
Landmark Progression in Heuristic Search

Clemens Büchner1, Thomas Keller1,2, Salomé Eriksson1, Malte Helmert1

1University of Basel, Switzerland
2University of Zürich, Switzerland

{clemens.buechner,tho.keller,salome.eriksson,malte.helmert}@unibas.ch

Abstract

The computation of high-quality landmarks and orderings for
heuristic state-space search is often prohibitively expensive
to be performed in every generated state. Computing infor-
mation only for the initial state and progressing it from every
state to its successors is a successful alternative, exploited for
example in classical planning by the LAMA planner. We pro-
pose a general framework for using landmarks in any kind
of best-first search. Its core component, the progression func-
tion, uses orderings and search history to determine which
landmarks must still be achieved. We show that the progres-
sion function that is used in LAMA infers invalid information
in the presence of reasonable orderings. We define a sound
progression function that allows to exploit reasonable order-
ings in cost-optimal planning and show empirically that our
new progression function is beneficial both in satisficing and
optimal planning.

Introduction
Heuristic search is a widely applied approach to finding goal
paths in large transition systems. Landmarks denote prop-
erties that hold in every solution. Furthermore, landmark
orderings are a guaranteed pattern between time points at
which two landmarks are satisfied. Landmarks and land-
mark orderings are widely used sources for the computation
of heuristics (e.g., Hoffmann, Porteous, and Sebastia 2004;
Richter, Helmert, and Westphal 2008; Helmert and Domsh-
lak 2009; Bonet and Helmert 2010; Büchner, Keller, and
Helmert 2021).

The generation of landmarks and orderings for state-space
search problems is often too expensive to be performed for
every generated state. An alternative is to compute land-
marks and orderings only for the initial state and to progress
information from a state to its generated successors accord-
ing to the following principle: A property that holds on all
goal paths for a state s also holds for all goal paths for a suc-
cessor s′ of s unless it is satisfied by the transition from s
to s′. Classical planning is a research area where this kind
of reasoning has been applied successfully. The LAMA plan-
ner (Richter and Westphal 2010) computes landmarks and
landmark orderings only for the initial state and uses infor-
mation from greedy-necessary and reasonable orderings to

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

infer landmarks that are required again. Since LAMA uses
suboptimal search algorithms and an inadmissible heuristic,
it does not come with any guarantee with respect to solution
quality.

The closely related LM-A∗ algorithm (Karpas and
Domshlak 2009) guarantees optimality by performing a
multi-path dependent heuristic search. It is guided by a
heuristic that computes a cost partitioning over landmarks
and it progresses information from greedy-necessary order-
ings. We show that LM-A∗ ignores reasonable orderings for
good reason: there are cases where LAMA incorrectly in-
fers a landmark as required again. While this does not affect
the satisficing LAMA planner, it makes admissible landmark
heuristics inadmissible and in turn leads to a loss of the opti-
mality guarantee of LM-A∗. Buffet and Hoffmann (2010)
observe that LAMA progression is too pessimistic in the
presence of chains of reasonable orderings; a single operator
may achieve all involved landmarks at once, but this is not
captured by the progression used in LAMA. Buffet and Hoff-
mann propose an improved progression function for LAMA,
but we show that it is not sufficient to make LAMA progres-
sion sound.

To be able to prove soundness of progression functions,
we formalize landmark progression via landmark states and
introduce the best-first search framework LM-BFS. We pro-
pose new progression functions for reasonable, natural, nec-
essary (Hoffmann, Porteous, and Sebastia 2004), and weak
orderings (Büchner, Keller, and Helmert 2021) and formally
prove that these progression functions as well as the progres-
sion function for greedy-necessary orderings (Richter and
Westphal 2010) infer valid information.

Finally, we evaluate several progression functions in clas-
sical planning. First, we test the impact of using valid pro-
gression in the satisficing LAMA planner (Richter and West-
phal 2010). We observe slight improvements in terms of plan
quality without negative impact from using the valid but
more expensive progression functions. With valid progres-
sion of reasonable orderings, we can for the first time also
use these orderings for cost-optimal planning. We evaluate
their impact on the admissible landmark heuristic (Karpas
and Domshlak 2009) as well as the cyclic landmark heuris-
tics (Büchner, Keller, and Helmert 2021) and show that it is
beneficial to consider as many orderings as possible in the
progression.

Background
While related work mainly considers classical planning, our
contributions can be applied to any kind of search over a
deterministic transition system.

Transition System A transition system or state space is a
6-tuple T = ⟨S,A, T, sI , S∗, cost⟩ where S is a set of states;
A is a set of labels called actions; T ⊆ S × A × S is a set
of labeled transitions; sI ∈ S is the initial state; S∗ ⊆ S
is the set of goal states; and cost : A → R+

0 is the cost
function. We further consider a set of state features F , each
of which is either true or false in any given state. The state
spaces we consider are deterministic in the sense that there
is at most one transition ⟨s, a, s′⟩ for each state-action-pair
⟨s, a⟩ ∈ S×A. We say an action a is applicable in s if there
exists a transition ⟨s, a, s′⟩.

Assume in the following that ti = ⟨si−1, ai, si⟩. An ac-
tion sequence ⟨a1, . . . , an⟩ is applicable in state s = s0 iff
ti ∈ T for 1 ≤ i ≤ n. The corresponding trajectory is de-
noted by π = ⟨t1, . . . , tn⟩ and has length |π| = n. Given
two trajectories π = ⟨t1, . . . , tn⟩ and π′ = ⟨t′1, . . . , t′m⟩
such that sn = s′0 we write π ◦ π′ to denote their concate-
nation ⟨t1, . . . , tn, t′1, . . . , t′m⟩. For states s and s′, P(s, s′)
is the set of all trajectories π = ⟨t1, . . . , tn⟩ with s0 = s
and sn = s′. An s-plan is a trajectory ⟨t1, . . . , tn⟩ such that
s0 = s and sn ∈ S∗, and we denote the set of all s-plans
with P(s) =

⋃
s′∈S∗ P(s, s′). The cost of π is the sum of

the action costs in the trajectory: cost(π) =
∑n

i=1 cost(ai).
An s-plan is optimal if it has minimal cost among all s-plans.

Landmarks There are different notions of landmarks in
the planning literature. On the one hand, there is work that
describes landmarks as (possibly restricted) propositional
formulas over the atoms of the planning task (e.g., Hoff-
mann, Porteous, and Sebastia 2004; Keyder, Richter, and
Helmert 2010; Richter and Westphal 2010); and on the other
hand, there is work that deals with landmarks that are ac-
tions or sets of actions representing disjunctive action land-
marks (e.g., Helmert and Domshlak 2009; Keyder, Richter,
and Helmert 2010; Büchner, Keller, and Helmert 2021). This
work only considers the former case.

Let φ be a formula over F . We say that φ holds in state
s iff s |= φ, and we write π |= φ to denote that φ holds in
some state si of the trajectory π = ⟨t1, . . . , tn⟩. We say φ
is a landmark for a state s iff π |= φ for every s-plan π ∈
P(s). Moreover, we say φ is a landmark iff it is a landmark
for sI , and it is a landmark between s and another state s′ iff
π |= φ for every π ∈ P(s, s′).

A landmark L is added at time i by trajectory π =
⟨t1, . . . , tn⟩ iff si |= L and (1) i = 0, or (2) 1 ≤ i ≤ n and
si−1 ̸|= L. We say a landmark L is first added by π at time i,
denoted first(L, π) = i, if it is added by π at time i and not
added by π at a time j < i; and it is last added by π at time
i, denoted last(L, π) = i, if it is added by π at time i and not
added by π at a time i < j ≤ n. If L is not added by π at any
time i ∈ {0, . . . , n}, we say first(L, π) = last(L, π) = ⊥.
(For any n ∈ N0, it neither holds that ⊥ < n nor ⊥ > n.)

Landmark Orderings Hoffmann, Porteous, and Sebas-
tia (2004) introduce different kinds of temporal dependen-

cies between two landmarks called landmark orderings, and
Büchner, Keller, and Helmert (2021) add another two order-
ing types. Two of their definitions – called natural ordering
by the former and strong ordering by the latter – are equiva-
lent but defined differently. We use the terminology of Hoff-
mann, Porteous, and Sebastia but the definition of Büchner,
Keller, and Helmert here and say that there is a natural or-
dering A →n B for a state s iff first(A, π) < first(B, π) for
all π ∈ P(s). Two special kinds of natural orderings impose
stricter constraints on the ordering relation of landmarks. A
greedy-necessary ordering A →gn B for state s denotes that
A holds when B is achieved for the first time in every plan,
i.e., sfirst(B,π)−1 |= A for all π ∈ P(s). A necessary or-
dering A →nec B for s is even more restrictive and requires
that A always holds when B is added, i.e., si−1 |= A for all
π ∈ P(s) and all times i > 0 at which B is added in π (not
only the first time).

Hoffmann, Porteous, and Sebastia further describe
reasonable orderings. Intuitively, a reasonable ordering
A →r B denotes that adding B before A requires that B
is removed again as it is impossible to add A while B holds,
but B must be added again after A. Hence, it would be rea-
sonable to only add B after A. We obtain a formal definition
by splitting the definition of Richter and Westphal (2010)
into three separate cases. There is a reasonable ordering
A →r B for state s iff every π = ⟨t1, . . . , tn⟩ ∈ P(s) satis-
fies any one of the following conditions:

(i) first(A, π) ≤ first(B, π);
(ii) sfirst(A,π)−1 ̸|= B and there exists an i such that

first(A, π) ≤ i ≤ n and si |= B; or
(iii) sfirst(A,π)−1 |= B and sfirst(A,π) ̸|= B and there exists an

i such that first(A, π) < i ≤ n and si |= B.

There has been some confusion regarding the soundness
of reasonable orderings (e.g., Hoffmann, Porteous, and Se-
bastia 2004; Richter and Westphal 2010) that stems from the
fact that a reasonable ordering A →r B does not imply that
B cannot be reached before A. While this means that meth-
ods that require that landmarks are reached in some given
order cannot exploit reasonable orderings, they still provide
valuable information. Büchner, Keller, and Helmert (2021)
exploit the observation that it can often not be avoided to
reach B before A to improve landmark heuristics by con-
sidering cyclic dependencies between landmarks. They also
introduce the similar yet simpler weak orderings A →w B
for state s which require that first(A, π) < last(B, π) for all
s-plans π ∈ P(s). Weak orderings would be a generaliza-
tion of reasonable orderings if it were not for the fact that
reasonable orderings can be satisfied if A and B are reached
simultaneously and weak orderings cannot.

Landmark Best-First Search
Progression based systems for state space search compute
information at the beginning of the search and progress it
from each state to its successors. We are aware of three
systems that apply this idea in classical planning: LM-A∗

(Karpas and Domshlak 2009) computes landmarks for the
initial state and tracks for each state encountered during

search which landmarks still need to be achieved; the LAMA
planner (Richter and Westphal 2010) uses a similar approach
and additionally exploits multi-queue heuristic search, pre-
ferred operators, and anytime search to improve sub-optimal
solutions over time; and LTL-A∗ (Simon and Röger 2015)
reasons about linear temporal logic (LTL) formulas as a gen-
eralization of landmarks. These systems have in common
that their heuristics evaluate a state in combination with in-
formation (i.e, landmarks or LTL formulas) dependent on
the previously expanded path(s) to that state.

We propose landmark best-first search (LM-BFS), a gen-
eralization of LM-A∗. It is a multi-path dependent best-first
search algorithm with four generic components: It computes
landmarks and orderings for the initial state sI , progresses
landmark information along expanded paths, merges land-
mark information obtained on different paths to a state, and
uses a landmark heuristic for guidance. For the remainder of
this paper we denote by GI = ⟨LI ,OI⟩ a landmark graph
for the initial state sI . Its nodes are the landmarks LI and its
directed edges are the orderings OI between the landmarks.
Our framework is based on the notions of past and future
landmarks of a state s:

L∗
past(s) = {L ∈ LI | π |= L for all π ∈ P(sI , s)}
L∗

fut(s) = {L ∈ LI | last(L, π) > 0 for all π ∈ P(s)}

Note that a landmark can simultaneously be a past and future
landmark for a state s.

Knowing which landmarks must be achieved in the fu-
ture of s is essential for computing heuristic estimates, while
knowing which landmarks have been achieved already is im-
portant to infer which orderings are still relevant. In practice,
L∗

past and L∗
fut are usually unknown because it is infeasible to

expand all paths between two states, and we instead approx-
imate them. More specifically, we underestimate L∗

fut such
that a heuristic will not wrongly assume a specific landmark
still needs to be achieved, which could render it inadmissi-
ble. For L∗

past on the other hand an overapproximation is de-
sirable because otherwise we might wrongly deem an order-
ing as still relevant. The information about past and future
landmarks is stored in the so-called landmark state.

Definition 1. Landmark state
A landmark state L is ℲℲℲ or a tuple ⟨Lpast,Lfut⟩ such that
Lpast ∪ Lfut = LI . Lpast denotes the past landmarks of L,
Lfut denotes the future landmarks of L, and L = ℲℲℲ denotes
conflicting information. We say L is valid in s iff

• L = ℲℲℲ and P(s) = ∅, or
• L ̸= ℲℲℲ and Lpast ⊇ L∗

past(s) and Lfut ⊆ L∗
fut(s).

Validity describes the intended semantics of a landmark
state: Lpast contains at least all landmarks between sI and
s, and Lfut contains at most all landmarks added on all s-
plans. The special landmark state ℲℲℲ signals that conflicting
information detects state s as a dead-end for which no s-plan
can exist. We want to distinguish this case from ⟨Lpast,Lfut⟩
explicitly because there is no natural way to express this with
Lpast and Lfut; setting both to LI might be valid in states with
s-plans and leaving both empty is valid if LI = ∅.

Algorithm 1: The LM-BFS framework: a generic
best-first search with reopening.

1 ⟨LI ,OI⟩ := compute landmark graph(sI)
2 foreach s ∈ S do L(s) := ⟨LI , ∅⟩ ;
3 L(sI) := progress(⟨∅,LI⟩ , ⟨·, init, sI⟩)
4 if h(sI ,L(sI)) < ∞ then
5 open.insert(⟨sI , 0, h(sI ,L(sI))⟩)
6 while not open.empty() do
7 ⟨s, g, v⟩ = open.pop()
8 if v < h(s,L(s)) then
9 open.insert(⟨s, g, h(s,L(s)⟩)

10 else if g < distances(s) then
11 distances(s) := g
12 if is goal(s) then
13 return extract plan(s)
14 foreach ⟨s, a, s′⟩ ∈ T do
15 L := progress(L(s), ⟨s, a, s′⟩)
16 L(s′) := merge({L(s′),L})
17 if L(s′) ̸= ℲℲℲ and h(s′,L(s′)) < ∞ then
18 open.insert(⟨s′, g + cost(a), h(s′,L(s′))⟩)
19 return unsolvable

Algorithm 1 outlines the LM-BFS framework. It com-
putes a landmark graph for the initial state of a transition sys-
tem (line 1). For each state, it maintains a landmark state ini-
tialized to consider all landmarks past and none future which
is always valid (line 2).1 LM-BFS then progresses the land-
mark state where all landmarks are considered future and
none are past through an artificial init-transition to obtain
a landmark state for the initial state sI (line 3). Whenever
a state s is retrieved from the open list, its heuristic value
is re-evaluated (line 8) because L(s) might have changed
since s was added to open due to additional paths to s. If the
re-evaluation shows an increased heuristic value of s, s is
inserted back into open and the next state is retrieved. Oth-
erwise, s is expanded, L(s) is progressed to each succes-
sor state s′ (line 15), and merged with previous information
about s′ (line 16).

A concrete implementation of our framework needs to
specify the four central components. In this work we assume
that the landmark generation method and the heuristic are
both given, and point to the literature for a detailed discus-
sion (e.g., Zhu and Givan 2003; Richter, Helmert, and West-
phal 2008; Keyder, Richter, and Helmert 2010; Domshlak
et al. 2011; Karpas and Domshlak 2009; Büchner, Keller,
and Helmert 2021). Using existing heuristics might seem
problematic at first because they do not operate on land-
mark states, but it is possible to reproduce all required in-
formation from it. Landmark progression was introduced by
Richter, Helmert, and Westphal (2008) to use the landmark
information of the initial state in all reachable successors.
Karpas and Domshlak (2009) also use landmark progression
in their LM-A∗ search algorithm where they further propose
merging landmark information from multiple paths, which
we adapt as follows.

1In our implementation, L(s) is not initialized until s is gener-
ated for the first time.

Definition 2. Merging function
Let SL = {L1, . . . ,Ln} be a non-empty set of landmark
states over the same landmark graph GI , where Li = ℲℲℲ or
Li =

〈
Li

past,Li
fut

〉
for 1 ≤ i ≤ n. The (landmark state)

merging function merge maps a set of landmark states to a
landmark state as follows:

merge(SL) =

{
ℲℲℲ if ℲℲℲ ∈ SL〈⋂n

i=1 Li
past,

⋃n
i=1 Li

fut

〉
otherwise.

We observe that merging preserves validity, i.e., if all
landmark states that are merged are valid in a state s, then so
is the resulting landmark state.

Theorem 1. Let L1, . . . ,Ln be landmark states that are
valid in s. Then L = merge({L1, . . . ,Ln}) is valid in s.

Proof. If at least one Li = ℲℲℲ, then L = ℲℲℲ, and validity of
L follows directly from validity of Li. Otherwise we need to
show

⋂n
i=1 Li

past ⊇ L∗
past(s) and

⋃n
i=1 Li

fut ⊆ L∗
fut(s). Since

we know all Li are valid in s we have Li
past ⊇ L∗

past(s) and
Li

fut ⊆ L∗
fut(s) from which the claim follows directly.

Progression
We now turn our attention to the progression of landmark
states, the last remaining component of LM-BFS. In this sec-
tion, we formally define different progressions from the lit-
erature in terms of a progression function.

Definition 3. Progression function
A (landmark state) progression function prog maps a land-
mark state L and a transition t = ⟨s, a, s′⟩ to ℲℲℲ if L = ℲℲℲ
and to L′ otherwise. We say that prog is valid iff L is valid
in s implies that prog(L, t) is valid in s′.

The case L ̸= ℲℲℲ is defined differently in the upcoming
definitions on different progression functions. For the com-
mon case, it is easy to see that mapping L = ℲℲℲ and a tran-
sition t = ⟨s, a, s′⟩ to ℲℲℲ is valid: P(s) = ∅ follows from
validity of ℲℲℲ in s. Hence, assuming P(s′) ̸= ∅ leads to a
contradiction because otherwise we can choose such an s′-
plan π ∈ P(s′) and construct ⟨t⟩ ◦ π to obtain an s-plan.

With this, proving validity of a progression function
prog requires showing the following properties for L′ =
prog(L, ⟨s, a, s′⟩): (1) if L′ = ℲℲℲ then P(s′) = ∅ and (2) if

L′ =
〈
L′

past,L′
fut

〉
̸= ℲℲℲ, then (a) L′

past ⊇ L∗
past(s

′) and
(b) L′

fut ⊆ L∗
fut(s

′). We will write (1), (2a), and (2b) to refer-
ence these cases in the following proofs.

We start by showing that the progression function used in
LM-A∗ (Karpas and Domshlak 2009) is valid. To do this,
we first introduce several simpler progression functions for
which we show validity independently and then combine
(i.e., merge) them to progLM-A∗ .

The first such function is basic progression over L and
t = ⟨s, a, s′⟩. It puts all landmarks that hold in s′ into Lpast
and it removes all landmarks that are added by t (i.e., s ̸|= L
and s′ |= L) from Lfut. The former is because landmarks that
hold in s′ are trivially landmarks between sI and s′. For the
latter, the intuition is that the landmark is added by t, so the

requirement for it to be added in the future of s is satisfied
and we therefore assume it does not have to be added in the
future of s′ anymore.

Definition 4. Basic progression
The function progbasic maps landmark state L =
⟨Lpast,Lfut⟩ and transition t = ⟨s, a, s′⟩ to L′ =
⟨Lpast ∪ Lhold,Lfut \ Ladd⟩ where Lhold = {L ∈ LI | s′ |=
L} and Ladd = {L ∈ LI | s ̸|= L and s′ |= L}.

Theorem 2. The progression function progbasic is valid.

Proof. (1) L = ℲℲℲ is the only such case.
(2a) Lpast ∪ Lhold ⊇ L∗

past(s
′): For any L ∈ L∗

past(s
′) we

have that π ◦ ⟨t⟩ |= L holds for all π ◦ ⟨t⟩ ∈ P(sI , s
′)

and hence π |= L or s′ |= L. If π |= L, we know that
L ∈ L∗

past(s) and thus L ∈ Lpast because L is valid in s.
Otherwise we have s′ |= L and thus L ∈ Lhold.

(2b) Lfut \Ladd ⊆ L∗
fut(s

′): For any L ∈ Lfut \Ladd we have
L ∈ Lfut ⊆ L∗

fut(s) because L is valid in s. Hence, L is
added at time i > 0 by all π ∈ P(s) and in particular by
all π = ⟨t⟩ ◦ π′. Since L /∈ Ladd, we know that L is not
added by t and L must hence be added by all π′ ∈ P(s′).
Therefore L ∈ L∗

fut(s
′) which concludes the proof.

The next two progression functions focus solely on
adding more landmarks to the set of future landmarks. They
progress the set of past landmarks to LI which is always
valid (since LI ⊇ L∗

past(s) for any s) and acts as a neutral
element for set intersection on landmark sets. We exploit the
latter property later on, when merging the result of these pro-
gression functions with the result of a progression function
that considers past landmarks (e.g., basic progression).

Richter, Helmert, and Westphal (2008) observe that a past
landmark A is required again in state s if s ̸|= A and there
is a greedy-necessary ordering A →gn B such that B is not
in the past.

Definition 5. Greedy-necessary ordering progression
The function proggn maps landmark state L = ⟨Lpast,Lfut⟩
and transition t = ⟨s, a, s′⟩ to L′ = ⟨LI ,Lgn⟩ where Lgn =
{A ∈ LI | s′ ̸|= A and ∃A →gn B ∈ OI : B /∈ Lpast, s

′ ̸|=
B}.

Theorem 3. The progression function proggn is valid.

Proof. (1) L = ℲℲℲ is the only such case.
(2a) LI ⊇ L∗

past(s
′) follows directly.

(2b) Lgn ⊆ L∗
fut(s

′): For any A ∈ Lgn there is an ordering
A →gn B ∈ OI such that B /∈ Lpast and s′ ̸|= B. Thus,
first(B, π) > 0 for all π ∈ P(s′). The ordering also im-
plies sfirst(B,π)−1 |= A, and with first(B, π) > 0 we get
π |= A. Since A ∈ Lgn implies s′ ̸|= A, it follows that π
adds A at time i > 0, and thus A ∈ L∗

fut(s
′).

Similarly, landmarks that hold in all goal states but not in
the current state are also required again.

Definition 6. Goal progression
The function proggoal maps landmark state L = ⟨Lpast,Lfut⟩
and transition t = ⟨s, a, s′⟩ to L′ = ⟨LI ,Lgoal⟩ where
Lgoal = {L ∈ LI | s′ ̸|= L and ∀s∗ ∈ S∗ : s∗ |= L}.

Theorem 4. The progression function proggoal is valid.

Proof sketch. proggoal is valid because it is a special case
of proggn. To see this, we transform the original transition
system to an equivalent one with a single goal state g with
transitions to g from all original goal states. With a special
feature γ that holds only in g and no other state, we can add
landmark orderings L →gn γ for all landmarks L that hold
in all s∗ ∈ S∗ (i.e., Lgoal) because L must hold to reach g,
the only state where γ holds. Then, Lgn (Definition 5) on the
new landmark graph is a superset of Lgoal on the old one. □

Now we have all components to define the progression
function used in LM-A∗ (Karpas and Domshlak 2009).

Definition 7. LM-A∗ progression
The function progLM-A∗ maps landmark state L
and transition t to the landmark state L′ =
merge({progbasic(L, t), proggn(L, t), proggoal(L, t)}).
Corollary 1. The progression function progLM-A∗ is valid.

Proof. Follows directly from Theorems 1, 2, 3, and 4.

The LAMA planner (Richter and Westphal 2010) addition-
ally considers reasonable orderings. Richter and Westphal
observe that a reasonable ordering A →r B denotes that B
should remain in the set of future landmarks if it is reached
before A. Therefore, they say a landmark can become ac-
cepted only if all its predecessors in the landmark graph are
accepted already. We express their notion of accepted land-
marks as Lpast of a landmark state in our framework.

Definition 8. LAMA progression
The function progLAMA maps landmark state
L = ⟨Lpast,Lfut⟩ and transition t = ⟨s, a, s′⟩ to
merge({Lacc, proggn(L, t), proggoal(L, t)}) where
Lacc = ⟨Lpast ∪ Lacc,Lfut \ Lacc⟩ and in turn Lacc =
{B ∈ LI | s′ |= B and ∀(A →τ B) ∈ OI : A ∈ Lpast}.

The LAMA progression achieves that the landmark B re-
mains in Lfut while there exists an ordering A →τ B for
which A is not accepted. However, it is not valid because
the meaning of accepted landmarks does not match the se-
mantics of past landmarks.

Theorem 5. The progression function progLAMA is not valid.

Proof. Figure 1 shows a counterexample where LAMA pro-
gression results in an invalid landmark state. The states in
the transition system from Figure 1a indicate which state
features α, β, and γ hold in each state. The only plan is
π = ⟨b, c, a⟩. We assume the landmark graph depicted in
Figure 1b to be given. It contains only correct information:
α, β, and γ are landmarks because all of them hold in some
state visited by π. Furthermore, α →n γ holds because α is
true before γ, β →gn γ holds because β is true one step be-
fore γ is true for the first time, and β →r α holds because α
is removed when β is first added, but holds again afterwards
(condition (ii) in the definition of reasonable orderings).

{α}

{β} {γ}

{α, γ}

b

c

a

(a)

α β

γ

r

n gn

(b)

Figure 1: A transition system (a) and its landmark graph (b).

{α} {β} {γ} {α, γ}
Lpast ∅ {β} {β} {α, β}
Lfut {α, β, γ} {α, γ} {α, γ} {γ}

Table 1: Evolution of past and future landmarks according
to the LAMA progression for the example from Figure 1.

Since sI |= α, we have α ∈ L∗
past(sI). However, since the

LAMA progression will not accept α until β is accepted, we
get progLAMA(⟨∅,LI⟩ , ⟨·, init, sI⟩) = ⟨∅,LI⟩ which contra-
dicts the definition of validity as ∅ ̸⊇ L∗

past(sI).

Given that the notion of accepted landmarks is different to
the one of past landmarks, it is no surprise that progLAMA de-
rives invalid landmark states. One might also assume that it
does not matter if Lpast is not accurate, since we are mainly
interested in Lfut. However, if we continue the LAMA pro-
gression on the example from the proof (see Table 1), we
see that invalid Lpast information can also invalidate Lfut (for
example, the goal state should have no future landmarks), at
which point the heuristic is sure to be affected.

Note that we are not the first to observe that the LAMA
progression is flawed. Richter and Westphal report them-
selves that the heuristic resulting from this progression is not
goal-aware (Richter and Westphal 2010, p. 149). Moreover,
Buffet and Hoffmann (2010) recognize the issue that two
landmarks A and B in a reasonable ordering A →r B may
be achieved simultaneously. If there is a chain of reasonable
orderings where all involved landmarks can be achieved at
once, LAMA accepts at most the first one when it should
accept the entire chain. Buffet and Hoffmann adapt Lacc in
Definition 8 to achieve this, obtaining valid landmark states
whenever B is not added strictly before A. However, this
does not change the result of our counterexample, meaning
the altered LAMA progression is still invalid.

Since LAMA is a satisficing planner, using sound infor-
mation is not imperative. As long as the heuristic estimates
are somewhat accurate, they should guide the search reason-
ably well. However, we can easily extend the example from
Figure 1 to render the landmark component of LAMA arbi-
trarily bad. To do so, replace the transition ⟨{β}, c, {γ}⟩ by
a trajectory ⟨⟨{β}, c1, {γ1}⟩ , . . . , ⟨{γn−1}, cn, {γn}⟩⟩ and
replace γ in the goal state by γn. Then, there is a landmark
for each γi and they are all ordered naturally after α. Us-
ing progLAMA results in all γi still being in Lfut in the goal,
leading to a heuristic value of n when using the heuristic of
LAMA. This is undesirable even for satisficing planning.

New Progression Functions
The negative validity result for LAMA progression raises
the question if it is possible to derive sound future land-
mark information from reasonable orderings. The following
progression function answers this question in the affirma-
tive. As before, progression functions defined in this section
progress the past landmarks to LI which is the neutral ele-
ment when merging landmark states resulting from different
progression techniques.

Definition 9. Reasonable ordering progression
The function progr maps landmark state L = ⟨Lpast,Lfut⟩
and transition t = ⟨s, a, s′⟩ to

L′ =


ℲℲℲ if ∃A →r B ∈ OI :

A /∈ Lpast, s |= B, s′ |= A, s′ |= B

⟨LI ,Lr⟩ otherwise

where Lr = {B ∈ LI | ∃A →r B ∈ O : A /∈
Lpast and (s′ ̸|= A or s′ ̸|= B)}

To show validity of progr, we first observe that reason-
able orderings A →r B imply last(B, π) ≥ first(A, π) for
all π ∈ P(sI).

Lemma 1. Let A and B be landmarks for a state s and let
A →r B be a reasonable ordering for s. Then last(B, π) ≥
first(A, π) for all π ∈ P(s).

Proof. We show that all s-plans π add B at time i ≥ f =
first(A, π) in all three cases of reasonable orderings.

(i) Follows directly since f ≤ first(B, π) ≤ last(B, π).
(ii) Since sf−1 ̸|= B and sg |= B for g ≥ f > 0, π adds B

at time i where f ≤ i ≤ g and thus f ≤ last(B, π).
(iii) Since sf ̸|= B and sg |= B for g > f > 0, π adds B at

time i where f < i ≤ g and thus f ≤ last(B, π).

Furthermore, we use the following lemma without proof.

Lemma 2. Let s, s′, and s′′ be states of a transition system
such that π ∈ P(s, s′) and π′ ∈ P(s′, s′′) exist. Further-
more, let L be a landmark between s′ and s′′ (i.e., π′ |= L).

If last(L, π′) > 0 then last(L, π ◦ π′) = |π|+ last(L, π′).

With these results, we can show that reasonable ordering
progression is valid.

Theorem 6. The progression function progr is valid.

Proof. (1) Proof by contradiction: Assume there is an s′-
plan π′ ∈ P(s′). Since A ̸∈ Lpast, there is a trajectory
π ∈ P(sI , s) from sI to s, and πI = π ◦ ⟨t⟩ ◦ π′ is
an sI -plan. From A /∈ Lpast and s′ |= A it follows that
first(A, πI) = |π| + 1. Then one of the following cases
must hold due to the definition of reasonable orderings:

(i) |π|+ 1 ≤ first(B, πI),
(ii) s ̸|= B and there exists a g such that |π|+1 ≤ g ≤ |πI |

and sg |= B, or
(iii) s |= B and s′ ̸|= B and there exists a g such that

|π|+ 1 < g ≤ |πI | and sg |= B.

However, all three conditions lead to a contradiction: (i)
because s |= B implies first(B, πI) ≤ |π|, (ii) because
s |= B, and (iii) because s′ |= B. Thus, no s′-plan exists.

(2a) LI ⊇ L∗
past(s

′) follows directly.
(2b) Lr ⊆ L∗

fut: For any B ∈ Lr, there is a A →r B ∈ OI

with A /∈ Lpast, and either s′ ̸|= A or s′ ̸|= B holds. From
A /∈ Lpast we know that there is a π ∈ P(sI , s) such that
π ̸|= A, and we define πI = π ◦ ⟨t⟩ ◦ π′ for all π′ ∈
P(s′). From Lemma 1 we know that that last(B, πI) ≥
first(A, πI). We now prove the claim both for s′ ̸|= A
and s′ ̸|= B:
s′ ̸|= A: Then π ◦ ⟨t⟩ ̸|= A and consequently

first(A, πI) = |π| + 1 + first(A, π′). With Lemma 1
we get last(B, πI) ≥ |π| + 1 + first(A, π′) and with
Lemma 2 it follows that last(B, π′) ≥ first(A, π′).
Since s′ ̸|= A we get 0 < first(A, π′) ≤ last(B, π′).

s′ ̸|= B: From π ̸|= A it follows that first(A, πI) =
|π|+ first(A, ⟨t⟩ ◦ π′). Since A /∈ Lpast we get s ̸|= A
and thus first(A, ⟨t⟩ ◦ π′) ≥ 1. Hence, first(A, πI) ≥
|π| + 1 and with Lemma 1 last(B, πI) ≥ |π| + 1.
From Lemma 2 it follows that last(B, π′) ≥ 0. Finally,
last(B, π′) > 0 follows from s′ ̸|= B.

Since one of the two cases above must hold and both say
last(B, π′) > 0, B must be added in the future of s′.

The definition of reasonable ordering progression shows
that we can derive more information from landmark order-
ings than just which landmarks are required again. In partic-
ular, we can find that certain trajectories cannot be extended
to plans because they contradict the definition of a reason-
able landmark ordering. Wang, Baier, and McIlraith (2009)
exploit this observation for other ordering types by encoding
this knowledge into the description of the planning task and
its states directly. In LM-BFS, we deal with this information
by pruning states for which we find ℲℲℲ to be valid. We fol-
low Wang, Baier, and McIlraith and adapt greedy-necessary
ordering progression to catch such cases as well.2

Definition 10. Dead-end aware Greedy-necessary order-
ing progression
The function prog∗gn maps landmark state L = ⟨Lpast,Lfut⟩
and transition t = ⟨s, a, s′⟩ to

L′ =


ℲℲℲ if ∃A →gn B ∈ OI :

B /∈ Lpast, s ̸|= A, s′ |= B

proggn(L, t) otherwise
.

Theorem 7. The progression function prog∗
gn is valid.

Proof. (1) Proof by contradiction: Assume there is an s′-
plan π′ ∈ P(s′). Since B ̸∈ Lpast, there is a trajectory
π ∈ P(sI , s) from sI to s, and πI = π ◦ ⟨t⟩ ◦ π′ is an
sI -plan. Furthermore, from B /∈ Lpast and s′ |= B it

2Note that this inference is currently not beneficial in practice.
Wang, Baier, and McIlraith (2009) point out that LAMA only finds
orderings that hold along all trajectories. Finding orderings that
hold only along all plans is harder and we are not aware of any
landmark (ordering) generators that do so.

follows that first(B, πI) = |π| + 1. From the definition
of greedy-necessary orderings it follows that s |= A, but
this contradicts the condition s ̸|= A for L′ = ℲℲℲ. Hence
no such s′-plan exists.

(2a) and (2b) Follow from Theorem 3.

We continue by proposing progression functions for the
remaining landmark ordering types and show their validity.
Definition 11. Natural ordering progression
The function progn maps landmark state L = ⟨Lpast,Lfut⟩
and transition t = ⟨s, a, s′⟩ to

L′ =

{
ℲℲℲ if ∃A →n B ∈ OI : A /∈ Lpast, s

′ |= B

⟨LI , ∅⟩ otherwise
.

Theorem 8. The progression function progn is valid.

Proof. (1) Proof by contradiction: Assume there is an s′-
plan π′ ∈ P(s′). Since A ̸∈ Lpast, there is a trajectory
π ∈ P(sI , s) from sI to s, and πI = π ◦ ⟨t⟩ ◦ π′ is an
sI -plan. Furthermore, A /∈ Lpast implies that π ̸|= A and
hence first(A, πI) > |π|. From the definition of natural
orderings it follows that first(B, πI) > |π| + 1 but this
contradicts s′ |= B which implies first(B, πI) ≤ |π|+1.
Therefore, no such s′-plan exists.

(2a) LI ⊇ L∗
past(s

′) follows directly.
(2b) ∅ ⊇ L∗

fut(s
′) follows directly.

Necessary orderings are similar to greedy-necessary or-
derings. The difference is that A is required again whenever
A does not hold and B must hold in the future.
Definition 12. Necessary ordering progression
The function prognec maps landmark state L = ⟨Lpast,Lfut⟩
and transition t = ⟨s, a, s′⟩ to

L′ =


ℲℲℲ if ∃A →nec B ∈ OI :

s ̸|= A, s ̸|= B, s′ |= B

⟨LI ,Lnec⟩ otherwise

where Lnec = {A ∈ LI | s′ ̸|= A and ∃A →nec B ∈ OI :
B ∈ Lfut, s

′ ̸|= B}.

Theorem 9. The progression function prognec is valid.

Proof sketch. Analogous to the proof for prog∗gn in Theo-
rems 3 and 7; replace all B /∈ Lpast with B ∈ Lfut and reason
about all times where B is added, not just the first one. □

The progression of weak orderings is similar to progr.
One difference is that a weak ordering A →w B does not
allow the special case where A and B are added simultane-
ously. Furthermore, it is not required that B becomes false
when A is first added, hence there is no case for pruning
based on weak orderings.
Definition 13. Weak ordering progression
The function progw maps landmark state L = ⟨Lpast,Lfut⟩
and transition t = ⟨s, a, s′⟩ to L′ = ⟨LI ,Lw⟩ where Lw =
{B ∈ LI | ∃A →w B ∈ OI : A /∈ Lpast}.

Theorem 10. The progression function progw is valid.

∅

0 + 10

0 + 10

{α}

5 + 5

5 + 5

{β}

5 + 5

5 + 10

∅

���6 + 5
6 + 10

6 + 5

∅

7 + 5

∅

3 + 10

3 + 10

{α}

8 + 5

8 + 5

{β}

13 + 0

13 + 0

5

5

3

1

1
1

5 5

Figure 2: Example transition system where the dominant
progression expands more states. The g + h values of an
A∗ search are annotated, above for progbasic and below for
merge({progbasic, progr}), and colored if expanded.

Proof sketch. Cases (1) and (2a) are identical to the corre-
sponding cases in the proof of Theorem 3. For (2b) we can
argue similarly to reasonable orderings: If A is not past in
s, then π ̸|= A for some trajectory π from sI to s and in
particular s ̸|= A. Since the ordering holds for all sI -plans,
we know that last(B, πI) > first(A, πI) for all πI ∈ P(sI).
With the same argument as for reasonable orderings, we can
show that from last(B, πI) > first(A, πI) it follows that
last(B, π′) > first(A, π′) for all s′-plans π′ ∈ P(s′). Con-
sequently, B is future in s′. □

We have seen that LM-A∗ combines multiple valid pro-
gression functions to merge their results and obtain a more
informed and still valid progression function. Given a set
of valid progression functions, using all of them intuitively
makes sense: the set of future landmarks can only grow and
makes heuristics more informed. However, there are some
limitations to this claim. On the one hand, not all heuris-
tics benefit from having more landmarks (e.g., Seipp, Keller,
and Helmert 2020). On the other hand, differences in heuris-
tic values change the expansion order of a search algorithm
which may have negative effects on its performance. To see
this, consider the example in Figure 2, which depicts two
landmark-based A∗ searches (Hart, Nilsson, and Raphael
1968) using different progression functions. The numbers
above a state indicate the g+ h values when using progbasic,
and the numbers below a state indicate the same values when
using prog′ = merge({progbasic, progr}). The considered
landmark graph is ⟨{α, β}, {α →r β}⟩ and the (admissible)
heuristic estimates a cost of 5 per future landmarks.

Let s be the non-goal state where β holds. When progress-
ing from the initial state to s, progbasic will result in landmark
state ⟨{β}, {α}⟩, while prog′ obtains ⟨{β}, {α, β}⟩. The lat-
ter results in a higher heuristic value which leads to s being
expanded later. But as long as s is not expanded, its succes-
sor does not obtain the information that it can be reached
without achieving α, yielding a lower heuristic value and re-
sulting in the search expanding this area first.

Experimental Evaluation
For a practical analysis of our contributions, we consider
classical planning, where landmarks are an established tool.
The Fast Downward planner (Helmert 2006) supports the

use of landmarks along the lines of LM-BFS. We imple-
ment some of the discussed progression functions in version
20.06 of Fast Downward. Experiments are conducted on In-
tel Xeon E5-2660 (satisficing) and Intel Xeon Silver 4114
(optimal) processors running on 2.2 GHz with a time limit of
30 minutes and a memory limit of 3.5 GiB. All code, bench-
marks, and experiment data are published online (Büchner
et al. 2023).

We leave some progression functions out of the analy-
sis for good reason: prognec because we are not aware of
landmark generators for necessary orderings; progw because
Büchner, Keller, and Helmert (2021) derive weak order-
ings as a subset from reasonable orderings; and progn be-
cause the used landmark generators do not find orderings for
which pruning ever triggers. For the same reason, we also
do not implement the pruning cases in proggn and progr.
Furthermore, we do not evaluate the simple progression
functions in isolation, but only their derivatives progLM-A∗ ,
progLAMA, and a new progression function we call admis-
sible reasonable orderings and denote it by progARO :=
merge({progbasic, proggn, proggoal, progr}).

Note that implementing progLM-A∗ and progLAMA allows
to represent landmark states without storing Lfut explicitly.
For one, all landmarks that are not past (respectively ac-
cepted) are implicitly future. Furthermore, the information
gained by proggn and proggoal and used by these two pro-
gressions can be computed purely based on Lpast and the
current state. Consequently, we can compute them on de-
mand when evaluating the landmark heuristic for a given
state. However, progression functions that include progr or
progw (e.g., progARO) cannot make use of this optimiza-
tion. Consider for example a reasonable ordering A →r B.
If B ∈ Lpast and A /∈ Lpast, then B ∈ Lfut by the defini-
tion of progr. Now assume we reach A but do not store Lfut
explicitly, then after the next step there is no way to deduce
whether B was added before or after adding A and hence
it is impossible to reconstruct Lfut accurately. Given that we
store landmark states as pairs of bitsets of length |LI |, our
implementation of progARO requires twice as much memory
per landmark compared to progLM-A∗ and progLAMA.

Satisficing Planning
We embed progARO in LAMA and compare the influence of
a valid progression function over the invalid LAMA progres-
sion. Our benchmark suite consists of 2772 planning tasks
from the satisficing track of the International Planning Com-
petitions (IPCs) 1998–2018. We note that the order in which
LAMA expands states can significantly influence planner
performance. To filter out random noise, we run all configu-
rations 5 different random seeds to vary the successor order-
ings. The numbers we report in the following denote their
average value.

Since LAMA originally considers obedient-reasonable
orderings, we use this as our baseline and denote it
by progo

LAMA. We also consider LAMA without obedient-
reasonable orderings, denoted as progLAMA, to have a closer
comparison with progARO which also does not consider
them. Furthermore, we denote by progc

ARO a configuration
that keeps cycles in the landmark graph of the initial state.

progo
LAMA progLAMA progARO progcARO

progoLAMA – 7.2 160.0 203.6
progLAMA 8.6 – 161.2 204.0
progARO 204.4 203.8 – 94.8
progcARO 236.2 230.4 85.0 –

Table 2: Per-task comparison of the final plan cost of LAMA.
Each cell denotes how many tasks (on average) have a lower
cost in the row method compared to the column. The winner
of each pairwise comparison is highlighted in boldface.

Traditionally, LAMA systematically removes orderings un-
til the landmark graph is acyclic. This is to avoid chains of
landmarks that are permanently unaccepted which results in
poor heuristic values, but as we have shown this is rather a
consequence of the invalid progression and acyclic graphs
do not resolve that problem completely.

The coverage is virtually unaffected by the choice of
progression function. All four configurations solve between
2350.4 and 2352.2 problems. This may seem as if cases like
the one presented in Figure 1 do not occur in practice, but
we think this is rather a consequence of LAMA combining
landmarks with guidance from the FF heuristic (Hoffmann
and Nebel 2001); whenever progLAMA suffers from the flaws
we aim to fix with progARO, the FF heuristic might be able to
compensate for that.

Nevertheless, we can observe an improvement of progARO
over progLAMA in terms of plan quality, i.e., the cost of
the best plan found before the planner terminates. Ta-
ble 2 compares pair-wise which strategy finds a cheaper
plan in how many tasks. Interestingly, progLAMA without
obedient-reasonable orderings performs almost the same as
progo

LAMA; the plan cost differs in only 15.8 tasks on aver-
age with a slight advantage for progLAMA. Since an analysis
of obedient-reasonable orderings is out of the scope of this
paper, we do not investigate this further.

The difference is more significant when we compare
to progARO and progcARO. While neither technique strictly
dominates the others, our new progressions tend to find
cheaper plans than progLAMA and progoLAMA. More specif-
ically, progARO on average finds more cheaper plans than
all other configurations. We have expected progc

ARO to find
even cheaper plans as considering more orderings poten-
tially leads to more informed heuristics overall. However,
this is not the case. One possible explanation is that these ad-
ditional orderings increase the evaluation time for the heuris-
tic. Since LAMA restarts the weighted A∗ search (Pohl 1970)
with lower weight whenever it finds a plan, higher heuris-
tic evaluation times might lead to fewer restarts resulting in
more expensive plans overall.

In summary, these results indicate that the ARO progres-
sion can replace the LAMA progression with no major draw-
backs. It even yields a slight advantage in terms of plan cost.
Moreover, contrary to the LAMA progression, ARO is not
limited by restrictions such as acyclic landmark graphs. This
means it can benefit even more if better landmark generators
for sI become available in the future.

Cost-Optimal Planning
One of our main contributions is making non-natural order-
ings applicable for path-dependent optimal planning. This
is an important step given the recent findings that consid-
ering cyclic dependencies in landmark heuristics is bene-
ficial, as cycles in the landmark graph of solvable tasks
contain at least one non-natural ordering (Büchner, Keller,
and Helmert 2021). We compare progLM-A∗ to progcARO to
evaluate the empirical impact of using the admissible land-
mark heuristic hMHS (Karpas and Domshlak 2009) in the
(equivalent) dual formalisation via operator counting con-
straints, and the strong cyclic landmark heuristic with ei-
ther the Johnson cycle detection hc

J or the oracle method
hc
O (Büchner, Keller, and Helmert 2021). We use the 1827

benchmark tasks from the optimal tracks of the IPCs 1998–
2018. Landmarks and orderings were generated with the
following methods: LMRHW (Richter, Helmert, and West-
phal 2008), LMh1

and LMh2

(Keyder, Richter, and Helmert
2010), and LMBJOLP (Domshlak et al. 2011).

The task coverage increases between 2 to 7 from
progLM-A∗ to progcARO for all tested combinations of land-
mark generators and heuristics. Interestingly, the cyclic
landmark heuristics yield lower coverage than hMHS which
is a contrast to Büchner, Keller, and Helmert (2021) who
recompute the landmarks from scratch in every state. Our
observation aligns with the findings of Büchner (2020) that
many problem instances have acyclic initial state landmark
graphs; if the initial state is acyclic, then so are all successors
in the path-dependent setting. In all these cases, the cyclic
landmark heuristics have the overhead of the cycle detection
although none exist. We anticipate that this result changes if
new landmark generators specializing on finding cyclic or-
derings become available in the future.

Figure 3 shows the number of expanded states before the
last f -layer using hMHS. (The plots for hc

J and hc
O look

almost identical.) We can see that progcARO expands fewer
states in many problems and sometimes even results in the
perfect heuristic (bottom line). Among all tasks solved with
both progression functions, there are exactly two tasks for
which progc

ARO expands more states than progLM-A∗ . While
this proves that sometimes better informed progression leads
to more expansions in practice, it happens seldom enough to
defend progcARO as the reasonable choice.

The lower amount of expansions reduces search time,
which is also the reason for the slightly higher coverage of
progcARO. The number of tasks for which we run out of mem-
ory is identical for both approaches, even though we store
twice as much landmark information per state with progcARO
compared to progLM-A∗ , since we store for each landmark
not only whether it is past, but also whether it is future.

Conclusion
We generalize the idea of landmarks from classical planning
to deterministic transition systems. We propose the LM-BFS
framework, a generic best-first search using landmark-based
heuristics. Since recomputing landmarks in every state is
usually too expensive, LM-BFS includes the notion of land-
mark progression which progresses landmark states from

100 102 104 106

100

102

104

106

uns.

uns.

progLM-A∗

pr
og

c A
RO

hMHS

L
M

R
H

W
L

M
h
1

L
M

h
2

L
M

B
JO

L
P

Figure 3: Number of expanded states before the last f -layer.
Only instances where the numbers differ are displayed.

one state to its successors. We study progression functions
from the literature and show that the progression in LAMA
(Richter and Westphal 2010) is flawed. Furthermore, we pro-
pose valid alternatives that were never considered before.

Our experiments show that the newly introduced pro-
gression functions improve planner performance. However,
some of them are not (yet) useful in practice because no
landmark generator produces the required information; we
are not aware of work that exploits necessary or weak or-
derings, and orderings that only hold on all plans but not all
trajectories are hard to find. Coming up with new landmark
generators is an interesting line of future work. Furthermore,
allowing LM-BFS to add new landmarks and orderings dur-
ing search would be an interesting extension, because some-
times those from the initial state are not good enough.

Acknowledgments
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639). Moreover, this research was partially sup-
ported by TAILOR, a project funded by the EU Horizon
2020 research and innovation programme under grant agree-
ment no. 952215.

References
Bonet, B.; and Helmert, M. 2010. Strengthening Landmark
Heuristics via Hitting Sets. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 329–334.
IOS Press.
Büchner, C. 2020. Generalization of Cycle-Covering
Heuristics. Master’s thesis, University of Basel.
Büchner, C.; Keller, T.; Eriksson, S.; and Helmert, M. 2023.
Code, Benchmarks and Experiment Data for the ICAPS

2023 Paper “Landmark Progression in Heuristic Search”.
https://doi.org/10.5281/zenodo.7733173.
Büchner, C.; Keller, T.; and Helmert, M. 2021. Exploiting
Cyclic Dependencies in Landmark Heuristics. In Goldman,
R. P.; Biundo, S.; and Katz, M., eds., Proceedings of the
Thirty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2021), 65–73. AAAI Press.
Buffet, O.; and Hoffmann, J. 2010. All that Glitters is not
Gold: Using Landmarks for Reward Shaping in FPG. In
ICAPS 2010 Workshop on Planning and Scheduling Under
Uncertainty.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The Big Joint Optimal Landmarks Planner. In IPC 2011
Planner Abstracts, 91–95.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research, 22: 215–278.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In Boutilier, C., ed., Proceedings of the
21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), 1728–1733. AAAI Press.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for And/Or Graphs. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), 335–340. IOS Press.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence, 1: 193–204.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.
AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Simon, S.; and Röger, G. 2015. Finding and Exploiting
LTL Trajectory Constraints in Heuristic Search. In Lelis, L.;

and Stern, R., eds., Proceedings of the Eighth Annual Sym-
posium on Combinatorial Search (SoCS 2015), 113–121.
AAAI Press.
Wang, L.; Baier, J.; and McIlraith, S. 2009. Viewing Land-
marks as Temporally Extended Goals. In ICAPS 2009
Workshop on Heuristics for Domain-Independent Planning
(HDIP), 49–56.
Zhu, L.; and Givan, R. 2003. Landmark Extraction via Plan-
ning Graph Propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.

