
Abstraction Heuristics for Factored Tasks

Clemens Büchner1 Patrick Ferber1 Jendrik Seipp2 Malte Helmert1

June 4, 2024

1 2



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

Malte Helmert 1



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

Malte Helmert 1



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

Malte Helmert 1



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

Malte Helmert 1



Introduction

…

F

U

R

…

…

…

…

…

…

…

…

F

U

R

Malte Helmert 1



Overview of Abstraction Heuristics

projections/pattern databases
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2013)

merge-and-shrink abstractions
(Dräger, Finkbeiner, and Podelski 2006)

1 2

x

y

z

1 2

Malte Helmert 2



Overview of Abstraction Heuristics

projections/pattern databases
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2013)

merge-and-shrink abstractions
(Dräger, Finkbeiner, and Podelski 2006)

1 2

x

y

z

1 2

Malte Helmert 2



Overview of Abstraction Heuristics

projections/pattern databases
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2013)

merge-and-shrink abstractions
(Dräger, Finkbeiner, and Podelski 2006)

1 2

x

y

z

1 2

Malte Helmert 2



Overview of Abstraction Heuristics

projections/pattern databases
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2013)

merge-and-shrink abstractions
(Dräger, Finkbeiner, and Podelski 2006)

1 2

x

y

z

1 2

Malte Helmert 2



Overview of Abstraction Heuristics

projections/pattern databases
(Culberson and Schaeffer 1998)

domain abstractions
(Hernádvölgyi and Holte 2000)

Cartesian abstractions
(Seipp and Helmert 2013)

merge-and-shrink abstractions
(Dräger, Finkbeiner, and Podelski 2006)

1 2

x

y

z

1 2

Malte Helmert 2



Limitations of Abstraction Heuristics

• efficient domain-independent algorithms for SAS+

• no compact models in SAS+ for some problem domains

• some compact models rely on conditional effects

Issue with Compact Problem Representations

For tasks with general conditional effects, deciding whether
a transition exists between two abstract states is NP-hard.

Good News!

Abstractions can be computed efficiently for factored tasks.

Malte Helmert 3



Limitations of Abstraction Heuristics

• efficient domain-independent algorithms for SAS+

• no compact models in SAS+ for some problem domains

• some compact models rely on conditional effects

Issue with Compact Problem Representations

For tasks with general conditional effects, deciding whether
a transition exists between two abstract states is NP-hard.

Good News!

Abstractions can be computed efficiently for factored tasks.

Malte Helmert 3



Factored Conditional Effects

F

F

Malte Helmert 4



Factored Tasks

Definition (factored task)

A factored task is a 4-tuple
Π = ⟨V ,O, I,G⟩with

• variable space V
• factored operatorsO consisting of

• factored state relations with
• associated costs

• factored state sets I and G

1 2

x

y

z

D1

D2

1 2

x

y

z

⟨1, y⟩

{1, 2} × {x, z}⟨{⟨1, 2⟩}, {⟨x, x⟩, ⟨z, z⟩}⟩

Malte Helmert 5



Factored Tasks

variable space
V = ⟨V1, . . . ,Vn⟩
with domains D1, . . . ,Dn

state
s = ⟨d1, . . . , dn⟩
with di ∈ Di

factored state set
S = S1 × · · · × Sn
with Si ⊆ Di

factored state relation
R = ⟨R1, . . . ,Rn⟩
with Ri ⊆ Di × Di

1 2

x

y

z

D1

D2

1 2

x

y

z

⟨1, y⟩

{1, 2} × {x, z}⟨{⟨1, 2⟩}, {⟨x, x⟩, ⟨z, z⟩}⟩

Malte Helmert 5



Factored Tasks

variable space
V = ⟨V1, . . . ,Vn⟩
with domains D1, . . . ,Dn

state
s = ⟨d1, . . . , dn⟩
with di ∈ Di

factored state set
S = S1 × · · · × Sn
with Si ⊆ Di

factored state relation
R = ⟨R1, . . . ,Rn⟩
with Ri ⊆ Di × Di

1 2

x

y

z

D1

D2

1 2

x

y

z

⟨1, y⟩

{1, 2} × {x, z}⟨{⟨1, 2⟩}, {⟨x, x⟩, ⟨z, z⟩}⟩

Malte Helmert 5



Factored Tasks

variable space
V = ⟨V1, . . . ,Vn⟩
with domains D1, . . . ,Dn

state
s = ⟨d1, . . . , dn⟩
with di ∈ Di

factored state set
S = S1 × · · · × Sn
with Si ⊆ Di

factored state relation
R = ⟨R1, . . . ,Rn⟩
with Ri ⊆ Di × Di

1 2

x

y

z

D1

D2

1 2

x

y

z

⟨1, y⟩

{1, 2} × {x, z}

⟨{⟨1, 2⟩}, {⟨x, x⟩, ⟨z, z⟩}⟩

Malte Helmert 5



Factored Tasks

variable space
V = ⟨V1, . . . ,Vn⟩
with domains D1, . . . ,Dn

state
s = ⟨d1, . . . , dn⟩
with di ∈ Di

factored state set
S = S1 × · · · × Sn
with Si ⊆ Di

factored state relation
R = ⟨R1, . . . ,Rn⟩
with Ri ⊆ Di × Di

1 2

x

y

z

D1

D2

1 2

x

y

z

⟨1, y⟩

{1, 2} × {x, z}

⟨{⟨1, 2⟩}, {⟨x, x⟩, ⟨z, z⟩}⟩

Malte Helmert 5



Properties of Factored Tasks

• alternative view as set of automata

• factored tasks generalize SAS+

• additionally they support limited forms of

• multiple initial states
• disjunctive preconditions
• conditional effects
• angelic nondeterminism

• as general as possible given independent variables

• progression and regression are symmetric

• Cartesian sets are everywhere

• factored state sets I and G
• operator preconditions
• operator postconditions

Malte Helmert 6



Properties of Factored Tasks

• alternative view as set of automata

• factored tasks generalize SAS+

• additionally they support limited forms of

• multiple initial states
• disjunctive preconditions
• conditional effects
• angelic nondeterminism

• as general as possible given independent variables

• progression and regression are symmetric

• Cartesian sets are everywhere

• factored state sets I and G
• operator preconditions
• operator postconditions

Malte Helmert 6



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

1 2

x

y

z

Malte Helmert 7



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

1 2

x

y

z

Malte Helmert 7



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

1 2

x

y

z

Malte Helmert 7



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

1 2

x

y

z

Malte Helmert 7



Cartesian CEGAR

Counterexample-Guided Cartesian Abstraction Refinement

Start with coarsest abstraction
and iterate:

• find abstract plan

• execute in original

• if fails: fix flaw and repeat

• else: return solution

1 2

x

y

z

Malte Helmert 7



Components of Cartesian CEGAR

• compact representation of abstract states

• check whether abstract state contains concrete state

• progression for executing plans

• regression for splitting abstract states given flaw

Good News!

Factored tasks support all of the above efficiently.

• progression and regression yield factored state sets

• not true for tasks with general conditional effects

Malte Helmert 8



Components of Cartesian CEGAR

• compact representation of abstract states

• check whether abstract state contains concrete state

• progression for executing plans

• regression for splitting abstract states given flaw

Good News!

Factored tasks support all of the above efficiently.

• progression and regression yield factored state sets

• not true for tasks with general conditional effects

Malte Helmert 8



Experiments

new benchmark set
with 431 tasks

coverage

PDBs 250

SymBA∗ 220

domain abs. 218
Cartesian abs. 189
M&S 175

hmax 164
LM-Cut 134

10−2 100 102
10−2

100

102

uns.

uns.

hmax

Runtimes TopSpin

PDBs
domain
Cartesian
M&S

Malte Helmert 9



Experiments

new benchmark set
with 431 tasks

coverage

PDBs 250
SymBA∗ 220
domain abs. 218
Cartesian abs. 189
M&S 175
hmax 164
LM-Cut 134

10−2 100 102
10−2

100

102

uns.

uns.

hmax

Runtimes TopSpin

PDBs
domain
Cartesian
M&S

Malte Helmert 9



Summary

• factored tasks generalize SAS+

• Cartesian sets are everywhere in factored tasks

• common abstractions work efficiently for factored tasks

Future work:

• efficient abstractions beyond factored tasks

• heuristics for factored tasks beyond abstractions

Malte Helmert 10


