
Directed Model Checking for PROMELA
with Relaxation-Based Distance Functions

Ahmad Siyar Andisha1 and Martin Wehrle2 and Bernd Westphal3

1 corix AG, 4562 Biberist, Switzerland
2 University of Basel, Switzerland

3 Albert-Ludwigs-Universität Freiburg, Germany

Abstract. Directed model checking uses distance functions to guide
the state space exploration to efficiently find short error paths. Dis-
tance functions based on delete-relaxation have successfully been used
for, e. g., model checking timed automata. However, such distance func-
tions have not been investigated for formalisms with rich expression lan-
guages as provided by PROMELA. We present a generalization of delete-
relaxation-based distance functions to a subclass of PROMELA. We have
evaluated the resulting search behavior on a large number of models from
the BEEM database within the HSF-SPIN model checker. Our experi-
ments show significantly better guidance compared to the previously best
distance function available in HSF-SPIN.

1 Introduction

A main obstacle for model checking tools is the state space explosion problem.
A countermeasure is to use the memory efficient state space traversal procedure
depth-first search (DFS). However, if the task is not to verify a property but
to falsify it, DFS often performs badly in practice because it may unnecessarily
search large error free regions of the state space first. In addition, reported
error paths are often unnecessarily long, which makes it difficult for humans to
understand the causes of an error. A technique to mitigate these problems is
called directed model checking (DMC) and has been introduced by Edelkamp
et al. [4]. Directed model checking applies a distance function to estimate the
distance from a given state to an error state, and explores states with shortest
estimated distance first. Guided by the distance function, error paths can often
be found after exploring only a small fraction of the overall state space which
results in time and memory savings. Furthermore, reported error paths are often
shorter than those reported by so-called uninformed algorithms (like DFS) due to
the guidance. Typically, there is a trade-off between the precision of the distance
estimate and the cost of computing the distance function for a given state. An
example for a computationally cheap distance function for PROMELA models is
called hc and is implemented in HSF-SPIN [4], a directed model checker based on
version 3 of the PROMELA model checker SPIN. The hc function estimates the
distance between a given state and the end state of the model’s never claim. A
class of distance functions which is successful in the area of artificial intelligence

(AI) planning is based on delete relaxation [2]. Kupferschmid et al. [5] generalized
this relaxation to simple statements over variables with arbitrary domains for a
limited class of timed automata. In the latter context, the relaxation is based on
collecting all values ever assigned to a variable along a path, yielding set-valued
domains for variables and the current location. More formally, given a (concrete)
state s, h+(s) denotes the length of the shortest path under the relaxation from
s to an error state in the transition system over set-valued variables. h+(s) is
often an accurate estimate of the length of a shortest path between s and an
error state in the transition system over concrete states. As the computation of
h+ is NP-hard [3], Kupferschmid et al. considered approximations thereof, which
showed favorable performance compared to the distance functions proposed by
Edelkamp et al. [4] in the area of timed automata, and which have also found
their way into timed automata model checking tools [6]. Although the idea of
DMC roots in AI planning and relaxation-based distance functions have shown
to be useful outside of AI planning, their potential has not yet been explored for
PROMELA, i. e., for a richer expression language than considered until now.

In this work, we explore a generalization of relaxation-based distance func-
tions to the PROMELA formalism. We have evaluated an implementation of
our distance function (which generalizes the hL function proposed by Kupfer-
schmid et al. and is called hLP in the following) in HSF-SPIN on a large num-
ber of BEEM models. Our implementation supports an expressive subset of
PROMELA (cf. [1]), which is sufficiently rich to cover a large range of models
from the BEEM database [7]: Currently supported are basic control flow (if,
goto), channel synchronisation, static processes, basic data types (no arrays, no
structs), and most operators (except for modulo) in expressions. Our results
show that hLP often provides significantly better guidance towards error states
compared to HSF-SPIN’s previously best-performing distance function in our
experiments.

2 Relaxation for PROMELA

We start by defining relaxed states for PROMELA, which are the basis for the
definition of our distance function hLP . In the PROMELA semantics, a (concrete)
state assigns to each process a process location, and to each variable and channel
a value. We use, e. g., s(x) to denote the value assigned to variable x in state s.
In contrast, a relaxed state s+ assigns to each process a set of process locations,
and to each variable and channel a set of values, i. e. s+(x) denotes a set of
values from the domain of x. We say that relaxed state s+ subsumes a state
s, denoted by s v s+, if and only if each component of s is an element of
the corresponding component of s+, e. g., if for each variable x, s(x) ∈ s+(x).
PROMELA expressions are existentially evaluated over relaxed states: Relaxed
state s+ supports value v for expression expr if there exists a state s such that s v
s+ and expr evaluates to v over s. Note that a relaxed state may hence support
both true and false for a Boolean expression. Statements obtain a collecting
semantics on relaxed states. The effect of assignment x = expr on relaxed state

int a=0, b=0; chan c=[1] of {int};

active proctype S() { again: c!a; a++; goto again; }

active proctype R() { again: c?b; goto again; }

Listing 1.1. Two processes S and R.

a = {0}, b = {0}, c = {}

{0}, {0}, {0}

{0, 1}, {0}, {0}

{0, 1, 2}, {0}, {0}

{0, 1}, {0}, {0, 1}

{0, 1}, {0, 1}, {0, 1}

. . .

.

c!a

a++

a++

c!a

c?b

a++

c!aa++ a++

c!a,c?b

c?b

c?b

c!a

c!a,c?b

Fig. 1. Relaxed transition system of the PROMELA program shown in Listing 1.1.

s+ is defined as adding all values of expr supported by s+ to the set s+(x). Note
that we thereby obtain a conservative generalization of [5].

The above interpretation of expressions and statements on relaxed states
induces a transition system over relaxed states, called the relaxed transition
system. It has the property that for each path π in the transition system over
concrete states, there exists a path π+ in the relaxed transition system with the
same length such that the i-th relaxed state in π+ subsumes the i-th state in π.
That is, the relaxed transition system is an over-approximation of the concrete
transition system: According to the idea of relaxation, the value sets in relaxed
successor states grow monotonically. Thus, each statement that can be executed
in a state s can also be executed in any relaxed state which subsumes s. An
error path from relaxed state s+ is a path which begins with s+ and ends with a
relaxed state which subsumes termination of the model’s never claim. Following
the literature, we denote the shortest length of an error path from the relaxation
s+ of state s by h+(s). We call a relaxed state s+ the relaxation of s if and only
if s+ is the smallest relaxed state wrt. set-inclusion which subsumes s.

For an example, consider the PROMELA model in Listing 1.1. Process S

repeatedly sends the value of variable a on channel c and increments a. Process
R repeatedly receives a value from c and assigns it to variable b. In the relaxation,
the variables and the channel become set-valued. Figure 1 shows a fragment of
the computation tree of the relaxed transition system rooted at relaxed state
{0}, {0}, {}. Edges are labeled with the executed statements. The relaxed state
{0}, {0}, {} is the relaxed state of the concrete initial state in which channel c
is empty. Thus only the send statement c!a is executable. Executing c!a yields
the relaxed state {0}, {0}, {0}. From this relaxed state on, channel c is always
both empty and full, thus the synchronization in R is always enabled. So is the
increment of a; executing it yields the relaxed state {0, 1}, {0}, {0}, i. e. the old
value of a is not deleted but collected. The example particularly shows that the
channels’ capacities become unbounded in the relaxation.

Algorithm 1: Computation of hLP .

Input : Concrete state s.
Output: Distance estimate l ∈ N0 ∪ {∞} to a relaxed error state.

1 l← 0; s+0 ← process locations, variables, and channels of s;

2 while never claim not terminated in s+l do
3 s+′ ← s+l ;

4 for statement t enabled in s+l do
5 s+′ ← s+′ ∪ effect of t on s+l ;

6 if s+′ = s+l then
7 return ∞;

8 l← l + 1; s+l ← s+′;

9 return l;

As the computation of h+(s) is NP-hard [3], we consider the distance function
hLP , which is an approximation of h+. The computation of hLP is provided in Al-
gorithm 1. While h+ is defined by the relaxed transition system of a PROMELA
program, hLP is defined by an acceleration of the relaxed transition system: Given
a relaxed state s+, its relaxed successor state s+′ is the union of the effects of
executing all statements enabled in s+ to s+ (cf. Algo. 1, Line 4 ff.). Note that
a concrete state s′ v s+′ is not necessarily reachable from any concrete state
s v s+, and if s′ is reachable from s then the shortest concrete path may be
longer than 1. As an example, consider again Listing 1.1 with the never claim
¬(a = 2 ∧ b = 1), i. e., error states have the property a = 2 and b = 1.

– Reaching the error state from s0 takes at least 6 steps in the concrete system,
e. g., witnessed by the statement sequence c!a, a++, c?b, c!a, c?b, a++.

– Shortest error paths in the delete-relaxation (i. e., in the relaxed transition
graph in Fig. 1) have length 5, i. e., h+(s0) = 5, e. g., witnessed by c!a,
a++, c!a, c?b, a++. Compared to the concrete, several values can be sent in
parallel in the relaxation, hence one fewer receive step for setting the value
of b is required (in the above sequence, b receives {0, 1} via statement c?b).

– The relaxed distance function delivers an estimate of 4, i. e., hLP (s0) = 4:
After starting with c!a, all the statements c!a, c?b and a++ are repeatedly
applicable in parallel in the following, yielding the sequence of relaxed states
{0}, {0}, {} (initial relaxed state), {0}, {0}, {0} after one step, {0, 1}, {0}, {0}
after two steps, {0, 1, 2}, {0}, {0, 1} after three steps, and finally the relaxed
error state {0, 1, 2, 3}, {0, 1}, {0, 1, 2} after four steps.

– In contrast, hc is quite sensitive to (the model of) the never claim N . As-
suming N consists of two locations and an edge between them guarded by
a = 2 ∧ b = 1, hc can only deliver 0 or 1, yielding an uninformed guidance.

Algorithm 1 computes hLP (s) by taking as s+0 the relaxed state of s and
iterating the accelerated transition relation. It always terminates because either
a relaxed error state is found (Line 2) or a fixpoint is reached (Line 6). While

an error need not exist, a fixpoint always exists because the state space of a
PROMELA model is finite and in the relaxation, states grow monotonically.

3 Evaluation

We have implemented hLP in the HSF-SPIN model checker to investigate the
following research questions: To which extent can hLP improve the guidance of
the state space traversal compared to hc, the best-performing distance function
in our experiments previously available in HSF-SPIN? Does the improved guid-
ance pay off in shorter error paths? Ultimately, does the improved guidance pay
off in terms of shorter model checking runtime? The latter question addresses
the issue of the increased overhead to compute hLP in every encountered state:
Compared to hc, the computation of hLP naturally becomes more expensive be-
cause of the more precise treatment of the (rather expressive) structures handled
by PROMELA. In particular, this is the case for the more sophisticated han-
dling of linear arithmetic and the resulting subsumption checks for checking the
enabledness of statements and the effects supported by statements. To investi-
gate these questions, we have applied hLP on faulty PROMELA models from the
BEEM database [7] (12 domains, more than 80 model instances in total), using
greedy best first search (GBFS). The models stem from application areas such
as mutual exclusion algorithms, controller software, puzzles and communication
protocols. For computational efficiency, our implementation of hLP additionally
applies interval abstraction: If x has been assigned the values a and b with a < b,
then we keep the whole interval [a, b] instead of {a, b} as x’s relaxed value.

In order to compactly provide the results, we visualize the data by scatter
plots in Fig. 2. All axes are scaled logarithmically. Each cross represents one

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

trail

error path length

100

101

102

103

104

105

106

100 101 102 103 104 105 106

states

explored states

 0.1

 1

 10

 100

 0.1 1 10 100

time

overall runtime/s

1

10

100

1 10 100

memory

peak memory/MB

Fig. 2. ×: x, y ∈ R, i. e., hc and hL
P reported a path within the time limit, N: x ∈ R,

y failed to find an error. (Athlon 64 2.4 GHz; mem. limit: 3GB, time limit: 30 min.)

successful run of both distance functions for one model instance, i. e., a run which
neither violates our memory limit nor times out. A cross below the diagonal
line indicates that hLP performs better (i. e., shorter path, fewer explored states,
less time, less memory) than hc on this model instance, a cross above this line
indicates the opposite. A cross on the diagonal line indicates that both distance
functions perform equally. We observe a significantly improved guidance of the
state space traversal with hLP in terms of the number of explored states, which
pays off in terms of a lower memory consumption, and also in reduced lengths
of the error paths. In particular, we observe that the improvement is sometimes
in the range of several orders of magnitude. The better guidance stems from
the more accurate distance values delivered by hLP (e. g., in the bopdp problem
instances, hLP ’s values range from 0 to 39, whereas hc yields values between 0
and 1). More details are available online [1]. As discussed, the improved guidance
naturally comes with an increased overhead to compute hLP . However, while the
overhead does not always pay off, we also observe that there exist models where
hLP can remarkably reduce the runtime. In addition, there are models which could
be handled by hLP , whereas hc failed to find an error (triangles in Fig. 2).

4 Conclusions

In this paper, we have explored a generalization of delete-relaxed distance func-
tions for PROMELA. Our evaluation in HSF-SPIN on models from the BEEM
benchmark suite show a significantly improved guidance compared to HSF-
SPIN’s previously best-performing distance function in our experiments. While
the improved guidance mostly pays off in terms of shorter error paths and lower
memory consumption, the benefits in terms of overall runtime are somewhat less
significant due to the encountered computational overhead. It will be interesting
to further investigate the correlation between this time overhead and the model
structure, e. g., the language features used in a given PROMELA model.

Acknowledgments. The authors thank G. J. Holzmann for valuable clarifica-
tions of semantical and technical questions on PROMELA and SPIN.

References

1. www.informatik.uni-freiburg.de/~westphal/spin15.
2. B. Bonet and H. Geffner. Planning as heuristic search. AIJ, 129(1-2):5–33, 2001.
3. T. Bylander. The computational complexity of propositional STRIPS planning.

AIJ, 69(1-2):165–204, 1994.
4. S. Edelkamp, S. Leue, et al. Directed explicit-state model checking in the validation

of communication protocols. STTT, 5(2-3):247–267, 2004.
5. S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann. Adapting an AI

planning heuristic for directed model checking. In SPIN, pages 35–52, 2006.
6. S. Kupferschmid, M. Wehrle, B. Nebel, and A. Podelski. Faster than Uppaal? In

CAV, pages 552–555, 2008.
7. R. Pelánek. BEEM: Benchmarks for explicit model checkers. In SPIN, pages 263–

267, 2007.

