Hitting Set Heuristics for Overlapping Landmarks

Clemens Büchner Remo Christen Salomé Eriksson Thomas Keller

June 2, 2024

Planning a Camping Trip with LAMA

Planning a Camping Trip with LAMA

- cheapest item from every landmark
- *h*^{LAMA} = 25

- cheapest item from every landmark
- *h*^{LAMA} = 25
- That's more stuff than necessary!

- cheapest item from every landmark
- *h*^{LAMA} = 25
- That's more stuff than necessary!
- remove duplicates: $h^{HS} = 23$

- 1. pick item with best *cost*/*#landmarks* ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best *cost*/*#landmarks* ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved
- *h*^{GHS} = 18

- 1. pick item with best $\frac{cost}{\#landmarks}$ ratio
- 2. discard achieved landmarks
- 3. repeat until all landmarks achieved
- *h*^{GHS} = 18
- $h^{\text{MHS}} = 16 \quad \rightsquigarrow \text{NP-complete}$

Greedy Best First Search

	(total)	h ^{lama}	h ^{HS}	h ^{GHS}
Coverage	(2804)	1998	2006	1983

Greedy Best First Search

	(total)	hlama	h ^{HS}	h ^{GHS}
Coverage	(2804)	1998	2006	1983
no derived variables	(2323)	1680	1742	1718

Approximation: all actions can achieve derived landmarks.

Greedy Best First Search

	(total)	hlama	h ^{HS}	ћ ^{GHS}
Coverage	(2804)	1998	2006	1983
no derived variables	(2323)	1680	1742	1718

Approximation: all actions can achieve derived landmarks.

Plan Cost

- open lists for multiple heuristics
- preferred operators
- improve plans by restarting weighted A* search

•	open	lists	for	mu	ltipl	le	heuristics
---	------	-------	-----	----	-------	----	------------

- preferred operators
- improve plans by restarting weighted A* search

Coverage		Score
hlama	2458	2357.3
h ^{HS}	2426	2324.2
h ^{GHS}	2444	2361.9

- open lists for multiple heuristics
- preferred operators
- improve plans by restarting weighted A* search

Coverage		Score
h ^{lama}	2458	2357.3
h ^{HS}	2426	2324.2
h ^{GHS}	2444	2361.9

no derived variables

hLAMA	2056	1957.8
h ^{HS}	2052	1952.0
h ^{GHS}	2068	1987.3

- overlapping landmarks express synergies
- hitting set heuristics exploit these synergies
- tradeoff between heuristic accuracy and computation time
- plan quality improves with more accurate heuristics in practice

Definition

Given:

• universe U { / 🎽 🐧 😽 🗽 🎚 🤞

knives: { 🖊 🛸 }

cost(\ge) = 2

- set of sets $\mathcal{S} \subseteq 2^U$
- cost function *cost*: $U \to \mathbb{R}^+_0$

Problem:

- Find hitting set $H \subseteq U$ s.t. $H \cap S \neq \emptyset$ for all $S \in S$.
- minimal hitting set: no cheaper hitting set exists

Overlapping Landmark Generation

- LAMA disallows overlaps by nature
- landmarks are disjoint but landmark achievers are not
- disallowing overlaps discards useful information

Overlapping Landmark Generation

- LAMA disallows overlaps by nature
- landmarks are disjoint but landmark achievers are not
- disallowing overlaps discards useful information

Overlapping Landmark Generation

- LAMA disallows overlaps by nature
- landmarks are disjoint but landmark achievers are not
- disallowing overlaps discards useful information

Our approach: keep everything, let the heuristic deal with it.

Landmark Generation Time

overapproximation of h^{GHS} bounded $\rightsquigarrow h^{\text{GHS-opt}}$

	(total)	h ^{GHS-opt}	h ^{оср}	h ^{ucp}
Coverage	(1847)	904	907	1007

 h^{OCP} : optimal cost partitioning $\approx h^{MHS}$

 h^{UCP} : uniform cost partitioning