
Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-015-0393-y

SPIN 2013

Guided search for hybrid systems based on coarse-grained space
abstractions

Sergiy Bogomolov1,2 · Alexandre Donzé3 · Goran Frehse4 · Radu Grosu5 ·
Taylor T. Johnson6 · Hamed Ladan2 · Andreas Podelski2 · Martin Wehrle7

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Hybrid systems represent an important and pow-
erful formalism for modeling real-world applications such as
embedded systems. A verification tool like SpaceEx is based
on the exploration of a symbolic search space (the region
space).As a verification tool, it is typically optimized towards
proving the absence of errors. In some settings, e.g., when the
verification tool is employed in a feedback-directed design
cycle, one would like to have the option to call a version that

B Sergiy Bogomolov
sergiy.bogomolov@ist.ac.at

Alexandre Donzé
donze@eecs.berkeley.edu

Goran Frehse
goran.frehse@imag.fr

Radu Grosu
radu.grosu@tuwien.ac.at

Taylor T. Johnson
taylor.johnson@gmail.com

Hamed Ladan
ladanh@informatik.uni-freiburg.de

Andreas Podelski
podelski@informatik.uni-freiburg.de

Martin Wehrle
martin.wehrle@unibas.ch

1 IST Austria, Klosterneuburg, Austria

2 University of Freiburg, Freiburg, Germany

3 University of California, Berkeley, USA

4 Université Joseph Fourier Grenoble 1 – Verimag, Grenoble,
France

5 Vienna University of Technology, Vienna, Austria

6 University of Texas at Arlington, Arlington, USA

7 University of Basel, Basel, Switzerland

is optimized towards finding an error trajectory in the region
space. A recent approach in this direction is based on guided
search. Guided search relies on a cost function that indicates
which states are promising to be explored, and preferably
exploresmore promising states first. In this paper,we propose
an abstraction-based cost function based on coarse-grained
space abstractions for guiding the reachability analysis. For
this purpose, a suitable abstraction technique that exploits
the flexible granularity of modern reachability analysis algo-
rithms is introduced. The new cost function is an effective
extension of pattern database approaches that have been
successfully applied in other areas. The approach has been
implemented in the SpaceEx model checker. The evaluation
shows its practical potential.

Keywords Hybrid system · Reachability analysis ·Guided
search · Heuristics · Pattern databases

1 Introduction

Hybrid systems are extended finite automata whose discrete
states correspond to the variousmodes of continuous dynam-
ics a system may exhibit, and whose transitions express the
switching logic between these modes [1]. Hybrid systems
have been used to model and to analyze various types of
embedded systems [5,9,19,20,34,35,41]. A hybrid system
is considered safe if a given set of bad states cannot be reached
from the initial states. Hence, reachability analysis is a main
concern for hybrid systems. Since the reachability analy-
sis of hybrid systems is in general undecidable [1], modern
reachability analysis tools such as SpaceEx [23] resort to
semi-decision procedures based on over-approximation tech-
niques [16,23]. In this paper, we explore the utility of guided
search in order to improve the efficiency of such techniques.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0393-y&domain=pdf


S. Bogomolov et al.

Guided search is an approach that has recently foundmuch
attention for finding errors in large systems [14,30]. As sug-
gested by the name, guided search performs a search in the
state space of a given system. In contrast to standard search
methods like breadth-first or depth-first search (DFS), the
search is guided by a cost function that estimates the search
effort to reach an error state from the current state. This infor-
mation is exploited by preferably exploring states with lower
estimated costs. If accurate cost functions are applied, the
search effort can significantly be reduced compared to unin-
formed search. Obviously, the cost function therefore plays
a key role within the setting of guided search, as it should be
as accurate as possible on the one hand, and as cheap to com-
pute as possible on the other. Cost functions that have been
proposed in the literature are mostly based on abstractions of
the original system. An important class of abstraction-based
cost functions is based on pattern databases (PDBs). PDBs
have originally been proposed in the area of Artificial Intelli-
gence [17] and also have successfully been applied to model
checking discrete and timed systems [29,30,37,42]. Roughly
speaking, a PDB is a data structure that contains abstract
states together with abstract cost values based on an abstrac-
tion of the original system. During the concrete search, con-
crete states s are mapped to corresponding abstract states in
the PDB, and the corresponding abstract cost values are used
to estimate the costs of s. Overall, PDBs have demonstrated
to be powerful for finding errors in different formalisms. The
open question is if guided search can be applied equally suc-
cessfully to finding errors in hybrid systems.

A first approach in this direction [14] is to estimate the
cost of a symbolic state based on the Euclidean distance
from its continuous part to a given set of error states. This
approach appears to be best suited for systems whose behav-
ior is strongly influenced by the (continuous) differential
equations. However, it suffers from the fact that discrete
information likemode switches is completely ignored, which
can lead to arbitrary degeneration of the search. To see this,
consider the example presented in Fig. 1. It shows a sim-
ple hybrid system with one continuous variable which obeys
the differential equation ẋ = 1 in every location (differential
equations are omitted in the figure). The error states are given
by the locations le1, . . . , len and invariants 0 ≤ x ≤ 8. In this
example, the box-based distance heuristic wrongly explores

l1

l2 l3 le1 . . . len

l4 l5 l6 . . . ln

0 ≤ x ≤ 0 0 ≤ x ≤ 0 0 ≤ x ≤ 8 0 ≤ x ≤ 8

0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8

Fig. 1 A motivating example

the whole lower branch first (where no error state is reach-
able) because it only relies on the continuous information
given by the invariants. More precisely, for the box-based
distance heuristic, the invariants suggest that the costs of the
“lower” states are equal to 0, whereas the costs of the “upper”
states are estimated to be equal to 4 (i. e., equal to the distance
of the centers of the bounding boxes of the invariants).

To overcome these limitations, we introduce an
abstraction-based cost function for hybrid systems which is
motivated by PDBs. In contrast to the box-based approach
based on Euclidean distances, this cost function is able to
properly reflect the discrete part of the system. Compared
to the “classical” discrete setting, the investigation of PDBs
for hybrid systems becomes more difficult for several rea-
sons. First, hybrid systems typically feature both discrete
and continuous variables with complex dependencies and
interactions. Therefore, the question arises how to compute
a suitable (accurate) abstraction of the original system. Sec-
ond, computations for symbolic successors and inclusion
checks become more expensive than for discrete or timed
systems—can these computations be performed or approxi-
mated efficiently to get an overall efficient PDB approach as
well? In this paper, we provide answers to these questions,
leading to an efficient guided search approach for hybrid
systems. In particular, we introduce an abstraction tech-
nique leveraging properties of the set representations used
in modern reachability algorithms. By simply using coarser
parameters for the explicit representation, we obtain suit-
able and cheap coarse-grained space abstractions for the
behaviors of a given hybrid system. Furthermore, we adapt
the idea of partial PDBs, which has been originally pro-
posed for solving discrete search problems [7], to the setting
of hybrid systems in order to reduce the size and compu-
tation time of “classical” PDBs. Our implementation in the
SpaceEx tool [23] shows the practical potential.

The remainder of the paper is organized as follows. After
introducing the necessary background for thiswork inSect. 2,
we present our PDB approach for hybrid systems in Sect. 3.
This is followed by a discussion about related work in
Sect. 4. Afterwards, we present our experimental evaluation
in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Preliminaries

In this section, we introduce the preliminaries that are needed
for this work.

2.1 Notations

We consider models that can be represented by hybrid sys-
tems. A hybrid system is formally defined as follows.

123



Guided search for hybrid systems based on coarse-grained space abstractions

Definition 1 (Hybrid System)Ahybrid system is a tupleH =
(Loc,Var, Init,Flow,Trans, Inv) defining

– The finite set of locations Loc,
– The set of continuous variables Var = {x1, . . . , xn} from
R
n ,

– The initial condition, given by the constraint Init(�) ⊂
R
n for each location �,

– For each location �, a relation called Flow(�) over the
variables and their derivatives. We assume Flow(�) to be
of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ R
n , A is a real-valued n × n matrix and

U ⊆ R
n is a closed and bounded convex set,

– The discrete transition relation, given by a set Trans
of discrete transitions; a discrete transition is formally
defined as a tuple (�, g, ξ, �′) defining

– The source location � and the target location �′,
– The guard, given by a linear constraint g,
– The update, given by an affine mapping ξ , and

– The invariant Inv(�) ⊂ R
n for each location �.

The semantics of a hybrid systemH is defined as follows.
A state of H is a tuple (�, x), which consists of a location
� ∈ Loc and a point x ∈ R

n . More formally, x is a valuation
of the continuous variables in Var. For the following defi-
nitions, let T = [0,Δ] be an interval for some Δ ≥ 0. A
trajectory of H from state s = (�, x) to state s′ = (�′, x′)
is defined by a tuple ρ = (L , X), where L : T → Loc
and X : T → R

n are functions that define for each time
point in T the location and values of the continuous vari-
ables, respectively. Furthermore, we will use the following
terminology for a given trajectory ρ. A sequence of time
points where location switches happen in ρ is denoted by
(τi )i=0...k ∈ T k+1. In this case, we define the length of ρ

as |τ | = k. Trajectories ρ = (L , X) (and the corresponding
sequence (τi )i=0...k) have to satisfy the following conditions:

• τ0 = 0, τi < τi+1, and τk = Δ– the sequence of switch-
ing points increases, starts with 0 and ends with Δ

• L(0) = �, X(0) = x, L(Δ) = �′, X(Δ) = x′ – the
trajectory starts in s = (�, x) and ends in s′ = (�′, x′)

• ∀i ∀t ∈ [τi , τi+1) : L(t) = L(τi )– the location is not
changed during the continuous evolution

• ∀i ∀t ∈ [τi , τi+1) : (X(t), Ẋ(t)) ∈ Flow(L(τi )), i.e.,
Ẋ(t) = AX(t)+u(t) holds and thus the continuous evo-
lution is consistent with the differential equations of the
corresponding location

• ∀i ∀t ∈ [τi , τi+1) : X(t) ∈ Inv(L(τi ))– the continuous
evolution is consistent with the corresponding invariants

• ∀i ∃(L(τi ), g, ξ, L(τi+1)) ∈ Trans : Xend(i) =
limτ→τ−

i+1
X(τ )∧Xend(i) ∈ g∧X(τi+1) = ξ(Xend(i))–

every continuous transition is followed by a discrete one,
Xend(i) defines the values of continuous variables right
before the discrete transition at the time moment τi+1,
whereasXstart (i) = X(τi ) denotes the values of continu-
ous variables right after the switch at the timemoment τi .

A state s′ is reachable from state s if there exists a trajec-
tory from s to s′.

In the following, we mostly refer to symbolic states. A
symbolic state s = (�,R) is defined as a tuple, where � ∈
Loc, andR is a convex and bounded set consisting of points
x ∈ R

n . The continuous part R of a symbolic state is also
called region. The symbolic state space of H is called the
region space. The initial set of states Sinit ofH is defined as⋃

�(�, Init(�)). The reachable state space Reach(H) of H is
defined as the set of symbolic states that are reachable from
an initial state in Sinit , where the definition of reachability is
extended accordingly for symbolic states.

In this paper, we assume there is a given set of symbolic
bad states Sbad that violate a given property. Our goal is to
find a sequence of symbolic states which contains a trajec-
tory from Sinit to a symbolic error state, where a symbolic
error state se has the property that there is a symbolic bad
state in Sbad that agrees with se on the discrete part, and that
has a non-empty intersection with se on the continuous part.
A trajectory that starts in a symbolic state s and leads to a
symbolic error state is called an error trajectoryρe(s).

2.2 Symbolic states representation

The representation of symbolic states plays a crucial role for
the reachability analysis of hybrid systems. As outlined in
the previous section, a symbolic state consists of a discrete
location and a continuous region. The handling of continu-
ous regions within the reachability analysis poses a special
challenge as a number of operations on polyhedra (such as
linear maps, Minkowski sum, and convex hull computation)
need to be performed efficiently in practice. The LGG sce-
nario [33] which is implemented in SpaceEx [23] relies on
twomain ingredients for this purpose: support functions [10]
and template polyhedra. In the following, we will describe
them in more detail.

The support function ρR(�) of a regionR with respect to
the direction � ∈ R

n is defined as follows:

ρR(�) = max
x∈R

� · x .

Wecan represent an arbitrary convex closed setR by using
support functions in the following way:

R =
⋂

�∈Rn

{x | � · x ≤ ρR(�)}.

123



S. Bogomolov et al.

The representation based on support functions allows
for efficiently computing all the above-mentioned polyhe-
dra operations, hence reachability algorithms in turn benefit
from this representation.

As the consideration of an infinite number of directions
is clearly infeasible from the computational point of view,
SpaceEx also makes use of a continuous set representation
derived from the support functions: template polyhedra. In
this setting, we predefine from the very beginning a set of
directions taken into account in course of the reachability
analysis. In other words, a user provides a set of directions
D = {�1, . . . , �m} used for the reachability analysis. Based
on D, the regionR can be over-approximated by the follow-
ing polyhedron:

RD =
⎧
⎨

⎩
x ∈ R

n |
∧

�i∈D
�i · x ≤ ρR(�i )

⎫
⎬

⎭
.

SpaceEx supports a number of predefined direction sets
such as, box directions (directions parallel to axes; see Fig. 2)
and octagonal directions (the union of directions parallel to
axes and diagonal ones; see Fig. 3). Obviously, by increasing
the number of considered directions, we can improve the
approximation precision.

In the rest of this section, we briefly recapitulate the com-
putation of continuous successors for a given symbolic state,
i.e., the states which are reachable according to the contin-

Fig. 2 Region representation using box directions

Fig. 3 Region representation using octagonal directions

uous dynamics. As the continuous post operator does not
change the discrete part of a symbolic state, we consider
only the continuous region of a symbolic state.

The LGG scenario computes the continuous successors
only for a finite time horizon. Therefore, we use a time-
bounded version of the reachable region Reacht1,t2(R) for
a given starting region R ⊆ R

n , dynamics ẋ(t) = Ax(t) +
u(t), u(t) ∈ U (*) and a time interval [t1, t2] ⊆ R

≥0:

Reacht1,t2(R) = {x(τ ) | t1 ≤ τ ≤ t2, x(0) ∈ R,

x(τ ) is the solution of (*)}.

SpaceEx performs an over-approximating time-bounded
reachability analysis of Reach0,T (R), where T ∈ R

≥0 is a
user-provided time horizon. Inmore detail, as the reachability
analysis of hybrid systems is generally undecidable, SpaceEx
over-approximates the successor regions by iteratively com-
puting over-approximations based on discretizing the time
up to the time horizon: First, the time interval [0, T ] is par-
titioned in a number of small time intervals [δi , δi+1], where
δi = i · Tδ (i = 0, . . . , N − 1) and Tδ = T/N (N ∈ N) is a
user-provided sampling time. Second, given this partitioning,
SpaceEx covers the exact reachability set with the sequence
Ωi ⊆ R

n, i = 0, . . . , N − 1, where Ωi defines the over-
approximation of the states reachable within the time interval
[δi , δi+1]. In other words, the following inclusion holds:

Reach0,T (I ni t) ⊆
N−1⋃

i=0

Ωi .

The set Ωi+1 can be expressed in terms of the “prede-
cessor set” Ωi by using a linear map and Minkowski sum.
Therefore, we only need to provide a routine to compute Ω0

which in turn can be done in two steps. First, we compute the
convex hull of the union of the regionR and its image at the
moment Tδ . Second, we observe that the continuous dynam-
ics non-linearities can lead to some reachable states being
outside of the computed convex hull. In order to account for
this phenomena, we bloat the resulting convex hull to ensure
the over-approximation. Clearly, a larger sampling time Tδ

makes a possibly larger bloating necessary, which worsens

Fig. 4 Region representation using a large sampling time

123



Guided search for hybrid systems based on coarse-grained space abstractions

Fig. 5 Region representation using a small sampling time

the approximation precision (see Figs. 4 and 5 for a compar-
ison).

To summarize, we observe that the adjustment of the tem-
plate directions used in the support function representation
and the sampling time in the continuous post operator cru-
cially impacts the precision, i.e., the abstraction level, of the
symbolic state representation. Clearly, an improved precision
leads to an increased analysis time on the downside. Based
on this representation, we will present an algorithm which
leverages different abstraction levels to efficiently explore
the region space.

2.3 Guided search

In this section,we introduce a guided search algorithm (Algo-
rithm 1) along the lines of the reachability algorithm used by
the current version of SpaceEx [23]. It works on the region
space of a given hybrid system. The algorithm checks if a
symbolic error state is reachable from a given set of initial
symbolic statesSinit . As outlined above,wedefine a symbolic
state se in the region space ofH to be a symbolic error state if
there is a symbolic state s ∈ Sbad such that s and se agree on
their discrete part, and the intersection of the regions of s and
se is not empty (in other words, the error states are defined
with respect to the given set of bad states). Starting with the
set of initial symbolic states fromSinit , the algorithmexplores
the region space of a given hybrid system by iteratively com-
puting symbolic successor states until an error state is found,
no more states remain to be considered, or a (given) maxi-
mum number of iterations imax is reached. The exploration
of the region space is guided by the cost function such that
symbolic states with lower cost values are considered first.

In the following, we provide a conceptual description
of the algorithm using the following terminology. A sym-
bolic state s′ is called a symbolic successor state of a
symbolic state s if s′ is obtained from s by first comput-
ing the continuous successor of s (according to iteratively
over-approximating the successor regions of s with sets Ωi

as described in the previous section), and then by comput-
ing a discrete successor state of the resulting (intermediate)
state. Therefore, for a given symbolic state scurr , the func-
tion continuousSuccessor (line 7) returns a symbolic state
which is an over-approximation of the symbolic state reach-

Algorithm 1 A guided symbolic reachability algorithm
Require: Set of initial symbolic states Sinit , set of symbolic bad states

Sbad , cost function cost
Ensure: Can a symbolic error state be reached from a symbolic state

in Sinit ?
1: compute cost(s) for all s ∈ Sinit
2: Push (Lwaiting, {(s, cost(s)) | s ∈ Sinit})
3: i := 0
4: while (Lwaiting �= ∅ ∧ i < imax) do
5: scurr := GetNext (Lwaiting)

6: i := i + 1
7: s′

curr := continuousSuccessor(scurr)
8: if s′

curr is a symbolic error state then
9: return “Error state reached”
10: end if
11: Push (Lpassed , s′

curr)

12: S′ := discreteSuccessors(s′
curr)

13: for all s′ ∈ S′ do
14: if s′ /∈ Lpassed then
15: compute cost(s′)
16: Push (Lwaiting, (s′, cost(s′)))
17: end if
18: end for
19: end while
20: if i = imax then
21: return “Maximal number of iterations reached”
22: else
23: return “Error state not reachable”
24: end if

able from scurr within the given time horizon according to the
continuous evolution. Accordingly, the function discrete-
Successors (line 12) returns the symbolic states that are
reachable due to the outgoing discrete transitions.

A symbolic state s is called explored if its symbolic suc-
cessor states have been computed. A symbolic state s is
called visited if s has been computed but not yet neces-
sarily explored. To handle encountered states, the algorithm
maintains the data structures Lpassed and Lwaiting. Lpassed is
a list containing symbolic states that are already explored;
this list is used to avoid exploring cycles in the region space.
Lwaiting is a priority queue that contains visited symbolic
states together with their cost values that are candidates to
be explored next. The algorithm is initialized by computing
the cost values for the initial symbolic states and pushing
them accordingly into Lwaiting (lines 1 – 2). The main loop
iteratively considers a best symbolic state scurr from Lwaiting

according to the cost function (line 5), computes its symbolic
continuous successor state s′

curr (line 7), and checks if s′
curr

is a symbolic error state (lines 8 – 10). (Recall that s′
curr is

defined as a symbolic error state if there is a symbolic bad
state s ∈ Sbad such that s and s′

curr agree on their discrete
part, and the intersection of the regions of s and s′

curr is not
empty.) If this is the case, the algorithm terminates. If this is
not the case, then s′

curr is pushed intoLpassed (line 11). Finally,
for the resulting symbolic state s′

curr , the symbolic discrete
successor states are computed, prioritized, and pushed into

123



S. Bogomolov et al.

Lwaiting if they have not been considered before (lines 12
– 18). As a side remark, if a successor state s′ = 〈l,R〉
is not contained in Lpassed (line 14), but instead there is a
symbolic state s′′ = 〈l,R′〉 ∈ Lpassed with R ⊂ R′, then
s′ is discarded as well because all transitions enabled in s′
have already been enabled in s′′ which is already explored.
Finally, the check if the given maximal number of iterations
has been reached (line 4 and line 20) ensures termination,
which would not be generally guaranteed otherwise (e. g.,
because of Zeno behavior).

Obviously, the search behavior of Algorithm 1 is crucially
determined by the cost function that is applied. In the next
section, we give a generic description of pattern database
cost functions.

2.4 General framework of pattern databases

For a given system S, a pattern database (PDB) in the clas-
sical sense (i. e., in the sense PDBs have been considered for
discrete and timed systems) is represented as a table-like data
structure that contains abstract states together with abstract
cost values. The PDB is used as a cost estimation function by
mapping concrete states s to corresponding abstract states s#

in the PDB, and using the abstract cost value of s# as an esti-
mation of the cost value of s. The computation of a classical
PDB is performed in three steps. First, a subset P of vari-
ables and automata of the original system S is selected. Such
subsetsP are called pattern. Second, based onP , an abstrac-
tion S# is computed that only keeps the variables occurring
in P . Third, the entire state space of S# is computed and
stored in the PDB. More precisely, all reachable abstract
states together with their abstract cost values are enumer-
ated and stored. The abstract cost value for an abstract state
is defined as the shortest length of a trajectory from that state
to an abstract error state. The resulting PDB of these three
steps is used as the cost function during the execution of
Algorithm 1; in other words, the PDB is computed prior to
the actual model checking process, where the resulting PDB
is used as an input for Algorithm 1.

A straight-forward adaptation of such classical PDBs to
the area of hybrid systems is the following. For a given hybrid
system H, compute an abstract system H# as the basis for
the PDB, whereH# is obtained fromH by removing some of
the variables inH (the pattern corresponds to the remaining
variables in H#). Based on H#, the PDB is represented by
a data structure that contains abstract states together with
corresponding cost values. The abstract states and cost values
are obtainedby a region space exploration ofH#. The abstract
cost value of an abstract state s# is defined as the length of a
shortest found trajectory in H# from s# to an abstract error
state. The PDB computes the cost function

costP(s) := cost#(s#),

where s is a symbolic state, s# is a corresponding abstract
state to s in the PDB, and cost# is the length of the cor-
responding trajectory from s# to an abstract error state as
defined above.

3 Pattern databases for hybrid systems

In Sect. 2.4, we have described the general approach for
computing and using a PDB for guiding the search. How-
ever, for hybrid systems, there are several challenges using
the classical PDB approach. First, it is not clear how to effec-
tively design and compute suitable abstractionsH# for hybrid
systems H with complex variable dependencies. Second, in
Sect. 3.2, we address the general problem that the precom-
putation of a PDB is often quite expensive, where in many
cases, only a small fraction of the PDB is actually needed for
the search [24]. This is undesirable in general, and specifi-
cally becomes problematic in the context of hybrid systems
because the reachability analysis in hybrid systems is typi-
cally much more expensive than, e. g., for discrete systems.
In Sect. 3.2, we introduce a variant of partial PDBs for hybrid
systems to address these problems.

3.1 Coarse-grained space abstractions

A general question in the context of PDBs is how to com-
pute suitable abstractions of a given system. In particular, for
hybrid systems where variables often have rather complex
dependencies, projection abstractions based on removing
variables (as done for classical PDBs) can be too coarse to
achieve accurate heuristics. In this paper, we propose a sim-
ple, yet elegant alternative to the classical PDB approach
to obtain a coarse grained and fast analysis: As described
in Sect. 2.2, the LeGuernic-Girard (LGG) algorithm imple-
mented in SpaceEx [23] uses support function representation
(based on the chosen set of template directions) to com-
pute and store over-approximations of the reachable states.
Therefore, a reduced number of template directions and an
increased sampling time results in an abstraction of the origi-
nal region space in the sense that the dependency graph of the
reachable abstract symbolic states is a discrete abstraction of
the system.

The granularity of the resulting abstraction is directly
correlated with the parameter selection: Choosing coarser
parameters (fewer template directions, larger sampling time)
in the reachability algorithm makes this abstraction coarser,
whereas finer parameters lead to finer abstractions as well.
In more detail, for a given set of template directions D and
sampling time N , a subset D′ ⊂ D and a larger sampling
time N ′ > N induce coarse-grained space abstractionswith
respect to the abstractions obtained by D and N : the over-
approximation of regions based on D′ and N ′ are coarser than

123



Guided search for hybrid systems based on coarse-grained space abstractions

for D and N . As an example for template directions, consider
again Figs. 2 and 3: the set of box directions in Fig. 2 is a
coarse-grained space abstraction of the set of octagonal direc-
tions in Fig. 3. Similarly, as an example for the sampling time,
consider again Figs. 4 and 5, where Fig. 4 shows a coarse-
grained space abstraction based on increased sampling time
of the regions in Fig. 5.

In the following, we apply coarse-grained space abstrac-
tions to obtain abstractions as the basis for pattern databases.
This is a significant difference compared to classical PDB
approaches (see Sect. 2.4): Instead of computing an explicit
(projection) abstractionH# based on a subset of all variables,
we keep all variables (and hence, the original systemH), and
instead choose a coarser exploration of the abstract region
space of H to obtain the abstraction used for the PDB. (In
practice, we apply unguided search provided by SpaceEx to
compute this coarser abstraction.)As an additional difference
to classical PDBs, we will apply a variant of partial PDBs,
which are introduced in the next section.

3.2 Partial pattern databases

As already outlined, a general drawback of classical PDBs is
the fact that their precomputationmight become quite expen-
sive. Evenworse, inmany cases, most of this precomputation
time is often unnecessary because only a small fraction of
the PDB is actually needed during the symbolic search in the
region space [24]. One way that has been proposed in the lit-
erature to overcome this problem is to compute the PDB on
demand: The so-called switchback searchmaintains a family
of abstractionswith increasing granularity; these abstractions
are used to compute the PDB to guide the search in the next
finer level [32].

In the following, we apply a variant of partial PDBs [7]
based on coarse-grained space abstractions to address this
problem: Instead of computing the whole abstract region
space for a given abstraction, we restrict the abstract search
to explore only a fraction of the abstract region space while
focusing on those abstract states that are likely to be sufficient
for the concrete search. In the following definition, we call
an abstract state s# corresponding to state s if s and s# agree
on their discrete part, the region of s is included in region of
s#, and s# is an abstract state with minimal abstract costs that
satisfies these requirements.

Definition 2 (Partial Pattern Database) Let H be a hybrid
system.A partial pattern database forH is a pattern database
for H that contains only abstract state/cost value pairs for
abstract states that are part of some trajectory of shortest
length (in terms of number of location switches) from an
initial state to some abstract error state. The partial pattern
database computes the function

costPP(s) :=
{
cost#(s#) if ex. corresponding s# to s
+∞ otherwise

where s, s#, and cost# are defined as above, and +∞ is a
default value indicating that no corresponding abstract state
to s exists.

Informally, a partial PDB for a hybrid system H exactly
contains those abstract states that are explored on some short-
est trajectory (instead of containing all abstract states of a
complete abstract region space exploration to all abstract
error states as it would be the case for a classical PDB). In
other words, partial PDBs are incomplete in the sense that
there might exist concrete states without any correspond-
ing abstract states in the PDB. In such cases, the default
value +∞ is returned with the intention that correspond-
ing concrete states are only explored if no other states are
available. Obviously, this might worsen the overall search
guidance compared to the fully computed PDB. However, in
special cases, a partial PDB is already sufficient to obtain the
same cost function as obtained with the original PDB or even
obtained with a perfect cost function (that allows for explor-
ing the region space without backtracking to find an error
state). For example, this is the case when only abstract states
are excluded from which no abstract error state is reachable
anyway. More generally, under the idealized assumption that
the abstraction is fine enough such that no spurious behavior
occurs on shortest possible error trajectories, the partial PDB
already delivers the same search behavior as a perfect search
algorithm that finds an error trajectory without backtracking.

Proposition 1 Let H be a hybrid system. Let n ∈ N0 be
the length of a shortest concrete error trajectory. If all
shortest abstract error trajectories in H (obtained by a
coarse-grained space abstraction to build a pattern data-
base) correspond to concrete error trajectories of the same
length, then guided search with Algorithm 1 and costPP finds
an error trajectory after n steps.

Proof By construction, the partial PDB contains exactly
those symbolic abstract states that are part of shortest pos-
sible error trajectories. By assumption, these abstract states
correspond to concrete states on concrete error trajectories
of the same length. Hence, for every concrete state s on
a shortest error trajectory, there is a corresponding entry
in the partial PDB for all concrete successor states s′ of
s that are part of a shortest concrete error trajectory, and
costPP(s′) = costPP(s)−1. In addition, for all concrete suc-
cessor states s′′ that are not part of a shortest concrete error
trajectory, costPP(s′′) = ∞. Overall, the claim follows by
an inductive argument: Let s0 be an initial state such that
costPP(s0) = n is minimal among the costs of all initial
states, i. e., n is the length of a shortest concrete error trajec-
tory. Furthermore, all concrete states on a shortest concrete

123



S. Bogomolov et al.

error trajectory have a concrete successor state with a cost
value decreased by one, whereas all other successor states
have a cost value of infinity. Hence, Algorithm 1 with the
costPP function finds a concrete error trajectory within n
steps. ��

Under the idealized assumptions of Proposition 1, it fol-
lows immediately that guided search applying the full PDB
cannot improve over the partial PDB.

Corollary 1 Under the assumptions ofProposition1, guided
search with Algorithm 1 and costP explores at least as many
states as with costPP.

Proposition 1 and Corollary 1 show that partial PDBs
can provide effective search guidance in an idealized set-
ting where the applied abstraction only introduces spurious
behavior on non-relevant parts of the region space. Clearly,
in practice, these assumptions will mostly not be satisfied
for abstractions that are efficiently computable. However, we
rather consider Proposition 1 as a proof of concept show-
ing that the basic concept of partial PDBs is meaningful in
our setting. (In our experimental analysis, we will show that
partial PDBs yield an effective and efficient approach for a
number of practical and challenging problems as well—we
will come back to this point in Sect. 5.) Overall, we will see
that although in case the requirements of Proposition 1 are
not fulfilled, partial PDBs can still be a good heuristic choice
that lead to cost functions that are efficiently computable and
accurately guide the concrete search.

3.3 Discussion

Ourpattern database approach for finding error states exploits
abstractions in a different way than in common approaches
for verification (see Sect. 4 for a discussion on related work).
Most notably, the main focus of our abstraction is to provide
the basis for the cost function to guide the search, rather than
to prove correctness (although, under certain circumstances,
it can be efficiently used for verification as well—we will
come back to this point in the experiments section). As a
short summary of the overall approach, we first compute a
symbolic abstract region space (as described in Sect. 3.1),
where the encountered symbolic abstract states s# are stored
in a table togetherwith the corresponding abstract cost values
of s#. To avoid the (possibly costly) computation of an entire
PDB, we only compute the PDB partially (as described in
Sect. 3.2). This partial PDB is then used as the cost func-
tion of our guided reachability algorithm. As in many other
approaches that apply abstraction techniques to reason about
hybrid systems, the abstraction that is used for the PDB is
supposed to accurately reflect the “important” behavior of
the system, which results in accurate search guidance of the

resulting cost function and hence, of our guided reachability
algorithm.

An essential feature of the PDB-based cost function is
the ability to reflect the continuous and the discrete part
of the system. To make this more clear, consider again the
motivating example from the introduction (Fig. 1). As we
have discussed already, the box-based distance function first
wrongly explores the whole lower branch of this system
because no discrete information is used to guide the search.
In contrast, a partial PDB is also able to reflect the dis-
crete behavior of the system. In this example, the partial
PDB consists of an abstract trajectory to the first reachable
error state, which is already sufficient to guide the (concrete)
region space exploration towards to first reachable error state
as well. In particular, this example shows the advantage
of partial PDBs compared to fully computed PDBs (recall
that fully computed PDBs would include all error states,
whereas the partial PDB only contains the trajectory to a
shortest one). In general, our PDB approach is particularly
well suited for hybrid systems with a non-trivial amount of
discrete behavior. However, the continuous behavior is still
considered according to our abstraction technique as intro-
duced in Sect. 3.1. Overall, partial PDBs appear to be an
accurate approach for guided search because they accurately
balance the computation time for the cost function on the one
hand, and lead to efficient and still accurately informed cost
functions on the other hand.

4 Related work

Abstraction techniques for hybrid systems have been mostly
considered in a verification setting, i. e., in a setting where
the focus is on proving that a given set of bad states can-
not be reached. For this purpose, abstractions have been
applied in different ways. On the one hand, a number of
approaches to abstract the regions of symbolic states within
the reachability analysis have been suggested, including
constraint polyhedra [22], ellipsoids [31], and orthogonal
polyhedra [15]. In our paper, we use the support function
representation [33]. These approaches have in common that
the structure of the considered hybrid system is left intact. On
the other hand, it also possible to abstract a hybrid automata
structure. Alur et al. [2] suggest to use predicate abstrac-
tion for the hybrid systems analysis. In addition, Tiwari et
al. [40] introduce a method based on the quantifier elimina-
tion decision procedure for real closed fields. Furthermore,
Tiwari [39] investigates Lie derivatives and their application
to the abstraction generation. Jha et al. [25] computes abstrac-
tions by removing some of the continuous variables. Finally,
Bogomolov et al. [13] abstract hybrid systems by merging
locations. The abstract dynamics is computed by eliminating
the state variables and computing a convex hull. Our pattern

123



Guided search for hybrid systems based on coarse-grained space abstractions

database approach belongs to the first group outlined above
as we exploit the parametrization of the symbolic region rep-
resentation.

A prominent model checking approach for hybrid systems
is based on counterexample-guided abstraction refinement
(CEGAR) [3,4]. In a nutshell, CEGAR iteratively refines the
considered abstraction until the abstraction is fine enough to
prove or refute the property. Our PDB approach shares with
CEGAR the general idea of using an abstraction to analyze
a concrete system. However, in contrast to CEGAR, where
abstract counterexamples have to be validated and possibly
used in further abstraction refinement, abstractions for PDBs
are never refined and only used as a heuristic to guide the
searchwithin the concrete automaton. In other words, in con-
trast to CEGAR, the accuracy of the abstraction influences
the order in which concrete states are explored, and hence,
the accuracy in turn influences the performance of the result-
ing model checking algorithm.

Therefore, a crucial difference lies in the fact that CEGAR
does the search in the abstract space, replays the counterex-
ample in the concrete space, and stops if the error trajectory
cannot be followed. In contrast, our approach does the search
in the concrete space and uses the PDBs for guidance, only. If
an abstract trajectory cannot be followed, the search does not
stop, but tries other branches until either a counterexample
is found, or all trajectories have been exhausted. Due to this
reason, our framework provides the same level of precision as
the default SpaceEx reachability algorithm. The concretiza-
tion of a symbolic path is known to be a highly non-trivial
computational problem. A symbolic bad path found with our
approach can be further concretized to the trajectory level
using techniques from optimal control (see, e.g., the work by
Zutshi et al. [43] for more details).

Considering more specialized techniques to find error
states in faulty hybrid systems, Bhatia and Frazzoli [11]
propose using rapidly exploring random trees (RRTs). In
the context of hybrid systems, the objective of a basic
RRTs approach is to efficiently cover the region space in an
“equidistant” way in order to avoid getting stuck in some
part of the region space. Recently, RRTs were extended
by adding guidance of the input stimulus generation [18].
However, in contrast to our approach, RRTs approaches
are based on numeric simulations, rather than symbolic
executions. Applying PDBs to RRTs would be an inter-
esting direction for future work. In a further approach,
Plaku, Kavraki, and Vardi [36] propose to combine motion
planning with discrete search for falsification of hybrid
systems. The discrete search and continuous search com-
ponents are intertwined in such a way that the discrete
search extracts a high-level plan that is then used to guide
the motion planning component. In a slightly different set-
ting, Ratschan and Smaus [38] apply search to finding error
states in hybrid systems that are deterministic. Hence, the

search reduces to the problem of finding an accurate initial
state.

SpaceEx [23] is a recently developed, yet already promi-
nentmodel checking tool for hybrid systems.As suggestedby
the name, it explores the region space by applying (symbolic)
search. The most related approach to this paper has recently
been presented by Bogomolov et al. [14], who propose a cost
function based on Euclidean distances of the regions of the
current state and error states. The resulting guided search
algorithm is implemented in SpaceEx and has demonstrated
to achieve significant guidance and performance improve-
ments compared to the uninformed search of SpaceEx. In
contrast to the presented PDB approach of this paper, the
Euclidean distances are solely based on the continuous part
of the system, whereas PDBs are able to reflect both discrete
and continuous parts.

Moreover, guided search has been applied to finding
error states in a subclass of hybrid systems, namely to
timed systems. In particular, PDBs have been investigated
in this context [29,30,42]. In contrast to this paper, the
PDB approaches for timed systems are “classical” PDB
approaches, i. e., a subset of the available automata and
variables are selected to compute a projection abstraction.
To select this subset, Kupferschmid et al. [29] compute an
abstract error trace and select the automata and variables that
occur in transitions in this abstract trace. In contrast, Kupfer-
schmid and Wehrle [30,42] start with the set of all automata
and variables (i. e., with the complete system), and itera-
tively remove variables as long as the resulting projection
abstraction is “precise enough” according to a certain qual-
ity measure. In both approaches, the entire PDB is computed,
which is more expensive than the partial PDB approach pro-
posed in this paper.

5 Evaluation

We have implemented costPP in the SpaceEx tool [23] and
evaluated it on a number of challenging benchmarks. The
implementation and the benchmarks are available at http://
pub.ist.ac.at/~sbogomol/sttt2015.

The experiments have been performed on a machine run-
ningwith AMDOpteron 6174 processors.We set a time limit
of 30 min per run. In the following, we report results for our
PDB implementation of costPP in SpaceEx. We compared
costPP with uninformed DFS as implemented in SpaceEx,
and with the recently proposed box-based distance func-
tion [14] on several challenging benchmark problems. We
compare the number of iterations of SpaceEx, the length of
the error trajectory found as well as the overall search time
(including the computation of the PDB for costPP) in sec-
onds. In the following, we will shortly denote partial PDBs
with PDBs.

123

http://pub.ist.ac.at/~sbogomol/sttt2015
http://pub.ist.ac.at/~sbogomol/sttt2015


S. Bogomolov et al.

5.1 Results for navigation benchmarks

As a first set of benchmarks, we consider a variant of thewell-
known navigation benchmark [21]. This benchmark models
an object moving on the plane which is divided into a grid
of cells. The dynamics of the object’s planar position in
each cell is governed by the differential equations ẋ = v,
v̇ = A(v − vd), where vd stands for the targeted velocity in
this location.Compared to the originally proposed navigation
benchmark problem,we address a slightlymore complex ver-
sion with the following additional constraints. First, we add
inputs allowing perturbation of object coordinates, i. e., the
system of differential equations is extended to: ẋ = v + u,
v̇ = A(v − vd), umin ≤ u ≤ umax . Second, to make the
search task even harder, the benchmark problems also feature
obstacles between certain grid elements. This is particularly
challenging because, in contrast to the original benchmark
system, one can get stuck in a cell where no further tran-
sitions can be taken, and consequently, backtracking might
become necessary. The size of the problem instances varies
from 400 to 900 locations, and all instances feature 4 vari-
ables.

The results for the navigation benchmark problem class
are provided in Table 1, where the best results are given in
bold fonts with respect to the total runtime. The fraction of
the total time to compute the PDB is given in parenthesis.
As a general picture, they show that the precomputation

time for the PDB mostly pays off in terms of guidance
accuracy and overall runtime. Specifically, the overall run-
time could (sometimes significantly) be reduced compared
to uninformed search and also compared to the box-based
heuristic. For example, in navigation instance 1, the precom-
putation for the PDB only needs around 3s, leading to an
overall runtime of around 28s, compared to around 99s with
the box-based heuristic, and about 206s with uninformed
search. This search behavior for instance 1 is also visual-
ized in Figs. 6, 7, and 8, showing the trajectories (i. e., the
parts of the covered region space) with the different search
approaches. We observe the following: While uninformed
DFS explores quite a large number of unnecessary trajecto-
ries, the box-based heuristic already guides the search more
accurately and finds an error state with much fewer detours.
Considering the PDB approach, we observe that PDBs can
guide the search even more accurately in the sense that no
detours are explored at all, and hence, no backtracking is
needed either. Furthermore, the covered parts of the region
space is again much lower than both with uninformed search
and the box-based heuristic. In addition, we observe that even
the abstract run (shown in light gray) is already rather accu-
rate, covering only little more of the region space than the
concrete run. Overall, the PDB approach finds an accurate
balance between the computation time and the accuracy of
the resulting cost function.

Table 1 Results for the
navigation benchmarks

Inst. #Loc Uninformed DFS Box-heuristic PDB

#It Length Time #It Length Time #It Length Time (time abs.)

1 400 122 15 206.1 62 15 99.883 16 15 28.325 (2.714)

2 400 183 33 262.565 86 33 168.815 34 33 75.626 (10.153)

3 625 75 33 99.758 34 33 52.222 34 33 62.283 (10.234)

4 625 268 158 368.545 231 158 296.89 159 158 178.705 (13.992)

5 625 85 79 167.502 26 25 53.164 26 25 58.417 (5.002)

6 625 96 53 155.458 101 53 148.448 54 53 106.283 (13.267)

7 625 227 34 280.406 105 34 137.363 35 34 66.315 (12.682)

8 625 178 25 371.8 86 25 192.71 26 25 60.639 (9.609)

9 625 297 17 502.049 102 17 187.003 18 17 42.785 (10.232)

10 625 440 30 753.488 136 30 282.914 31 30 84.031 (18.114)

11 900 234 72 378.906 129 21 208.789 22 21 45.085 (10.973)

12 900 317 43 473.785 174 61 277.467 44 43 86.936 (21.097)

13 900 367 37 596.671 148 37 266.718 38 37 97.456 (26.926)

14 900 411 32 608.962 278 32 419.827 33 32 79.987 (14.934)

15 900 379 44 625.685 107 44 194.535 45 44 97.138 (12.302)

Bold values indicate the best analysis method for every benchmark
Uninformed DFS uninformed depth-first search, Box-heuristic box-based distance heuristic, PDB our PDB
cost function costPP , #loc number of locations, #it number of iterations, length length of the found error
trajectory, time total time in seconds including any preprocessing. For our PDB approach, the fraction of the
total time that is needed for the PDB computation is additionally reported in parenthesis

123



Guided search for hybrid systems based on coarse-grained space abstractions

Fig. 6 Navigation benchmark uninformed search error trajectory for
instance 1

Fig. 7 Navigation benchmark box-based heuristic search error trajec-
tory for instance 1

Fig. 8 Navigation benchmark PDB search error trajectories for
instance 1 (abstract: light gray, concrete: dark gray)

5.1.1 Results for navigation benchmarks with additive
vanishing perturbation

We consider another variant of the navigation benchmark
with an additive vanishing perturbation (see, e.g., [28]).
We use this variation for evaluating the scalability of our
approach with respect to increased continuous complexity
given a constant discrete complexity. For this, the bench-
mark is modified to model a vanishing perturbation w ∈ R

p

with increasing model order (i. e., p = 1, p = 2, etc.). In
more detail, we extend the system of differential equations
to ẋ = v + u, v̇ = A(v − vd) + ∑p

i=1 wi , ẇ = Aww, where
umin ≤ u ≤ umax as before and Aw ∈ R

p×p is Hurwitz to
ensure it is a vanishing perturbation.

Table 2 presents results of the same scenarios evaluated
in the earlier navigation benchmark for p = 2 additional
vanishing perturbation variables (i. e., 2 additional state vari-
ables compared to the earlier navigation benchmark, yielding
n = 6 continuous variables overall). We observe a simi-
lar picture as for the previous results: the PDB approach
outperforms uninformed DFS and also the box-based heuris-
tic in the majority of the problems. This is also reflected
in Figs. 9, 10, and 11, which, respectively, show the corre-
sponding reachable states in the second instance for the three
approaches, respectively.

In addition, Fig. 12 presents the navigation benchmark
instance 1 scaling the number of additional state variables
from p = 1 through p = 8 (for a total of n = 5 through
n = 12 continuous variables), while keeping all else con-
stant, using a timeout of 30min, and runs that exceeded the
30min timeout are not plotted. We observe that also with
increasing number of additional continuous variables, the
runtime scalability of our PDB approach is considerably
better compared to the box-based heuristic and uninformed
DFS—even for p = 8 additional variables, PDBs is able to
find an error state in less than 30min. In contrast, both the
uninformed DFS and box-based heuristic methods cannot
find the error states in less than 30min beyond p = 3 and
p = 5 additional variables, respectively.

5.2 Results for satellite benchmarks

In this section, we consider benchmarks that result from
hybridization. For a hybrid systemHwith non-linear contin-
uous dynamics, hybridization is a technique for generating
a hybridized hybrid automaton from H. The hybridized
automaton has simpler continuous dynamics (usually affine
or rectangular) that over-approximate the behavior ofH [8],
and can be analyzed by SpaceEx. For our evaluation, we con-
sider benchmarks from this hybridization technique applied
to non-linear satellite orbital dynamics [27], where two satel-
lites orbit the earth with non-linear dynamics described by
Kepler’s laws. The orbits in three-dimensional space lie in
a two-dimensional plane and may in general be any conic
section, but we assume the orbits are periodic, and hence
circular or elliptical. Fixing some orbital parameters (e.g.,
the orientations of the orbits in three-space), the states of the
satellites in three-dimensional space x1, x2 ∈ R

3 can be com-
pletely described in terms of their true anomalies (angular
positions). Likewise, one can transform between the three-
dimensional state description and the angular position state
description. The non-linear dynamics for the angular position

are ν̇i =
√

μ/p3i (1+ ei cos νi )
2 for each satellite i ∈ {1, 2},

where μ is a gravitational parameter, pi = ai (1 − e2i ) is the
semi-latus rectum of the ellipse, ai is the length of the semi-
major axis of the ellipse, and 0 ≤ ei < 1 is the eccentricity of

123



S. Bogomolov et al.

Table 2 Results for the
navigation benchmarks with two
additional continuous variables
modeling an additive vanishing
perturbation

Inst. #Loc Uninformed DFS Box-heuristic PDB

#It Length Time #It Length Time #It Length Time (time abs.)

1 400 122 15 661.373 62 15 343.611 16 15 109.264 (4.467)

2 400 153 33 723.719 86 33 592.531 34 33 254.383 (17.427)

3 625 75 33 349.476 34 33 199.073 34 33 216.528 (17.998)

4 625 268 158 1053.63 231 158 868.593 177 158 627.206 (25.12)

5 625 85 79 525.811 26 25 201.759 26 25 211.146 (8.392)

6 625 96 53 500.29 101 53 485.165 54 53 337.038 (23.205)

7 625 227 34 1040.75 105 34 535.871 35 34 251.452 (24.724)

8 625 201 25 1311.04 88 25 697.649 26 25 206.585 (15.822)

9 625 298 17 1640.59 102 17 658.379 18 17 142.197 (17.881)

10 625 n/a n/a OOT 163 30 1212.59 31 30 281.356 (31.616)

11 900 201 72 1013.24 129 21 710.073 22 21 146.15 (19.058)

12 900 316 43 1530.46 174 61 928.734 44 43 272.088 (35.26)

13 900 n/a n/a OOT 148 37 858.674 38 37 293.259 (45.617)

14 900 n/a n/a OOT 278 32 1403.78 33 32 260.377 (25.744)

15 900 n/a n/a OOT 163 52 988.228 100 52 649.809 (20.265)

Bold values indicate the best analysis method for every benchmark
OOT out of time (max 30min), Uninformed DFS uninformed depth-first search, Box-heuristic box-based
distance heuristic, PDB our PDB cost function costPP , #loc number of locations, #it number of iterations,
length length of the found error trajectory, time total time in seconds including any preprocessing

x
1

0 5 10 15 20

x 2

0

5

10

15

20

Fig. 9 Navigation benchmark with additive vanishing perturbation for
p = 2: uninformed search error trajectory for instance 2

x
1

0 5 10 15 20

x 2

0

5

10

15

20

Fig. 10 Navigation benchmark with additive vanishing perturbation
for p = 2: box-based heuristic search error trajectory for instance 2

x
1

0 5 10 15 20

x 2

0

5

10

15

20

Fig. 11 Navigation benchmark with additive vanishing perturbation
for p = 2: PDB search error trajectories for instance 2 (abstract: light
gray, concrete: dark gray)

the ellipse (if ei = 0, then the orbit is circular and pi simpli-
fies to the radius of the circle). These dynamics are periodic
with a period of 2π , so we consider the bounded subset
[0, 2π ]2 of the state-space R2, and add invariants and transi-
tions to create a hybrid automaton ensuring νi ∈ [0, 2π ]. For
the benchmark cases evaluated, we fixed μ = 1 and varied
pi and ei for several scenarios. For more details, we refer
to the work of Johnson et al. [27]. The size of the problem
instances varies from 36 to 1296 locations, and all instances
feature 4 variables.

The verification problem is conjunction avoidance, i. e.,
to determine whether there exists a trajectory where the
satellites come too close to one another and may collide.

123



Guided search for hybrid systems based on coarse-grained space abstractions

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

1600

1800

Additional Continuous Variables (p)

R
un

tim
e 

(s
)

Uninformed DFS
Box−heuristic
PDB

Fig. 12 Navigation benchmark with additive vanishing perturbation
for 1 ≤ p ≤ 8 with the same discrete structure as instance 1 (i. e., all
else constant except the number of additive perturbation terms). The
total number of continuous variables is n = 4 + p

Some of the benchmark instances considered are particu-
larly challenging because they feature several sources of
non-determinism, including several initial states and several
bad states. As an additional source of non-determinism, some
benchmarks model thrusting. A change in a satellite’s orbit
is usually accomplished by firing thrusters. This is usually
modeled as an instantaneous change in the orbital parame-
ters ei and ai . However, the angular position νi in this new
orbit does not, in general, equal the angular position in the
original orbit, and a change of variables is necessary, which
can be modeled by a reset of the νi values when the thrusters

are fired. The transitions introduced for thrusting add addi-
tional discrete non-determinism to the system.

The results for the satellite benchmark class are provided
in Table 3. In general, we observe a similar search behavior to
what we have observed in the navigation problems: The pre-
computation of the PDBpays off in the sense thatmuch better
search behavior can be achieved, leading to a fewer number
of iterations and a lower overall runtime. For example, in
instance 5, the precomputation time for the PDB amounts
to roughly 5 s, leading to an overall time of around 92 s for
the concrete run. In contrast, uninformed search and the box-
based heuristic need around 426 and 272 s, respectively. The
search behavior of the concrete and abstract run in instance
5 is also visualized in Figs. 13, 14, and 15. We observe that
the part of the covered search space with our PDB approach
is again lower compared to the box-based heuristic and unin-
formed search. Figure 15 again particularly shows the part
of the search space that is covered by the abstract run (which
can be performed efficiently due to our abstraction described
in Sect. 3.1), showing that our PDB approach finds an accu-
rate balance between the computation time and the accuracy
of the resulting cost function.

Furthermore, we have also been able to effectively and
efficiently prove the absence of errors in the instances 6
and 14, where the abstract run already revealed that no
concrete error trajectory exists. As our abstraction is an over-
approximation, we can safely conclude that no reachable
error state in the concrete systemexists either, anddonot need
to start the concrete search at all. Being able to efficiently

Table 3 Results for the satellite
benchmarks

Inst. #Loc Uninformed DFS Box-heuristic PDB

#It Length Time #It Length Time #It Length Time (time abs.)

1 36 116 32 37.501 75 10 18.393 16 10 14.03 (10.05)

2 36 464 49 138.149 473 19 162.666 30 13 21.882 (16.427)

3 64 719 87 42.198 281 91 14.897 264 121 27.067 (12.591)

4 100 111 106 51.705 45 15 30.602 23 14 20.461 (8.106)

5 100 109 104 426.37 45 15 272.133 23 14 92.393 (8.082)

6 159 2170 ∞ 107.68 1354 ∞ 68.107 0 ∞ 21.051 (21.051)

7 324 580 135 251.016 1289 144 649.345 25 24 42.316 (11.921)

8 557 1637 42 61.754 936 42 35.523 156 42 60.027 (54.115)

9 574 7113 41 298.601 561 10 23.977 14 10 8.811 (8.309)

10 575 9092 4 376.935 387 5 16.467 15 4 3.182 (2.651)

11 576 1485 775 273.265 253 13 50.172 15 13 13.385 (7.899)

12 576 1005 775 172.192 796 13 160.342 15 13 13.324 (7.841)

13 576 1317 1147 1410.17 484 54 775.325 52 51 217.534 (104.304)

14 1293 13691 ∞ 526.483 7790 ∞ 312.288 0 ∞ 170.428 (170.428)

15 1296 n/a n/a OOT n/a n/a OOT 206 139 784.986 (526.336)

Bold values indicate the best analysis method for every benchmark
OOT out of time (max 30min), Uninformed DFS uninformed depth-first search, Box-heuristic box-based
distance heuristic, PDB our PDB cost function costPP , #loc number of locations, #it number of iterations,
length length of the found error trajectory, time total time in seconds including any preprocessing

123



S. Bogomolov et al.

0 100 200 3000

50

100

150

200

250

300

350

1

2

Fig. 13 Satellite benchmark: uninformed search error trajectory for
instance 5

0 100 200 3000

50

100

150

200

250

300

350

1

2

Fig. 14 Satellite benchmark: box-based heuristic search error trajec-
tory for instance 5

0 100 200 3000

50

100

150

200

250

300

350

1

2

Fig. 15 Satellite benchmark: PDB search error trajectories for instance
5 (abstract: light gray, concrete: dark gray)

verify hybrid systems with PDBs is a significant advantage
compared to the box-based heuristic.

5.3 Results for water tank benchmarks

This benchmark consists of variants of the tank bench-
mark [6,26]. The tank benchmark (see Fig. 16) consists of
some N ∈ N tanks, where each tank i ∈ {1, . . . , N } loses
volume xi at some constant flow rate vi , so tank i has dynam-

Fig. 16 Water tank benchmark
with N tanks

…

ics ẋi = −vi , for a real constant vi ≥ 0. One of the tanks is
filled from an external inlet at some constant flow ratew, so it
has dynamics ẋi = w − vi , for a real constant w ≥ 0. In our
variant, the volume lost by each tank simply vanishes and
does not move from one tank to another. This benchmark
class is qualitatively different than either the navigation or
satellite benchmarks, as the discrete state spacemay be small.

The two variations we consider are complete and linear
topologies with regard to the inlet tank choice. The inlet pipe
w may be moved to some tank j with volume xi ≤ ri from
some tank i , where: (a) j �= i is any other tank for the com-
plete topology, or (b) j ∈ {i + 1, i − 1} is an adjacent tank
for the linear topology. The invariants in our variant of the
benchmark are that the volumes of all tanks are non-negative:
∀i ∈ {1, . . . , N } : xi ≥ 0. We consider variants where the
aggregate out flow rate equals the in flow rate, so the sum
of the flow rates out of all tanks equals the inlet flow rate:
w = ∑N

i=1 vi . Hence, the total volume is constant, so for all
t ≥ 0:

N∑

i=1

xi (t) =
N∑

i=1

xi (0).

In these instances, the purpose of the inlet is to effectively
move net volume between tanks, and the search problem is
to find an appropriate order of such moves to reach a specific
volume level in all of the N tanks.

The results for the water tank problem class are provided
in Table 4. Again, the results are similar to the results in the
navigation and the satellite benchmark classes: We observe
that PDBscanhelp significantly in guiding the search towards
error states. For example, comparing Figs. 17, 18, and 19,
which each, respectively, show an execution of uninformed
search, the box-based heuristic, and PDBs, we observe that
our PDB-based approach is able to exploit the abstract run
to more quickly find the correct sequence of tanks to fill
to reach a certain region of the state-space (again, the light
gray regions are covered in the abstract run only and can be
computed efficiently). Generally, PDBs can particularly help
for the water tank problems because of the non-determinism
that occurs in this problem class (which is important to be
resolved accurately, corresponding to the choice of which
tanks to fill in which order). However, we also observe that
in 4 cases, the overall runtime is higher than the runtime with

123



Guided search for hybrid systems based on coarse-grained space abstractions

Table 4 Results for the tank
benchmarks

Inst. N Top. Uninformed DFS Box-heuristic PDB

#It Length Time #It Length Time #It Length Time (time abs.)

1 3 C 4 3 254.032 4 3 305.309 4 3 166.516 (6.285)

2 3 C 4 3 237.33 4 3 238.311 4 3 124.195 (4.71)

3 3 C 4 3 483.083 4 3 479.847 4 3 524.132 (41.855)

4 3 C n/a n/a OOT 5 2 828.846 2 1 190.139 (7.856)

5 3 C 6 5 508.693 8 2 76.68 3 2 32.141 (11.351)

6 3 C n/a n/a OOT 5 2 312.54 3 2 220.108 (9.272)

7 3 L 6 5 506.076 5 2 281.351 3 2 218.484 (7.791)

8 3 L 3 2 280.473 3 2 276.498 3 2 289.545 (6.156)

9 4 L n/a n/a OOT 5 4 6.171 13 5 24.972 (8.688)

10 3 L 6 5 270.648 5 2 144.673 2 1 41.345 (0.84)

11 4 L 18 6 30.95 11 6 23.81 4 3 8.696 (3.199)

12 5 L 10 7 23.949 14 7 63.518 4 3 18.138 (9.289)

13 6 L 39 27 64.091 28 21 51.595 4 2 21.208 (6.283)

14 7 L 53 34 130.636 44 22 117.732 9 5 117.763 (9.536)

15 8 L 37 29 108.7 46 21 164.349 33 29 140.968 (30.271)

Bold values indicate the best analysis method for every benchmark
N : number of tanks (numbers of locations #loc and continuous variables), Top topology (C complete, L
linear), OOT out of time (max 30min), Uninformed DFS uninformed depth-first search, Box-heuristic
box-based distance heuristic, PDB our PDB cost function costPP , #loc number of locations, #it number of
iterations, length length of the found error trajectory, time total time in seconds including any preprocessing

Fig. 17 Water tank benchmark: Uninformed search error trajectory for
instance 10

Fig. 18 Water tank benchmark box-based heuristic search error tra-
jectory instance 10

the box-based heuristic. In these cases, the precomputation
of the PDB does not pay off—we will discuss such cases in
more detail below.

Fig. 19 Water tank benchmark PDB search error trajectories instance
10 (abstract: light gray, concrete: dark gray)

5.4 Results for heater benchmarks

This benchmark consists of variants of the heater bench-
mark [21]. In our variation, we consider three roomswith one
heater. The automaton is modeled with four locations, con-
sisting of no heaters on in any room, or the heater is on in one
of the three rooms. The size of the problem instances have 4
locations, and all instances feature 3 temperature variables, 1
time variable, and 16 real constants. The temperature dynam-
ics are linear and there is coupling between temperatures in
different rooms. If the heater is on in a room, its temperature
rate of change has a positive additive term ci , but otherwise
does not, so the temperaturemaydecrease (subject to the tem-
peratures in different rooms). Specifically, for room 1 (and
symmetrically rooms 2 and 3), if the heater is on, the dynam-
ics are: ẋ1 = b1(u−x1)+a1,2(x2−x1)+a1,3(x3−x1)+c1, but

123



S. Bogomolov et al.

Table 5 Results for the heater
benchmarks

Inst. #loc Uninformed DFS Box-heuristic PDB

#It Length Time #It Length Time #It Length Time (time abs.)

1 4 7 6 148.4 12 6 212.651 7 6 149.117 (0.625)

2 4 9 8 305.21 5 0 146.311 1 0 10.506 (7.982)

3 4 4 ∞ 27.476 4 ∞ 27.579 4 ∞ 27.467 (0.042)

4 4 7 ∞ 178.781 7 ∞ 177.748 7 ∞ 176.566 (1.1)

5 4 21 20 84.779 n/a n/a OOT 21 20 98.173 (12.303)

6 4 4 1 1.284 n/a n/a OOT 4 1 1.705 (0.4)

7 4 4 2 34.493 4 2 34.525 3 1 32.07 (3.148)

8 4 7 6 89.724 49 48 907.52 7 6 90.778 (0.475)

9 4 4 2 8.772 3 2 8.183 3 1 8.28 (4.687)

10 4 5 4 27.164 15 8 65.249 5 4 27.851 (0.635)

11 4 13 8 25.771 25 14 48.844 12 8 23.708 (0.435)

12 4 3 0 10.603 3 0 10.601 2 0 8.212 (0.544)

13 4 n/a n/a OOT n/a n/a OOT 10 6 640.441 (240.583)

14 4 7 6 58.533 36 22 284.592 7 6 59.157 (0.55)

15 4 9 8 38.06 42 24 150.263 9 8 41.948 (3.752)

Bold values indicate the best analysis method for every benchmark
OOT out of time (max 30min), Uninformed DFS uninformed depth-first search, Box-heuristic box-based
distance heuristic, PDB our PDB cost function costPP , #loc number of locations, #it number of iterations,
length length of the found error trajectory, time total time in seconds including any preprocessing

if the heater is off, the dynamics are the same except without
the c1 term. In our variant, the invariants specify only that the
temperatures are all non-negative and bounded. The heater
may be turned on in room i ∈ {1, 2, 3} if xi ≤ Ton for some
real threshold Ton , and turned off if xi ≥ Toff for some real
threshold Toff . There is non-determinism in choosing to turn
off or on the heater once the threshold condition is met, and
there is a potential delay in changing the state of the heater
from off to on and vice-versa.

The results for the heater benchmark are provided in
Table 5. We observe that, unlike the results for the other
benchmarks, the results for the heater aremore diverse.While
the PDB approach overall performs best in 7 out of 15 prob-
lem instances, it is somewhat slower than uninformed DFS
in other 7 instances. Having a closer look, we observe that
the error trajectories with DFS are found with equally many
iterations by SpaceEx, and additionally, their length is the
same compared to those found with the PDB approach. In
such cases where the PDB cannot improve over the search
behavior of DFS, DFS is naturally more efficient because of
the PDB’s computational overhead (in fact, the difference in
search time is almost exactly due to this overhead). How-
ever, obtaining such an informed search behavior with DFS
is rather based on having good luck, whereas PDBs provide
a more principled approach to achieve this. Furthermore,
despite the sometimes higher runtimes in this benchmark
class, we observe that our PDB approach is able to solve one

Fig. 20 Heater benchmark Uninformed search error trajectory for for
instance 2

more problem than DFS, and three more problems than the
box-based heuristic within our time limit of 30 min. In addi-
tion, similar to the satellite benchmarks, we have been able
to effectively prove the absence of errors in two cases (heater
instance 3 and instance 4).

Finally, for the last time, let us have a look at the covered
region space byDFS, by the box-based heuristic and byPDBs
in Figs. 20, 21, and 22, respectively. We observe that the
concrete run with PDBs (indicated in dark gray) boils down
to a small curve in this instance,whereas the other approaches
cover a (much) larger fraction.

123



Guided search for hybrid systems based on coarse-grained space abstractions

Fig. 21 Heater benchmark box-based heuristic search error trajectory
for instance 2

Fig. 22 Heater benchmark PDB search error trajectories for instance
2 (abstract: light gray, concrete: dark gray)

5.5 Runtimes of partial PDBs versus full PDBs

Considering the runtime to build the partial PDBs compared
to computing full PDBs, we observed that strong reductions
of several orders of magnitude can indeed be obtained. In
particular, the computation of the full abstract state space
sometimes exceeds our time bound of 30 min, whereas the
partial PDBs can still be computed efficiently. This happens
in the water tank problem class, where full PDBs could not
be computed within 30min in any instance, whereas partial
PDBs could be computed within less than a minute in all of
the 15 instances (less than 10s in 9 of these instances). In this
respect, we conclude that the notion of partial PDBs particu-
larly makes the overall approach tractable on a larger class of
problems. In cases where full PDBs can be computed within
30 min, the runtime can be significantly higher than with
partial PDBs: For example, in the satellite domain instance
10, computing the full PDB needs around 175s, compared
to roughly 3 s for computing the partial PDB.

5.6 Discussion

We have observed that PDBs can provide more informed
search behavior than uninformed search or than the box-
based heuristic. A potential problem is the computational
overhead due to its precomputation time. We will discuss
advantages and drawbacks of our PDB approach in this
section.

As a general picture, we first observe that the number of
iterations of SpaceEx and also the length of the found error
trajectories are mostly at most as high with PDBs as with
uninformed search and the box-based heuristic. In particular,
our PDB approach could solve several problem instances
where uninformed search and the box-based heuristic ran out
of time. In some cases, the precomputation of the PDB does
not pay off compared to DFS and the box-based heuristic –
however, in such cases, the pure concrete search time with
PDBs is still mostly similar to the pure search time of DFS
and the box-based approach.

We further observe that the length of the trajectories found
by the box-based heuristic and the PDB heuristic is often
similar or equal, while the number of iterations is mostly
decreased. This again shows that the search with the PDB
approach is more focused than with the box-based heuristic
in such cases, and less backtracking is needed. In particular,
the box-based heuristic always tries to find a “direct” tra-
jectory to an error state, while ignoring possible obstacles.
Therefore, the search can get stuck in a dead-end state if there
is an obstacle, and as a consequence, backtracking becomes
necessary. Furthermore, the box-based heuristic can perform
worse than the PDB if several bad states are present. In
such cases, the box-based heuristic might “switch” between
several bad states, whereas the better accuracy of the PDB
heuristic better focuses the search towards one particular bad
state. In problems that are structuredmore easily (e. g., where
no “obstacles” exist and error states are reachable “straight
ahead”), the box-based heuristic might yield better perfor-
mance because the precomputation of the PDB does not pay
off.

Finally, a general advantage of PDBs compared to the
box-based heuristic which we did not discuss in detail so far
is the broader applicability of PDBs. By definition, the box-
based heuristic estimates distances by computing Euclidean
distances between the region of the current and the error state.
However, in problems where error states are defined solely
by (discrete) locations, there is no such error region, and the
box-based distance heuristic is not effectively applicable. In
contrast, PDBs are more general, and applicable for all kinds
of error states.

123



S. Bogomolov et al.

6 Conclusion

We have explored the application of coarse-grained space
abstractions to compute PDBs for hybrid systems. For a
given safety property and hybrid systemwith linear dynamics
in each location, we compute an abstraction by coarsening
the over-approximation SpaceEx computes in its reachability
analysis. The abstraction is used to construct a PDB, which
contains abstract symbolic states together with their abstract
error distances. These distances are used in guiding SpaceEx
in the concrete search. Given a concrete symbolic state, the
guiding heuristics returns the smallest distance to the error
state of an enclosing abstract symbolic state. This distance is
used to choose themost promising concrete symbolic succes-
sor. In our implementation, we have taken advantage of the
SpaceEx parametrization support, and were able to report a
significant speedup in counterexample detection and even for
verification. Our new PDB support for SpaceEx can be seen
as a non-trivial extension of our previous work on guided
reachability analysis for hybrid systems where the discrete
system structure was ignored completely [14]. For the future,
it will be interesting to further refine and extend our approach
by, e. g., considering evenmore fine grained abstraction tech-
niques, or by combinations of several abstraction techniques
and therefore, by combining several PDBs. We expect that
this will lead to even more accurate cost functions and better
model checking performance.

Acknowledgments This work is based on the SPIN 2013 paper
“Abstraction-BasedGuided Search for Hybrid Systems” [12].We thank
Jerome Meinke and Daniel Saier for their help with the benchmark
evaluation. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR14AVACS,http://www.avacs.org/), by theEuropeanResearch
Council (ERC) under grant 267989 (QUAREM) and by the Austrian
Science Fund (FWF) under grants S11402-N23 (RiSE) and Z211-
N23 (Wittgenstein Award), by the Swiss National Science Foundation
(SNSF) as part of the project “Abstraction Heuristics for Planning and
Combinatorial Search” (AHPACS) and by STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.

Open Access This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.,
Nicolin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic
analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995)

2. Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid sys-
tems via predicate abstraction. In: Hybrid Systems: Computation
and Control (HSCC), pp. 35–48 (2002)

3. Alur, R., Dang, T., Ivancic, F.: Counter-example guided predicate
abstraction of hybrid systems. In: Tools and Algorithms for the
Construction and Analysis of Systems, pp. 250–271 (2003)

4. Alur, R., Dang, T., Ivancic, F.: Progress on reachability analysis
of hybrid systems using predicate abstraction. In: Hybrid Systems:
Computation and Control. pp. 4–19 (2003)

5. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular spec-
ifications of hybrid systems in charon. In: Hybrid Systems:
Computation and Control, pp. 6–19 (2000)

6. Alur, R., Henzinger, T.: Modularity for timed and hybrid sys-
tems. In: CONCUR ’97: Concurrency Theory, pp. 74–88. Springer
(1997)

7. Anderson, K., Holte, R., Schaeffer, J.: Partial pattern databases. In:
Symposium on abstraction, reformulation, and approximation, pp.
20–34 (2007)

8. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the
analysis of nonlinear systems. Acta Informatica 43(7), 451–476
(2007)

9. Balluchi, A., Benvenuti, L., Benedetto, M.D.D., Pinello, C.,
Sangiovanni-Vincentelli, A.L.: Automotive engine control and
hybrid systems: challenges and opportunities. Proc. IEEE 88(7),
888–912 (2000)

10. Bertsekas, D., Nedi, A., Ozdaglar, A., et al.: Convex Analysis and
Optimization. Athena Scientific, Belmont (2003)

11. Bhatia, A., Frazzoli, E.: Incremental search methods for reachabil-
ity analysis of continuous and hybrid systems. In: Hybrid Systems:
Computation and Control, pp 142–156 (2004)

12. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T.,
Ladan, H., Podelski, A., Wehrle, M.: Abstraction-based guided
search for hybrid systems. In: Model Checking Software, pp. 117–
134 (2013)

13. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasare-
anu, C., Podelski, A., Strump, T.: Assume-guarantee abstraction
refinement meets hybrid systems. In: Accepted to Haifa verifica-
tion conference (2014)

14. Bogomolov, S., Frehse, G., Grosu, R., Ladan, H., Podelski, A.,
Wehrle, M.: A box-based distance between regions for guiding the
reachability analysis of SpaceEx. Computer AidedVerification, pp.
479–494. Springer, New York (2012)

15. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: repre-
sentation and computation. In: Hybrid Systems: Computation and
Control, pp 46–60. Springer (1999)

16. Chutinan, C., Krogh, B.: Computational techniques for hybrid sys-
tem verification. IEEE Trans Autom Control 48(1), 64–75 (2003)

17. Culberson, J.C., Schaeffer, J.: Pattern databases. Comput. Intell.
14(3), 318–334 (1998)

18. Dang, T., Nahhal, T.: Coverage-guided test generation for continu-
ous and hybrid systems. Form. Methods Syst. Des. 34(2), 183–213
(2009)

19. Deshpande, A., Godbole, D., Göllü, A., Varaiya, P.: Design and
evaluation of tools for automated highway systems. Hybrid Sys-
tems III, pp. 138–148. Springer, Berlin (1996)

20. Egerstedt, M.: Behavior-based robotics using hybrid automata. In:
Hybrid Systems: Computation and Control, pp. 103–116 (2000)

21. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verifica-
tion. In: Hybrid Systems: Computation and Control, pp. 381–397
(2004)

22. Frehse, G.: Phaver: algorithmic verification of hybrid systems past
hytech. STTT 10(3), 263–279 (2008)

23. Frehse, G., LeGuernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel,
O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable
verification of hybrid systems. Computer Aided Verification, pp.
379–395. Springer, Berlin (2011)

24. Holte, R.C., Grajkowski, J., Tanner, B.: Hierarchical heuristic
search revisited. In: Symposium on abstraction, reformulation and
approximation, pp. 121–133 (2005)

123

http://www.avacs.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Guided search for hybrid systems based on coarse-grained space abstractions

25. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability
for linear hybrid automata using iterative relaxation abstraction.
Hybrid Systems: Computation and Control (HSCC), pp. 287–300.
Springer, Berlin (2007)

26. Johansson, K.H., Egerstedt, M., Lygeros, J., Sastry, S.: On the
regularization of zeno hybrid automata. Syst. Control Lett. 38(3),
141–150 (1999)

27. Johnson, T.T., Green, J.,Mitra, S., Dudley, R., Erwin, R.S.: Satellite
rendezvous and conjunction avoidance: case studies in verifica-
tion of nonlinear hybrid systems. Formal Methods, pp. 252–266.
Springer, Berlin (2012)

28. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper
Saddle River (2002)

29. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model
checking via russian doll abstraction. Tools and Algorithms for
the Construction and Analysis of Systems, pp. 203–217. Springer,
Berlin (2008)

30. Kupferschmid, S., Wehrle, M.: Abstractions and pattern databases:
the quest for succinctness and accuracy. Tools and Algorithms for
the Construction and Analysis of Systems, pp. 276–290. Springer,
Berlin (2011)

31. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reach-
ability analysis. In: Hybrid Systems: Computation and Control,
third international workshop, HSCC 2000, Pittsburgh, March 23–
25, Proceedings, 202–214 (2000)

32. Larsen, B.J., Burns, E., Ruml, W., Holte, R.: Searching without
a heuristic: efficient use of abstraction. In: AAAI conference on
artificial intelligence (2010)

33. Le Guernic, C., Girard, A.: Reachability analysis of linear systems
using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–
262 (2010)

34. Livadas, C., Lygeros, J., Lynch, N.A.: High-level modelling and
analysis of tcas. In: IEEE Real-time systems symposium, pp. 115–
125 (1999)

35. Lygeros, J., Pappas, G.J., Sastry, S.: An approach to the verification
of the center-tracon automation system. Hybrid Systems: Compu-
tation and Control, pp. 289–304. Springer, Berlin (1998)

36. Plaku, E., Kavraki, L., Vardi, M.: Hybrid systems: from verifica-
tion to falsification. Computer Aided Verification, pp. 463–476.
Springer, Berlin (2007)

37. Qian, K., Nymeyer, A.: Guided invariant model checking based
on abstraction and symbolic pattern databases. Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 497–511.
Springer, Berlin (2004)

38. Ratschan, S., Smaus, J.-G.: Finding errors of hybrid systems by
optimising an abstraction-based quality estimate. Tests and Proofs,
pp. 153–168. Springer, Berlin (2009)

39. Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst.
Des. 32(1), 57–83 (2008)

40. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata.
Hybrid Systems: Computation and Control, pp. 465–478. Springer,
Berlin (2002)

41. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE
Trans. Autom. Control 38(2), 195–207 (1993)

42. Wehrle, M., Kupferschmid, S.: Downward pattern refinement for
timed automata. Int. J. Softw.ToolsTechnol. Transf. (2014). doi:10.
1007/s10009-014-0346-x

43. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., Kapinski, J.: A
trajectory splicing approach to concretizing counterexamples for
hybrid systems. In: Conference on decision and control (CDC),
pp. 3918–3925 (2013)

123

http://dx.doi.org/10.1007/s10009-014-0346-x
http://dx.doi.org/10.1007/s10009-014-0346-x

	Guided search for hybrid systems based on coarse-grained space abstractions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Symbolic states representation
	2.3 Guided search
	2.4 General framework of pattern databases

	3 Pattern databases for hybrid systems
	3.1 Coarse-grained space abstractions
	3.2 Partial pattern databases
	3.3 Discussion

	4 Related work
	5 Evaluation
	5.1 Results for navigation benchmarks
	5.1.1 Results for navigation benchmarks with additive vanishing perturbation

	5.2 Results for satellite benchmarks
	5.3 Results for water tank benchmarks
	5.4 Results for heater benchmarks
	5.5 Runtimes of partial PDBs versus full PDBs
	5.6 Discussion

	6 Conclusion
	Acknowledgments
	References




