
Strengthening Landmark Heuristics via Hitting Sets
Blai Bonet1 and Malte Helmert2

Abstract. The landmark cut heuristic is perhaps the strongest
known polytime admissible approximation of the optimal delete re-
laxation heuristic h+. Equipped with this heuristic, a best-first search
was able to optimally solve 40% more benchmark problems than the
winners of the sequential optimization track of IPC 2008. We show
that this heuristic can be understood as a simple relaxation of a hitting
set problem, and that stronger heuristics can be obtained by consider-
ing stronger relaxations. Based on these findings, we propose a sim-
ple polytime method for obtaining heuristics stronger than landmark
cut, and evaluate them over benchmark problems. We also show that
hitting sets can be used to characterize h+ and thus provide a fresh
and novel insight for better comprehension of the delete relaxation.

1 INTRODUCTION
Many admissible heuristics for classical planning are closely linked
to the idea of delete relaxation, including several heuristics that are
ostensibly based on very different ideas. For example, Helmert and
Domshlak [10] showed that Karpas and Domshlak’s [13] admissible
landmark heuristics can be seen as a variation of the additive hmax

heuristic [8], which is a delete relaxation heuristic, and Haslum [7]
proved that the hm heuristic family [9] can be polynomially reduced
to Bonet and Geffner’s [2] hmax heuristic on a modified planning task.

Delete relaxation heuristics strive to get as closely as possible to
the optimal delete relaxation heuristic h+ [11], which dominates all
heuristics based on delete relaxation, but is NP-hard to compute [4]
or approximate within a constant factor [1]. The landmark cut heuris-
tic hLM-cut, LM-cut for short, is a recent admissible delete relaxation
heuristic that provides one of the best-known polytime approxima-
tions of h+ [10]. In an experiment designed to measure the accuracy
of different heuristics with respect to h+, heuristic values were com-
puted for the initial states of 505 tasks from 22 domains of the Inter-
national Planning Competition (IPC). The heuristics considered were
hmax [2], the original additive hmax [8], the additive hmax of Coles et al.
[5], the admissible landmark heuristic hLA [13], and LM-cut, which
are all admissible delete relaxation heuristics and hence bounded
from above by h+. The results of the experiment were astonishing.
The average additive errors of the heuristics compared to h+ were
27.99, 17.37, 8.05, 1.94 and 0.28 respectively, and the relative errors
were 68.5%, 40.9%, 25.2%, 9.5% and 2.5%, respectively. This shows
that LM-cut is on average far more accurate than the other heuristics,
improving on the second most accurate heuristic by a factor of 6.9
in terms of additive error and 3.8 in terms of relative error. For more
than 70% of the instances, LM-cut computed the exact h+ value.

In another experiment, Helmert and Domshlak measured the over-
all performance of an optimal planner equipped with LM-cut against

1 Universidad Simón Bolı́var, Venezuela, bonet@ldc.usb.ve
2 Albert-Ludwigs-Universität Freiburg, Germany, helmert@informatik.uni-

freiburg.de

other optimal state-of-the-art planners and showed that despite the
high computational cost of the heuristic, the LM-cut-based planner
was faster and solved many more tasks than the others.

These results raise the question of whether one could define a
heuristic better than LM-cut that is based on delete relaxation and
is polynomial-time computable. In this paper, we answer this ques-
tion in the affirmative and in a very strong way: first, we not only
provide a new heuristic but a general method for obtaining strong
landmark heuristics that are admissible and computable in polyno-
mial time; and second, we show that a simple instantiation of this
method produces heuristics that provably dominate LM-cut.

These are strong theoretical guarantees, yet a thorough empirical
study is still needed in order to measure the accuracy and perfor-
mance of the new heuristics. As a first step, we present preliminary
empirical results that show that the novel heuristics expand consider-
ably fewer nodes on the instances where LM-cut is less accurate and
that in a few cases the overall running time is also smaller.

The novel heuristics are obtained by optimally solving a relax-
ation of a hitting set problem induced by a collection of landmarks.
Furthermore, we show that the hitting set problem characterizes the
heuristic h+, and that the optimal cost partitioning for a collection of
landmarks [14] is closely related to a well-known relaxation of the
hitting set problem induced by the landmarks.

In the next section, we perform a study of LM-cut that identifies
its main limitations. Section 3 presents the hitting set problem, some
of its properties, and notions of decomposition and width, and Sect. 4
contains a general treatment of landmarks, the hitting set problems
induced by landmarks, and fundamental results characterizing h+

and optimal cost partitionings. Then, in Sect. 5, we show that LM-
cut is a relaxation of a hitting set problem and give a general method
to improve it by considering stronger relaxations. Finally, we present
the results of some preliminary experiments and conclude.

2 ASSESSMENT OF THE LM-CUT HEURISTIC

In order to design improved heuristics, it is imperative to understand
the “deficiencies” or “flaws” of LM-cut. So far, we have observed
two deficiencies. The first one is intrinsic to the definition of LM-
cut, while the second is related to its implementation as LM-cut
is not fully specified. We begin by illustrating the first flaw with a
simple example, a planning task with fluents F = {s, t, q1, q2, q3}
and operators O = {a1, a2, a3, fin} given by: a1 : s ⇒ q1, q2,
a2 : s ⇒ q1, q3, a3 : s ⇒ q2, q3 and fin : q1, q2, q3 ⇒ t, where
a1 : s ⇒ q1, q2 means that a1 has precondition s and adds q1 and
q2. The initial state and goal are I = {s} and G = {t}, and the costs
are c(a1) = c(a2) = c(a3) = 1 and c(fin) = 0.

LM-cut is defined in terms of justification graphs that are
associated with what we call precondition-choice functions. A
precondition-choice function (pcf) is a function D that maps each ac-

s

q1

q2

q3

t

a1,
a2

a1, a3

a2 , a3

fin

s

q1

q2

q3

t

a1,
a2

a1, a3

a2 , a3 fin

G(D) G(D′)

Figure 1. Justification graphs for the pcfs D = {a1 7→ s,
a2 7→ s, a3 7→ s, fin 7→ q1} and D′ = D[fin 7→ q3].

tion into one of its preconditions. (We assume that each action has at
least one precondition.) For example, D = {a1 7→ s, a2 7→ s, a3 7→
s, fin 7→ q1} is a pcf for the example. The justification graph for D,
denoted by G(D), is a directed graph whose vertices are fluents and
which has an edge (p, q) labeled with a iff the action a adds q and
D(a) = p. Figure 1 shows two justification graphs for the example.
In the left graph, the pair of subsets ({s, q2, q3}, {q1, t}) is an s-t-
cut (a partition of the vertices into two sets that separates s from t)
whose cut-set (edges that cross from the set containing s to the set
containing t) is {s a1→ q1, s

a2→ q1}. The set {a1, a2} of labels for the
cut-set forms a landmark for the planning task, meaning that every
plan must contain at least one of its actions. Therefore, every plan for
the example must incur a cost of at least 1.

In this example, there are 3 different pcfs depending on the precon-
dition chosen for the action fin. The landmarks inferred by LM-cut
in each case are {a1, a2}, {a1, a3} and {a2, a3}, implying that a re-
laxed plan must contain a1 or a2, and a1 or a3, and a2 or a3; i.e.,
a relaxed plan must contain at least two actions from {a1, a2, a3}
and thus its cost is at least 2. Unfortunately, LM-cut is not capable of
making this inference since as soon as it resolves one landmark, say
{a1, a2}, it assigns zero cost to the actions in it, which “resolves” the
other two landmarks as a side effect. Thus, in this case, LM-cut com-
putes a value of 1 instead of the exact h+ value of 2; e.g., 〈a1, a2, fin〉
is an optimal plan with cost 2. The example can be enlarged in order
to bound the value of LM-cut as far away from h+ as one would like.

This example reveals the first flaw of LM-cut of only consider-
ing one landmark at a time. We can improve over LM-cut by taking
a more global perspective, considering the collection of landmarks
{{a1, a2}, {a1, a3}, {a2, a3}} as an instance of a hitting set prob-
lem, for which we can compute a minimum-cost solution.

Another way to combine information about multiple landmarks
is optimal cost partitioning, introduced by Katz and Domshlak [14]
and applied to landmark heuristics by Karpas and Domshlak [13].
For the given example, optimal cost partitioning over the set of all
landmarks increases the heuristic value to 3

2
, which improves on LM-

cut but does not close the gap to h+ entirely. We will get back to the
relationship between cost partitioning and hitting sets later.

The second flaw of LM-cut refers to the way that justification
graphs are computed. The justification graphs of LM-cut are defined
by pcfs that assign to each action a precondition with maximum hmax

value, breaking ties in an unspecified manner. In our experiments, we
have observed that the accuracy of LM-cut varies with this choice,
sometimes significantly.

In the rest of the paper, we address these flaws in a principled
way to obtain more informative heuristics and formal results on their
quality. Throughout the paper, we consider delete relaxation heuris-
tics, which are based on the notion of relaxed plans (plans for delete-
free STRIPS problems). Such relaxed plans never need to repeat ac-
tions and thus can be represented by the set of actions they use (e.g.

{a1, a2, fin}). From such a set, the plan can be recovered in poly-
nomial time. We will show that this set notation for relaxed plans is
closely related to the notion of hitting sets, which we introduce next.

3 HITTING SETS
Let A = {a1, . . . , an} be a set and F = {F1, . . . , Fm} a family of
subsets of A. A subset H ⊆ A has the hitting set property, or is a
hitting set, iff H ∩ Fi 6= ∅ for all 1 ≤ i ≤ m (i.e., H “hits” each
set Fi). If we are given a cost function c : A → N, the cost of H isP

a∈H c(a). A hitting set is of minimum cost if its cost is minimal
among all hitting sets.

The problem of finding a minimum-cost hitting set for family F
and cost function c is denoted by 〈F , c〉, and the cost of its solution
by min(F , c). A relaxation for 〈F , c〉 is a problem 〈F ′, c′〉 such that
c′ ≤ c, and for all F ′ ∈ F ′ there is F ∈ F with F ⊆ F ′. In words,
〈F , c〉 can be relaxed by reducing costs, dropping sets from F , or
enlarging elements of F . Determining the existence of a hitting set
for a given cost bound is a classic problem in computer science, one
of the first problems to be shown NP-complete [12].

Lemma 1. If 〈F ′, c′〉 is a relaxation of 〈F , c〉, then min(F ′, c′) ≤
min(F , c). Furthermore, if {〈Fi, ci〉} is a collection of relaxations
of F such that

P
i ci ≤ c, then

P
i min(Fi, ci) ≤ min(F , c).

Proof. For lack of space, we refer to a technical report [3].

A collection of relaxations as defined in Lemma 1 is called an
additive relaxation of the hitting set problem.

It is well known that a minimum-cost hitting set for 〈F , c〉 can be
found by solving the Integer Linear Program (ILP) defined by the
{0, 1}-variables {xa : a ∈ A}, the objective min

P
a∈A xac(a),

and the constraints
P

a∈F xa ≥ 1 for each F ∈ F . The solution
of this ILP has cost equal to min(F , c), and its LP relaxation has
solution cost less than or equal to min(F , c).

Decomposition and Width
We now define the width of hitting set problems and show that the
time complexity of solving problems of bounded (or constant) width
is polynomial. This result will play a fundamental role later.

Let F be a family of subsets of A that can be partitioned into
Π = {F1, . . . ,Fm} satisfying (

S
Fi) ∩ (

S
Fj) = ∅ for all i 6= j;

i.e., the blocks in the partition are pairwise independent. Then, for
any cost function c, min(F , c) =

Pm
i=1 min(Fi, c) and the prob-

lem of finding a minimum-cost hitting set for F can be decomposed
into smaller subproblems. We call the maximum size of a block in
Π the width of Π, and define the width of F , denoted by width(F),
as the minimum width of Π over all partitions Π of F into indepen-
dent blocks. Finding a partition that minimizes the width is an easy
problem similar to computing connected components of a graph.

Let F = {F1, . . . , Fk} be a family over A with k subsets, but
with no assumptions on the sizes of each Fi or A. We show that
min(F , c) and a hitting set achieving this cost can be computed in
time bounded by O(‖F‖+ k4k), where ‖F‖ refers to the input size
for F . To see this, consider the hypergraph HF = (X, E) where
X = {1, . . . , k} and there is a hyperedge e(a) = {i : a ∈ Fi} with
cost c(a) for each a ∈ A. The hitting sets for F are in one-to-one
correspondence with the covers of HF (a cover is a set of hyperedges
that “touch” every vertex). Hence, finding min(F , c) is equivalent to
finding a minimum-cost cover for HF . For the latter, observe that all
hyperedges e(a) for which there is a hyperedge e(a′) with e(a) =

e(a′) and c(a′) < c(a) may be removed (and if c(a′) = c(a), only
one of the hyperedges needs to be kept).

Since a hyperedge is a subset of X , this implies that we only need
to consider hypergraphs with at most 2k edges. Using dynamic pro-
gramming, a minimum cost cover for such a hypergraph can be found
in time O(k4k). Combining this with the time required for construct-
ing the hypergraph yields the overall O(‖F‖+ k4k) bound.

Theorem 2. The problem of computing min(F , c) is fixed-
parameter tractable when considering the width of F as the param-
eter. In particular, for any fixed bound k, min(F , c) for families of
width at most k can be computed in linear time.

The term k4k is a theoretical worst-case limit. In practice, one can
use a branch-and-bound or best-first search to find optimal covers. In
our experiments, we have solved problems of width up to 15.

4 LANDMARKS
Having provided the necessary background on hitting sets, we now
define the planning framework and the concept of delete relaxation,
in order to present the hitting set problem that defines h+.

A STRIPS problem with action costs is a tuple P = 〈F, O, I, G,
c〉 where F is the set of fluents, O is the set of actions or operators,
I and G are the initial state and goal description, and c : O → N
is the cost function. We are interested in delete relaxations, so we
assume that the operators have empty delete lists, and thus “plan”
and “relaxed plan” shall denote the same. For a definition of the ba-
sic concepts underlying delete relaxations, such as the hmax and h+

functions, we refer to the literature [10]. We also assume from now
on that all fluents have finite hmax values, which implies that the prob-
lem has finite h+ value. As additional simplifying assumptions, we
require that all operators have nonempty preconditions, that there are
two fluents s, t ∈ F such that I = {s} and G = {t}, and that there
is a unique operator fin that adds t. When these simplifying assump-
tions are not met, they can be achieved through simple linear-time
transformations. We denote the precondition and effects of a ∈ O by
pre(a) and post(a). The h+ value for state I is denoted by h+(P).

An (action) landmark for P is a set {a1, . . . , an} of actions such
that every plan for P must contain at least one such action.

Recall that a pcf D assigns a precondition D(a) ∈ pre(a) to each
action a ∈ O. Our first result relates cuts of the justification graph
G(D) with landmarks for P .

Lemma 3. Let D be a pcf and C an s-t-cut of G(D). Then, the
labels of the edges in the cut-set of C form a landmark.

Proof. A relaxed plan defines an s-t-path on G(D) that must cross
every s-t-cut.

Given a pcf D, we denote the set of landmarks associated with
the cut-sets of G(D) by Landmarks(D). By considering all pcfs and
all cuts in the justification graphs, we obtain the hitting set problem
FL

.
=

S
{Landmarks(D) : D is a precondition-choice function}.

Theorem 4. If H is a plan for P , then H is a hitting set for FL.
Conversely, if H is a hitting set for FL, then H contains a plan for
P . Therefore, min(FL, c) = h+(P).

Proof. The first claim is direct, since by Lemma 3, every element of
FL is hit by every plan. The last claim follows from the first two.

For the second claim, let H be a hitting set for FL and let R be
the set of fluents that can be reached by only using operators in H .

If R contains the goal t, then H contains a plan and there is nothing
to prove. So, assume t /∈ R. We construct a pcf D such that G(D)
contains an s-t-cut whose cut-set is not hit by H , thus reaching a
contradiction. We classify operators into three types and define D:

T1. If pre(a) ⊆ R and post(a) ⊆ R, then set D(a) arbitrarily to
some p ∈ pre(a).

T2. If pre(a) ⊆ R and post(a) * R, then set D(a) arbitrarily to
some p ∈ pre(a).

T3. If pre(a) * R, then set D(a) to some p ∈ pre(a) \R.

Now consider the cut (R, Rc) of G(D), where Rc is the set of all
fluents not in R. It is a cut since s ∈ R and t /∈ R. We show that
H does not hit the cut-set, i.e., there exists no operator a ∈ H that
labels an edge going from some fluent in R to some fluent not in R.

Assume that a ∈ H were such an operator. It cannot be of type
T1, because edges labeled by type T1 operators go from R into R.
It cannot be of type T2, because pre(a) ⊆ R and a ∈ H implies
post(a) ⊆ R (by definition of R). Finally, it cannot be of type T3, as
edges labeled by type T3 operators do not start in R. Hence, no such
operator exists.

In practice, computing FL according to the definition above is in-
feasible because there are usually exponentially many pcfs. However,
if we can compute and solve, in polynomial time, a relaxation of FL,
then this provides a polytime admissible approximation of h+.

Corollary 5. Let 〈F , c′〉 be a polynomial-time computable relax-
ation of 〈FL, c〉 (possibly additive3) whose solution is polynomial-
time computable. Then the heuristic h = min(F , c′) is a polytime
admissible approximation of h+.

An important special case covered by the corollary are landmark
heuristics based on cost partitioning, including LM-cut (see be-
low) and the heuristics of Karpas and Domshlak [13]. In general,
given a set L = {L1, . . . , Ln} of landmarks, a cost partitioning
for L is a collection C = {c1, . . . , cn} of cost functions such thatPn

i=1 ci(a) ≤ c(a) for each action a. The partitioning defines the
heuristic hC

.
=

Pn
i=1 mina∈Li ci(a), which is an additive relaxation

of FL when L ⊆ FL.
Karpas and Domshlak studied uniform cost partitioning, defined

as ci(a)
.
= 0 if a /∈ Li and ci(a)

.
= c(a)/|{i : a ∈ Li}| if a ∈ Li,

and optimal cost partitioning, which maximizes hC through linear
programming (LP). Interestingly, there is a close connection between
the optimal cost partitioning LP and the hitting set ILP for L.

Theorem 6. Let L be a collection of landmarks, and let c be the cost
function for the actions. Then, the LP that defines the optimal cost
partitioning is the dual of the LP relaxation of the ILP for 〈L, c〉.

Proof. See the technical report [3].

5 THE LM-CUT HEURISTIC
LM-cut is a cost-partitioning-based landmark heuristic obtained from
a sequence {(Li, ci)}ni=1 of landmarks and cost functions such that

hLM-cut(P) = h(L1, c1) + h(L2, c2) + · · ·+ h(Ln, cn) .

In this expression, h(L, c) is the landmark heuristic for L and cost
function c that satisfies h(L, c) = mina∈L c(a).

The sequence {(Li, ci)}ni=1 is computed iteratively, in stages, as
follows. Initially, c1 = c, and at stage i, the landmark Li and cost
function ci are computed through the following steps:
3 In the additive case, we slightly abuse notation since 〈F , c′〉 should be

replaced by a collection {〈Fi, ci〉}i.

Step 1. Compute hmax
ci

(p) values for every fluent p. Terminate if
hmax

ci
(t) = 0.

Step 2. Modify the operators by keeping just one fluent in the pre-
condition of each operator: a fluent that maximizes hmax

ci
,

breaking ties arbitrarily. After this step, each action has ex-
actly one precondition.

Step 3. Split each action of the form a : p ⇒ q1, . . . , qk into k
actions of the form a : p⇒ qi.

Step 4. Construct the justification graph Gi, whose vertices are the
fluents and which contains, for every action a : p ⇒ q, an
edge from p to q with cost ci(a) and label a.

Step 5. Construct an s-t-cut Ci = (V 0
i , V ∗i ∪ V b

i) as follows: V ∗i
contains all fluents from which t can be reached through
a zero-cost path, V 0

i contains all fluents reachable from s
without passing through some fluent in V ∗i , and V b

i contains
all remaining fluents. Clearly, t ∈ V ∗i and s ∈ V 0

i .
Step 6. The landmark Li is the set of labels of the edges that cross

the cut Ci (i.e., lead from V 0
i to V ∗i).

Step 7. Let mi
.
= mina∈Li ci(a), and define ci+1(a)

.
= ci(a) if

a /∈ Li, and ci+1(a)
.
= ci(a)−mi if a ∈ Li.

Step 2 defines a pcf D that is used in Step 4 to construct the jus-
tification graph G(D). Each landmark Li is the set of labels of a
s-t-cut-set of G(D). Hence, if the cost functions correspond to a
cost partitioning for L = {L1, . . . , Ln}, then LM-cut is an additive
relaxation of FL. This is indeed the case:

Theorem 7. LM-cut is an additive relaxation of FL.

Proof. It is sufficient to show
P

i ci(a) ≤ c(a) for all a ∈
S
L. The

(not difficult) proof is given in the technical report [3].

We now focus on problems with action costs that are either 0 or 1.
This is an important class that contains all STRIPS problems.

Improving LM-cut for Problems with 0/1 Costs
The main limitation of LM-cut is that it only considers very simple
subproblems at each stage, namely Fi = {Li}. For 0/1 cost func-
tions, the landmarks {Li}ni=1 computed by LM-cut satisfy the de-
composition Li ∩Lj = ∅ for all i 6= j (i.e., all computed landmarks
are disjoint), and hence the family FLM-cut

.
= {Li}ni=1 has width 1.

Our goal is to define a method for obtaining polytime heuristics
stronger than LM-cut. The general idea is to iteratively construct a
family F that contains FLM-cut and is contained in FL while assuring
its polytime solvability.

We start fromF := FLM-cut and growF by adding one landmark at
a time. We assume that there is a “stream of landmarks” from which
one can iteratively obtain a next landmark to consider for inclusion
in F . The complexity of solving F is controlled by controlling its
width. Thus, for each landmark L from the stream, L is added to F
if width(F ∪ {L}) ≤ k, where k is a parameter of the algorithm.
Additionally, we implement two simple dominance tests to ensure
that F never contains two landmarks L1 and L2 with L1 ⊂ L2.
(In such a situation, L2 would carry no information since every set
that hits L1 also hits L2, and removing L2 from F might reduce its
width.) Figure 2 shows the algorithm for growingF . This is a general
algorithm that will produce a heuristic that dominates LM-cut given
any method for generating a stream of landmarks.

In this paper, we implement a simple stream. Recall that LM-
cut does not specify how to break ties when selecting preconditions
(Step 2), and often there is high variability on the quality of LM-cut

Construct-Relaxation(k)

1. F := FLM-cut;

2. foreach L from stream do
3. if there is L′ ∈ F such that L′ ⊆ L then
4. continue
5. elsif there is L′ ∈ F such that L ⊆ L′ then
6. F := (F \ {L′}) ∪ {L};
7. elsif width(F ∪ {L}) ≤ k then
8. F := F ∪ {L};
9. return F ;

Figure 2. General algorithm for growing FLM-cut.

with respect to this choice. Thus, we generate the stream of land-
marks using the same LM-cut loop but breaking ties randomly among
preconditions with maximum hmax value. The total number of new
landmarks is controlled with another parameter p ≥ 1 that specifies
how many “passes” of the LM-cut loop are executed. In order to ini-
tialize F to FLM-cut, the first pass uses the tie-breaking criterion used
in the original LM-cut implementation.

Computing the width of a family amounts to finding a suitable
partition of it. Since this operation is performed multiple times, an
efficient representation is required.

Efficient Representation

Let F be a family over A decomposed into Π = {Fi}ni=1 where
each Fi is a family over Ai =

S
Fi. By definition, Ai ∩ Aj = ∅

for i 6= j. In order to add landmarks while controlling the width, we
shall need four basic operations:

– Find(a): find Ai that contains a.
– Union(ai, aj): compute Ai ∪Aj where ai ∈ Ai and aj ∈ Aj .
– Add(L): add landmark L to F .
– Width(L): return the width that would result from adding L.

The partition {Ai}ni=1 of A is stored using a disjoint-set data struc-
ture that permits efficient union/find operations [6]. In detail, the par-
tition is stored as a forest of trees in which each Ai corresponds to
a tree whose root is the element of Ai that represents it. In this data
structure, each a ∈ A has a reference a.parent that points to its par-
ent in the tree or to itself if a is a root. Find(a) returns the root of
the tree that contains a by moving along the parent pointers up to the
root of the tree, and Union(ai, aj) sets the parent of Find(aj)
to Find(ai). The Find(a) and Union(ai, aj) procedures can
be enhanced by performing path compression and union by rank [6].
With these enhancements, all Find and Union operations take con-
stant amortized time for all practical values of |A|.

The representatives of the sets Ai are used to store the landmarks
by using an array F of linked lists: F [a] is the list of landmarks inFi

when a is the representative of Ai. Thus, all landmarks “related” to
an element a can be found by listing F [Find(a)]. The operations
Add(L) and Width(L) can be implemented in O(|L|) time us-
ing the first two operations. Figure 3 depicts the pseudo-code for an
initialization procedure, for Add(L) and for Width(L).

We denote the family of landmarks obtained using the above
method for parameters p and k by Fp,k. Similarly to hLM-cut, this fam-
ily is not fully specified since it depends on the exact criteria for se-
lecting the precondition of each action during each pass of LM-cut;

Initialize(F , A)

1. foreach a ∈ A do a.parent := a; F [a] := ∅;
2. foreach L ∈ F do Add(L);

Add(L = {a1, . . . , am})
1. for i = 2 to m do Union(a1, ai);

2. a := Find(a1);

3. F [a] := F [a] ∪ {L};

Width(L = {a1, . . . , am})
1. for i = 1 to m do mark Find(ai);

2. width := 1;

3. for i = 1 to m do
4. if Find(ai) is marked then
5. width := width + |F [Find(ai)]|;
6. unmark Find(ai);

7. return width;

Figure 3. Basic algorithms for manipulating families F .

we assume that some criterion is given. We then define the (p, k)-
LM-cut heuristic hLM-cut

p,k as min(Fp,k, c). With this definition, the
(1, 1)-LM-cut heuristic equals the LM-cut heuristic, while the other
heuristics provide estimates which are at least as large.

Theorem 8. For any fixed p ≥ 1 and k ≥ 1, hLM-cut
p,k is computable in

polynomial time and dominates hLM-cut.

6 PRELIMINARY EXPERIMENTS
We implemented the (p, k)-LM-cut heuristic within the framework
of the optimal Fast Downward planner and ran preliminary exper-
iments over 86 problems: 67 from domains considered challenging
for LM-cut, and 19 from other domains. A domain was deemed chal-
lenging when the relative error of LM-cut with respect to h+ for
the initial states of the problems in the domain was more than 10%
(cf. [10]). The challenging domains are Pipesworld-notankage (17),
Pipesworld-tankage (11), Openstacks (7), Mystery (17) and Freecell
(15). The other domains are Satellite (9) and Trucks (10).

The evaluation consisted in optimally solving each problem with
hLM-cut

p,k (performing p passes of the LM-cut loop and constructing a
hitting set problem Fp,k of width at most k). In our implementation,
each pass of LM-cut not only generates a stream of landmarks, but
also the LM-cut estimate for the pcfs used during that pass. The max-
imum of the LM-cut values of all p passes defines another heuristic
that we call the Max LM-cut heuristic, denoted by max hLM-cut

p . The
value for max hLM-cut

p may differ from the value of LM-cut only when
there are actions with more than one precondition with maximum
hmax value; in such case, we say that the action has more than one hmax

supporter. In our experiments, all actions in the most difficult prob-
lems for all domains, except Mystery, have multiple hmax supporters,
and their number ranges from a typical value of 2 to 10 in some cases.
Since the computation of max hLM-cut

p causes negligible overhead, we
enhance hLM-cut

p,k by taking the maximum with max hLM-cut
p .

The hitting set problems of width at most k are solved with a
breadth-first search that prunes duplicates but performs no node or-
dering. This simple search is able to solve all the hitting set problems
for values of k up to 15 that were generated when solving the 86
problems; these are millions of hitting set problems.

The experiments were run on machines with 2.3 GHz Opteron
CPUs under a 2 GB memory limit. For each problem in the bench-

mark set, we evaluated LM-cut, max hLM-cut
p and hLM-cut

p,k for p = 3, 4, 5
and k = 5, 10, 15, measuring the number of node expansions up to
the last f layer. (We prefer this measure to the overall number of node
expansions because it is not affected by tie-breaking behavior of the
A∗ implementation.) Using this measure, we report the absolute ex-
pansion numbers for LM-cut and the percentage of reduction of the
expansion numbers compared to LM-cut for the other heuristics.

Table 1 presents results for problems in which the reduction was at
least 50% for at least one of our improved heuristics; e.g., the entry
#2-5 of Freecell shows that hLM-cut

5,15 expanded 74% fewer nodes than
LM-cut; i.e., 72 nodes instead of 277 since (277− 72)/277 = 0.74.

We can draw several conclusions from the data. First, the values of
LM-cut vary considerably when different tie-breaking rules are used
to select hmax supporters. This is reflected in the number of expanded
nodes for the Max LM-cut heuristic, which is sometimes much lower
than the number for LM-cut. For example, in Pipesworld-tankage
#08, max hLM-cut

3 expanded 76.3% fewer nodes than LM-cut. Second,
the improved heuristics are sometimes stronger than Max LM-cut
and hence the idea of collecting the landmarks into independent hit-
ting set problems of bounded width and optimally solving them re-
ally does make a difference. For example, in Openstacks #06, hLM-cut

5,15

expanded 72% fewer nodes than LM-cut while max hLM-cut
5 expanded

61.5% fewer nodes. Third, the improvement is sometimes consid-
erable. Indeed, although the improved heuristic is more costly than
LM-cut, there are some problems in which the overall running time
for the improved heuristic is lower than for LM-cut. For example, on
Satellite #10, the planner with LM-cut required 1,430 seconds to find
a solution while the planner with hLM-cut

5,5 required 313 seconds.
On the other hand, in the vast majority of cases, the planner

equipped with LM-cut was able to solve the problems in less time
than the planner equipped with the stronger heuristics. This is mainly
because in most cases LM-cut already does a superb job of approxi-
mating h+, which also bounds the novel heuristics from above. How-
ever, our ideas are general and can be exploited in many different
ways. The purpose of the presented experiment is just to show how a
simple implementation can outperform LM-cut in terms of heuristic
accuracy.

7 CONCLUSIONS
There are several contributions in this work. We performed an analy-
sis of LM-cut, the current best heuristic for optimal planning, which
revealed two major deficiencies. This analysis led us to consider the
problem of computing a minimum-cost hitting set as a way to im-
prove LM-cut. However, we observed that hitting sets are not only
related to LM-cut, but more generally to the underlying delete relax-
ation heuristic h+ and to optimal cost partitioning for landmarks: we
showed that h+ can be understood as the minimum-cost solution of
a hitting set problem, that LM-cut is the optimal solution for a relax-
ation of this problem, and that the LP that defines the optimal cost
partitioning for a landmark set is the dual of the LP relaxation of the
ILP associated with the hitting set problem for that landmark set.

On the practical side, we used the above findings to define a gen-
eral method for obtaining heuristics based on landmarks and gave
details about its implementation. We instantiated the method and ob-
tained a family of polynomial heuristics {hLM-cut

p,k : p, k ≥ 1} that
provably dominate LM-cut. Some of the heuristics were evaluated
over benchmark problems and shown to be superior to LM-cut with
respect to the number of expanded nodes.

In the future, we would like to consider other instantiations of the
method, e.g. by adapting the landmarks generated by LAMA [15].

Table 1. Percentage of reduction of expanded nodes up to last f layer compared to LM-cut. Only instances with at least one entry > 50% are reported.

max hLM-cut
p hLM-cut

p,k with k = 5 hLM-cut
p,k with k = 10 hLM-cut

p,k with k = 15
LM-cut p = 3 p = 4 p = 5 p = 3 p = 4 p = 5 p = 3 p = 4 p = 5 p = 3 p = 4 p = 5

Pipesworld-notankage (relative error of LM-cut w.r.t. h+ = 19.45%)

06 107 44.9 54.2 58.9 45.8 54.2 67.3 49.5 54.2 68.2 49.5 54.2 68.2
07 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
08 84 57.1 64.3 75.0 47.6 57.1 81.0 58.3 75.0 76.2 58.3 75.0 76.2
10 137,092 27.0 36.8 43.0 30.2 40.1 46.9 32.9 43.9 50.0 33.7 47.0 55.1

Pipesworld-tankage (relative error of LM-cut w.r.t. h+ = 18.42%)

03 106 61.3 73.6 77.4 67.9 74.5 81.1 67.9 74.5 81.1 67.9 74.5 81.1
05 74 58.1 70.3 70.3 58.1 70.3 70.3 58.1 67.6 70.3 58.1 67.6 70.3
06 223 37.2 51.6 60.5 41.7 52.0 60.5 43.0 55.6 70.0 43.0 55.6 70.0
07 323 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
08 36,203 76.3 83.6 86.7 77.3 84.9 87.6 77.5 85.0 88.2 77.9 85.8 89.2

Openstacks (relative error of LM-cut w.r.t. h+ = 18.09%)

01 1,195 44.5 45.9 46.5 53.6 57.3 60.1 59.9 64.8 67.0 60.8 68.3 70.4
03 1,195 43.6 44.5 49.2 54.0 55.6 60.5 59.6 63.6 65.8 61.0 64.8 70.5
04 1,195 42.8 45.9 47.2 53.4 57.8 59.0 58.5 63.9 66.7 63.7 66.8 71.5
05 1,195 43.6 46.2 47.7 52.6 57.4 59.7 58.8 65.0 66.6 61.5 65.6 69.8
06 211,175 61.3 61.4 61.5 64.6 64.9 65.2 69.0 70.7 71.7 69.8 71.2 72.0
07 266,865 55.9 56.2 56.4 60.7 61.3 61.8 65.1 66.4 67.2 65.4 66.8 67.3

Mystery (relative error of LM-cut w.r.t. h+ = 16.30%)

06 2,619 40.4 46.2 52.5 40.4 46.2 52.5 40.4 46.2 52.5 40.4 46.5 52.8
09 13 23.0 53.8 61.5 23.0 53.8 61.5 23.0 53.8 61.5 23.0 53.8 61.5
10 32 71.9 84.4 84.4 71.9 84.4 84.4 71.9 84.4 84.4 71.9 84.4 84.4
27 3 33.3 33.3 66.7 33.3 33.3 66.7 33.3 33.3 66.7 33.3 33.3 66.7
28 1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Freecell (relative error of LM-cut w.r.t. h+ = 13.92%)

pf1 54 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
pf2 10,802 78.2 83.7 86.4 79.3 83.9 87.2 80.3 83.7 87.4 80.6 84.5 87.6
pf3 17,641 73.6 78.2 81.1 74.5 78.9 82.0 75.7 81.1 82.5 74.1 80.0 82.4
pf4 36,603 68.6 74.1 76.9 70.7 75.2 78.4 70.3 76.3 79.6 72.3 77.3 79.8
pf5 53,670 73.2 75.4 77.1 73.6 76.0 77.9 74.4 77.1 78.8 75.0 77.6 79.3
2-5 277 72.9 73.3 74.0 72.9 73.3 74.0 72.9 73.3 74.0 72.9 73.3 74.0
3-4 17,763 44.6 62.0 72.0 44.6 62.8 73.1 44.7 62.8 72.1 44.7 62.6 72.1

Satellite (relative error of LM-cut w.r.t. h+ = 1.28%)

03 6 33.3 50.0 50.0 33.3 50.0 50.0 66.7 50.0 66.7 66.7 50.0 66.7
07 3,616 37.2 53.0 60.9 37.4 52.9 61.7 38.3 56.5 63.1 40.5 60.3 66.8
09 3,666 48.7 61.0 65.9 49.2 61.4 67.7 51.3 64.5 69.6 51.6 66.9 71.5
10 6,671 91.4 93.1 93.8 90.5 93.4 94.0 91.2 93.7 94.1 91.7 93.4 94.1

ACKNOWLEDGEMENTS
We thank the reviewers for their helpful comments. This work was
partly supported by the German Research Foundation (DFG) as part
of SFB/TR 14 “Automatic Verification and Analysis of Complex
Systems” (AVACS).

REFERENCES
[1] Christoph Betz and Malte Helmert, ‘Planning with h+ in theory and

practice’, in Proc. KI 2009, pp. 9–16, (2009).
[2] Blai Bonet and Héctor Geffner, ‘Planning as heuristic search’, AIJ,

129(1), 5–33, (2001).
[3] Blai Bonet and Malte Helmert, ‘Strengthening landmark heuristics via

hitting sets: Proofs’, Technical Report 259, Albert-Ludwigs-Universität
Freiburg, Institut für Informatik, (2010).

[4] Tom Bylander, ‘The computational complexity of propositional
STRIPS planning’, AIJ, 69(1–2), 165–204, (1994).

[5] Andrew Coles, Maria Fox, Derek Long, and Amanda Smith, ‘Additive-
disjunctive heuristics for optimal planning’, in Proc. ICAPS 2008, pp.
44–51, (2008).

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Intro-
duction to Algorithms, The MIT Press, 1990.

[7] Patrik Haslum, ‘hm(P) = h1(P m): Alternative characterisations of
the generalisation from hmax to hm’, in Proc. ICAPS 2009, pp. 354–
357, (2009).

[8] Patrik Haslum, Blai Bonet, and Héctor Geffner, ‘New admissible
heuristics for domain-independent planning’, in Proc. AAAI 2005, pp.
1163–1168, (2005).

[9] Patrik Haslum and Héctor Geffner, ‘Admissible heuristics for optimal
planning’, in Proc. AIPS 2000, pp. 140–149, (2000).

[10] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in Proc. ICAPS 2009, pp.
162–169, (2009).

[11] Jörg Hoffmann, ‘Where ‘ignoring delete lists’ works: Local search
topology in planning benchmarks’, JAIR, 24, 685–758, (2005).

[12] Richard M. Karp, ‘Reducibility among combinatorial problems’, in
Complexity of Computer Computations, eds., Raymond E. Miller and
James W. Thatcher, 85–103, (1972).

[13] Erez Karpas and Carmel Domshlak, ‘Cost-optimal planning with land-
marks’, in Proc. IJCAI 2009, pp. 1728–1733, (2009).

[14] Michael Katz and Carmel Domshlak, ‘Optimal additive composition
of abstraction-based admissible heuristics’, in Proc. ICAPS 2008, pp.
174–181, (2008).

[15] Silvia Richter and Matthias Westphal, ‘The LAMA planner: Guiding
cost-based anytime planning with landmarks’, JAIR, (2010). To appear.

