(Edelkamp and Hoffmann 2004). A derived variable is a
variable whose value is not changed by actions, instead it
is uniquely derived from other state variables with the help
of so-called axioms. For example, in the BLOCKSWORLD
domain, where we stack blocks into towers, one could de-
fine a derived variable above(x,y) which is true if either
on(x,y) is true or there is a z such that on(x,z) and
above(z,y) is true. To extract the exact set of achievers
of a landmark containing a derived variable, one would need
to define the different constellations of non-derived variables
that cause the derived variable to be true, which is a complex
task. Fast Downward instead uses the set of all actions as a
naive overapproximation; after all, in order to make a cur-
rently false derived variable true, we do know that we need
to do something.

For hsum this overapproximation results in each such land-
mark losing a bit of information: instead of using the cost
of the cheapest action of the real achiever set, the cost of
the overall cheapest action is used. For hhs and hghs on the
other hand, almost all information from such landmarks is
lost since all landmarks containing derived variables can
now be reached by any single action. If we have at least one
landmark without any derived variable we thus get the same
heuristic value as if we would delete all such landmarks.
Otherwise (if all landmarks contain derived variables), the
heuristic value is equal to the cost of the overall cheapest
action.

Optimal Planning
As previously mentioned, approximating the cost of hitting
sets has been used for optimal planning before. In this set-
ting, we need to guarantee that the heuristic is admissible,
that is that it never overestimates the cost to the goal. Since
any path from the current state to the goal must achieve all
landmarks that are yet to be achieved, a lower bound on the
cost of a minimum hitting set is guaranteed to be admissible.
While both hhs and hghs instead compute an upper bound,
we can derive a lower bound for hghs as well, because the
greedy hitting set algorithm has a guaranteed bound on the
overapproximation: The cost of the hitting set found in Al-
gorithm 2 is at most Hd times as high as the cost of a min-
imum hitting set, where d = maxa∈A|{l ∈ L | a ∈ l}|
is the largest amount of landmarks an action can cover, and
Hn =

∑n
i=1

1
n is the n-th harmonic number (Chvátal 1979).

This means that by dividing hghs by Hd we obtain an admis-
sible estimate and can thus use it in optimal planning as well.
We denote this variant by hghs-opt.

Overlapping Landmark Generation
Since our new heuristics account for overlap between land-
marks, we propose to adapt LAMA’s landmark generation
to allow overlapping disjunctive fact landmarks. While this
change primarily targets our new heuristics, we remark that
overlapping landmarks can contain valuable information in
general. Consider for example a problem with atoms x, y, z
and the landmarks {x, y}, {x, z}, and {y, z} (among oth-
ers). No matter which of these landmark is found first in
Algorithm 1, the other two will be discarded (line 8).

Furthermore, the generator disallows overlaps during the
entire algorithm, not only in the final set of landmarks it re-
turns. If a newly generated landmark l overlaps with an ex-
isting landmark l′, then l is immediately discarded unless
|l| = 1, in which case l′ is discarded (line 6-7). Now con-
sider the following example: The current set of landmarks is
L = {{x, y}}. The algorithm finds a new landmark {y, z}
but discards it since it overlaps with {x, y}. Next, it finds
{x}, which replaces {x, y} in L, yielding L′ = {{x}}.
Since {y, z} is also a landmark and does not overlap with
{x} we could now add it to L′, but the generator does no
longer know about it and will only return L′.

Finally, the argument behind special casing |l| = 1 is that
l contains strictly stronger information than any l′ ⊃ l. We
say that l dominates l′ in this case. However, domination is
not restricted to |l| = 1 but holds for arbitrary subset rela-
tions. Consider another case where L = {{x, y, z}} and the
next landmark found is {x, y}. Clearly, {x, y} is harder to
satisfy than {x, y, z}, but in this case Algorithm 1 discards
{x, y} instead of replacing {x, y, z} as it would in the case
of {x}, {y} or {z}. We do not see a good argument why
domination should only be considered in the special case of
|l| = 1.

Based on all these examples, we suggest to modify Algo-
rithm 1 by dropping lines 6-7 and remove the second con-
dition in line 8. This change leads us to also reconsider
the restriction on the landmark size to at most 4 atoms,
also imposed in line 8. As mentioned in the discussion of

LAMA’s landmark generation, large landmarks are not only
less informative, but they can also have a negative impact on
the generation procedure when we disallow overlap. More
specifically, larger landmarks block away more atoms from
appearing in new landmarks. This problem cannot occur
when we allow overlap, thus we have less reason to restrict
landmark size. Nevertheless, we want to keep the total num-
ber of landmarks tractable, thus we still enforce a maximum
size limit but increase the constant.

Theoretically, this change can lead to a significantly larger
number of landmarks. Assuming a task with n atoms and
maximal landmark size k, up to

∑k
i=1

(
n
k

)
could be found

(before the dominance elimination). At the same time, when
disallowing overlaps, we get at most n landmarks. However,
we do not expect these changes to lead to significant runtime
differences for two reasons:

1. We expect that the generation algorithm will only de-
tect a tiny fraction of all

∑k
i=1

(
n
k

)
disjunctions of up

to k facts as landmarks. Firstly, many of those disjunc-
tions are likely not landmarks at all. Secondly, we expect
the algorithm to only find a small number of actual land-
marks, because the number of landmarks found in each
backtracking step is limited and landmark sizes tend to
grow quickly with each step, limiting the overall amount
of backtracking steps.

2. Disallowing overlap limits the final number of landmarks
but not the number of landmarks generated during the
procedure. Algorithm 1 may generate any number of
landmarks in line 5, only to disregard them in line 8.
This means that even when disallowing overlap, it is the-
oretically possible, albeit highly unlikely, to find all land-
marks and discarding all but n of them.

While allowing overlap and increasing the maximal land-
mark size enables us to consider more landmarks, this also
introduces a new problem: Landmarks become increasingly
redundant. We alleviate this issue by removing dominated
landmarks in a post-processing step. We can safely disregard
dominated landmarks because they are satisfied as soon as
the dominating landmark is. We further adapt Algorithm 1
by adding the line

L ← {l ∈ L | ∄ l′ ∈ L : l′ ⊂ l}

just before returning on line 11. Note that we additionally
use these dominance relations to infer landmark orderings,
but this discussion falls outside the scope of this paper.

Experimental Evaluation
We implemented our approach on top of Fast Downward
version 23.06 (Helmert 2006). In order to analyze our hit-
ting set heuristics and changes to the landmark generation
in isolation, we first run a simplified version of LAMA’s first
iteration, removing the hFF heuristic and the use of preferred
operators. In a second step we test them as fully fledged
planning systems. Furthermore we tested a variant which
uses different landmark heuristic in the different iterations
of LAMA. Finally we looked into how the admissible hghs-opt

performs in an optimal setting.

all domains no derived variables

hsum hhs hghs hsum hhs hghs

4 1985 1983 1958 1660 1718 1693
1961 1974 1954 1636 1709 1689

10 1998 2006 1975 1680 1742 1710
1979 2006 1983 1662 1742 1718

Table 1: Coverage results between hsum, hhs, and hghs. The
left-most column indicates the maximal landmark size and
the following column whether overlapping is allowed ()
or not (). The right side restricts from all 90 domains to
those 81 without derived variables.

10−3 10−2 10−1 100 101 102

0.5

1

2

5

size 4 without overlap

si
ze

10
w

ith
ov

er
la

p

Figure 1: Relative landmark generation time in seconds.

Our experiments were conducted on AMD EPYC 7742
2.25GHz processors, using a time limit of 30 minutes and
memory limit of 3.5 GiB. The results were evaluated with
Downward Lab (Seipp et al. 2017). Our benchmark suite
consists of 2882 planning tasks from the satisficing tracks
of the IPCs 1998–2023. Due to the limitations of hitting
set heuristics when dealing with landmarks containing de-
rived variables, we sometimes additionaly report results re-
stricted to domains without derived variables. See Büchner
et al. (2024) for code, benchmarks and experimental data.

Simplified First Iteration
To analyze the impact of our proposed landmark generation
changes, we separately controlled disjunction size and over-
lap. For the disjunction size we tried values from 4 to 14
in increments of 2. When not allowing overlap, the number
of landmarks across all tasks only increased slightly (from
≈ 484 000 for 4 to ≈ 511 000 for 14), but with overlap we
observed two larger jumps from 6 to 8 (≈+90 000) and from
10 to 12 (≈+85 000). Table 1 reports the coverage results
for 4 (baseline) and 10 (best overall performance).

While the time for landmark generation increases as we
allow for larger sizes and overlaps, it does so within reason.
Figure 1 compares size 4 without overlap to size 10 with
overlap. For the vast majority of tasks the time spent on gen-
eration is less than doubled, but can increase up to a factor

of 8. Yet, the generation time stays below 10 seconds for the
majority of the problems, which we deem reasonable given
the overall time limit of 30 minutes.

Disjunction Size The configurations using the larger dis-
junction size dominate across all used heuristics. We find
that hsum solves the fewest additional tasks and hhs the most,
and that configurations with overlap generally benefit more.

Overlap While allowing larger disjunctions is generally
beneficial, not all configurations benefit from overlapping
landmarks. The hsum heuristic consistently performs worse
with overlap, confirming that it is undesirable to consider
overlapping landmarks independently. Our new heuristics
perform worse with overlap and the default disjunction size,
while for disjunction size 10 overlap has no influence for
hhs and a positive influence for hghs. We assume that over-
lap introduces some degree of inaccuracy for all considered
heuristics. This results in a trade-off between the usefulness
of the additional landmark information and the inaccuracies
from the overlap. As we progress from hsum over hhs to
hghs the heuristics become better equipped to handle over-
lap. Similarly, as we progress to larger disjunction sizes, the
overlap between landmarks becomes more likely to be small
relative to the landmark size, harming the heuristic less.

Heuristics Finally, we compare the heuristics against each
other by considering their respective best performing ver-
sions, namely size 10 without overlap for hsum, and size 10
with overlap for both hhs and hghs. Taking hsum as a baseline,
hhs improves coverage, solving more tasks in 16 domains
and fewer in 15. Coverage drops for hghs on the other hand,
which solves more tasks in 14 domains compared to hsum,
and fewer in 21. On domains without derived variables, both
hhs and hghs achieve significantly higher coverage than hsum.

Looking at the domains with the biggest difference, the
hitting set heuristics lose 42 tasks on the two PSR domains
but solve 65 tasks more in SCHEDULE. For PSR the re-
sults can be explained with the fact that roughly 70% of
landmarks contain derived variables, highlighting the unin-
formedness of hitting set heuristics when dealing with de-
rived variables. While not as impactful in absolute numbers,
the OPTICALTELEGRAPH domain paints an even clearer
picture: all landmarks contain derived variables, and cov-
erage drops from 6 (for hsum) to 2 (for hhs and hghs). The
SCHEDULE domain on the other hand highlights the advan-
tage of hitting set heuristics when having landmarks with
synergies. It describes problems where we have several ma-
chines available to change properties of objects, such as
shape, surface texture, color and holes. It contains actions
for each machine to schedule the processing of one object,
and one time-step action in which all scheduled tasks are ex-
ecuted and the machines and objects are free to use again.
Many landmarks found in these problems are single fact
landmarks that require an object or machine to be free. All
these landmarks have the same set of achievers, namely the
set containing only the time step action. While hhs and hghs

correctly realize that all these landmarks can be achieved
in one step, hsum counts all of them separately, making the
heuristic significantly less accurate.

100 101 102 103 104

0.5

1

2

failed

hsum

h
hsum

h = hhs

h = hghs

Figure 2: Relative cost of plans found in the first iteration by
hsum compared against hhs and hghs. PARCPRINTER has plan
costs in the order 106 and is excluded to improve clarity.

10−2 10−1 100 101 102 103

10−3

10−1

101

103

failed

hsum

h
hsum

h = hhs

h = hghs

Figure 3: Relative runtime of hsum compared against that of
hhs and hghs in the first iteration.

Figures 2 and 3 compare the plan cost and runtime of hsum

to that of hhs and hghs. While hhs often finds worse plans than
hsum, the opposite is true for hghs, suggesting that hghs guides
the search towards better plans. In terms of runtime, the re-
sults are mixed for hhs and generally worse for hghs, indicat-
ing that the improved guidance of hghs comes with increased
computation cost. This increase may be due to the more ex-
pensive heuristic, but it is also possible that more states need
to be expanded in order to find a plan. The increased runtime
also significantly affects the reasons for failure: While hsum

and hhs time out in 5 tasks, hghs does so in up to 200 tasks,
depending on the configuration.

Comparison against LAMA

For a full planner comparison we introduce LAMA-hhs and
LAMA-hghs. They are identical to LAMA except for the
heuristic used and changes to disjunction size and overlap.
Since hsum improved with disjunction size 10, we further in-
clude LAMA-10 that differs only in the disjunction size.

pref.
op.

all domains no derived var.

score cov. score cov.

FF

LAMA 2357.25 2458 1957.81 2056
LAMA-10 2350.12 2455 1950.27 2052
LAMA-hhs 2324.18 2426 1952.02 2052
LAMA-hghs 2346.74 2429 1974.48 2055

FF
+

LM

LAMA 2329.93 2439 1929.62 2037
LAMA-10 2320.71 2431 1922.60 2031
LAMA-hhs 2300.09 2401 1930.60 2030
LAMA-hghs 2361.93 2444 1987.33 2068

Table 2: IPC scores and coverage of LAMA-like planners.

The top part of Table 2 shows the IPC quality score and
coverage of each planner using the standard LAMA settings.
The IPC quality score is the best plan cost3 divided by the
found plan cost. The coverage improvements for hsum with
larger disjunction size and hhs do not carry over, most likely
because hFF compensates in domains where hsum is weaker.
Further, the negative impact of hhs in terms of cost, as its IPC
quality score is significantly worse. However, LAMA-hghs is
much closer to LAMA in terms of IPC quality score, com-
pensating its comparatively low coverage with better plans.

The default configuration of LAMA only considers pre-
ferred operators from the hFF heuristic, because the compu-
tation of hsum preferred operators is too expensive. Since the
hitting set heuristics compute preferred operators as a side
product, we tested the impact of taking the preferred oper-
ators from landmark heuristics into account. The results are
shown in the bottom part of Table 2. They confirm that pre-
ferred operators from hsum are harmful for standard LAMA.
Similarly they negatively affect LAMA-hhs, presumably be-
cause the found hitting set is not a good approximation. For
LAMA-hghs we however see a significant improvement, re-
sulting in the highest IPC quality score despite lower cov-
erage. This indicates that the hitting sets found by hghs are
a good representation of which actions should be applied.
When only considering domains without derived variables,
LAMA-hghs with additional preferred operators from hghs

achieves both the highest coverage and highest IPC quality
score among all configurations.

Combining Heuristics As pointed out before, LAMA is
designed to find an arbitrarily bad solution fast before grad-
ually improving it. We can follow this path with our col-
lected findings from the previous experiments. So far we
have seen that hsum and hhs tend to find plans faster, but
hghs finds plans of better quality. This suggests that a LAMA
configuration using one of the former two heuristics in the
earlier iterations and hghs in the later iterations might com-
bine the best of two worlds. We thus evaluated two further
LAMA-like configurations that use either hsum or hhs with-
out preferred operators for the landmark heuristic in the first
iteration, and hghs with preferred operators for all other it-

3The minimum of all found plans’ costs and the upper bound
from planning.domains (Muise 2016, accessed on April 5, 2024).

erations. The resulting planners behave similarly in terms
of coverage: LAMA-hsum-hghs achieves a coverage of 2458
(identical to LAMA which also uses hsum in its first itera-
tion) and LAMA-hhs-hghs reaches 2427 (compared to 2426
for LAMA-hhs). This is to be expected since the first iteration
is the only one affecting coverage. Regarding the IPC qual-
ity score however, LAMA-hsum-hghs improves on LAMA and
LAMA-hghs with a score of 2378.08, confirming that finding
any solution fast with a fast heuristic but then using a more
sophisticated heuristic in later iterations pays off.

Optimal Planning
In order to evaluate whether a greedy hitting set can also
serve as a good underapproximation, we tested the admissi-
ble heuristic hghs-opt in an optimal setting, comparing against
the landmark cost partitioning heuristic (Karpas and Domsh-
lak 2009; Domshlak et al. 2011). We ran three configura-
tions, which all use A∗ search with a single heuristic and use
our altered landmark generation with overlap and disjunc-
tion size 10. They only differ in the heuristic: hucp performs
uniform cost partitioning, hocp optimal cost partitioning and
hghs-opt the admissible greedy hitting set heuristic. The con-
figurations were evaluated on 1847 planning tasks from all
STRIPS domains of the optimal IPC 1998–2023 tracks.

The highest coverage of 1007 is achieved by hucp, while
the other configurations trail behind with a coverage of 904
for hghs-opt and 907 for hocp. The reason is in both cases that
the heuristic is too expensive to compute: hocp must solve an
LP in each state, while hghs-opt has to perform the iterative
computation in each state. The uniform cost partitioning in
hucp, however, can be computed in time linear in the sum
of the number of landmark achievers. While hocp dominates
hucp, hghs-opt seems to result in worse heuristic values, as it
almost always requires more expansions than hucp.

Conclusion
The landmark heuristic used in LAMA can be inaccurate due
to ignoring synergies between landmarks. We propose two
hitting-set-based heuristics that take synergies into account:
hhs creates a hitting set by fixing one action as the achiever
for each landmark, while hghs uses a greedy hitting set al-
gorithm that is more expensive to compute but yields higher
quality hitting sets. Together with allowing overlaps in the
disjunctive fact landmarks, increasing the maximal disjunc-
tion size, and utilizing the hitting set as a source for preferred
operators, trading computation cost for better guidance pays
off for hghs: Its LAMA-like planner is on par with LAMA, and
surpasses it on domains without derived variables. Further-
more, combining the fast computation of hsum and accuracy
of hghs by using the former in the first iteration and the latter
afterwards further strengthens the planner, resulting in the
overall highest coverage and score.

An important open question is how to improve our heuris-
tics on domains with derived variables. To this end a more
principled way to approximate the achievers of derived vari-
ables should be investigated. Furthermore, we believe that
hhs has the potential to offer better guidance without sacrific-
ing runtime by developing more sophisticated tie-breaking
criteria for deciding which achiever is selected.

Acknowledgments
This research was supported by TAILOR, a project funded
by the EU Horizon 2020 research and innovation pro-
gramme (grant agreement no. 952215) and by the Swiss
National Science Foundation (SNSF) as part of the project
“Lifted and Generalized Representations for Classical Plan-
ning” (LGR). A special thanks goes to Malte Helmert who
supported this work with helpful recommendations and dis-
cussions.

References
Ausiello, G.; D’Atri, A.; and Protasi, M. 1980. Structure
Preserving Reductions among Convex Optimization Prob-
lems. Journal of Computer and System Sciences, 21(1):
136–153.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Helmert, M. 2010. Strengthening Landmark
Heuristics via Hitting Sets. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 329–334.
IOS Press.
Büchner, C.; Christen, R.; Eriksson, S.; and Keller, T. 2024.
Code, Benchmarks and Experiment Data for the ICAPS
2024 HSDIP Workshop Paper “Hitting Set Heuristics for
Overlapping Landmarks”. https://doi.org/10.5281/zenodo.
11148129.
Büchner, C.; Eriksson, S.; Keller, T.; and Helmert, M. 2023.
Landmark Progression in Heuristic Search. In Koenig, S.;
Stern, R.; and Vallati, M., eds., Proceedings of the Thirty-
Third International Conference on Automated Planning and
Scheduling (ICAPS 2023), 70–79. AAAI Press.
Büchner, C.; Keller, T.; and Helmert, M. 2021. Exploiting
Cyclic Dependencies in Landmark Heuristics. In Goldman,
R. P.; Biundo, S.; and Katz, M., eds., Proceedings of the
Thirty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2021), 65–73. AAAI Press.
Chvátal, V. 1979. A Greedy Heuristic for the Set-Covering
Problem. Mathematics of Operations Research, 4(3): 233–
235.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The Big Joint Optimal Landmarks Planner. In IPC 2011
Planner Abstracts, 91–95.
Doran, J. E.; and Michie, D. 1966. Experiments with the
Graph Traverser program. Proceedings of the Royal Society
A, 294: 235–259.
Edelkamp, S.; and Hoffmann, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical Report 195, University of Freiburg,
Department of Computer Science.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Miller, R. E.; and Thatcher, J. W., eds., Complexity
of Computer Computations, 85–103. Plenum Press.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In Boutilier, C., ed., Proceedings of the
21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), 1728–1733. AAAI Press.
Keyder, E.; and Geffner, H. 2008. Heuristics for Planning
with Action Costs Revisited. In Ghallab, M.; Spyropou-
los, C. D.; Fakotakis, N.; and Avouris, N., eds., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI 2008), 588–592. IOS Press.
Muise, C. 2016. Planning.Domains. In ICAPS 2016 System
Demonstrations and Exhibits.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence, 1: 193–204.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds., Proceed-
ings of the Twenty-Fourth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2014), 226–234.
AAAI Press.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 273–280. AAAI
Press.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.
AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.
Röger, G.; and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Brafman, R.; Geffner, H.; Hoffmann, J.; and Kautz, H., eds.,
Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS 2010), 246–
249. AAAI Press.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Zhu, L.; and Givan, R. 2003. Landmark Extraction via Plan-
ning Graph Propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.

