
Certified Unsolvability in Classical Planning
2. Applications

Salomé Eriksson Gabriele Röger Malte Helmert

University of Basel, Switzerland

ICAPS 2020

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Certificate Structure

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

First look

on Github: https://github.com/salome-eriksson/helve

A certificate consists of the following files:

task description

limited to STRIPS
→ STRIPS with negation coming soonTM

variable and action IDs (according to occurence in list)

certificate

state sets: e ID type description

e 0 h p cnf 3 2 2 -1 0

action sets: a ID type description

a 0 u 2 4 5 6

statements: k ID type set-ID(s) justification

premises k 0 d 7 sd 5 4

(BDD descriptions)

(detailed explanation in README.md of github repository)

https://github.com/salome-eriksson/helve

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Certificate File

Example

what we have seen so far:
statement justification

(0) ∅ dead ED
(1) {I} v states(¬a ∨ ¬b) B1
(2) S¬a∨¬b[A] v S¬a∨¬b ∪ ∅ B2
(3) S¬a∨¬b dead PI with (3),(1) and (2)
. . .

the corresponding certificate file:
1 e 0 c e 7 e 3 p 2 0

2 e 1 c i 8 e 4 u 2 0

3 a 0 a 9 k 2 s 3 4 b2

4 k 0 d 0 ed 10 e 5 n 2

5 e 2 h p cnf 2 1 1 2 0 11 k 3 d 5 pi 2 0 1

6 k 1 s 1 2 b1 ...

→ Demo

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Blind Search

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

High-Level Certificate

Blind search explores all reachable states RΠ.
→ Recall completeness proof:

Forward Blind Search Certificate

statement justification

(0) ∅ dead ED
(1) RΠ[A] v RΠ ∪ ∅ B2
(2) RΠ ∩ SG v ∅ B1
(3) RΠ ∩ SG dead SD with (0) and (2)
(4) RΠ dead PG with (1), (0) and (3)
(5) {I} v RΠ B1
(6) {I} dead SD with (4) and (5)
(7) unsolvable CI with (6)

For backwards search, show {I} v RΠ
B and [A]RΠ

B v RΠ
B ∪ ∅,

deduce RΠ
B dead (rule RI), and from SG v RΠ

B show SG dead.

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(0) ∅ dead ED

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead

6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(1) RΠ[A] v RΠ ∪ ∅ B2

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(2) RΠ ∩ SG v ∅ B1

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)

12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(3) RΠ ∩ SG dead SD with (0) and (2)

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead

13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(4) RΠ dead PG with (1), (0) and (3)

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead

14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(5) {I} v RΠ B1

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)

15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(6) {I} dead SD with (4) and (5)

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead

16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Translation to Certificate File

statement justification

(7) unsolvable CI with (6)

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Implementation Details

Depending on the concrete algorithm, some implementation details
affect performance:

formalism for RΠ

symbolic search: BDD
→ overhead if no singular closed BDD!
explicit search: explicit enumeration or BDD
→ fast generation vs fast verification

when to build the certificate

during search: unnecessary overhead for solvable problems
at the end: more overhead (iterate over entire closed list), but
also more localized

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Heuristic Search

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Idea

1 Each dead-end is dead.

2 The set of expanded states contains no goal state.

3 The set of expanded states can only reach itself and
dead-ends.

4 → the set of expanded states is dead.

5 The initial state is in the set of expanded states.

6 → The initial state is dead and the task unsolvable.

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

High-Level Certificate

SD

Sexp

I

d1
. . . dn

. . .

. . .

(1) ∅ dead
(2) {d1} dead (3) {d2} dead . . . (4) {dn} dead

statement justification

(5) {d1} ∪ {d2} dead UD with (2) and (3)
. . .

(6)
⋃

1≤i≤n di dead UD with . . .

(7) SD v
⋃

1≤i≤n di B1

(8) SD dead SD with (6) and (7)
(9) Sexp[A] v Sexp ∪ SD B2

(10) Sexp ∩ SG v ∅ B1
(11) Sexp ∩ SG dead SD with (1) and (10)
(12) Sexp dead PG with (9), (8) and (11)
(13) {I} v Sexp B1
(14) {I} dead SD with (12) and (13)
(15) task unsolvable CI with (14)

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

High-Level Certificate

SD

Sexp

I

d1
. . . dn

. . .

. . .

(1) ∅ dead
(2) {d1} dead (3) {d2} dead . . . (4) {dn} dead

statement justification

(5) {d1} ∪ {d2} dead UD with (2) and (3)
. . .

(6)
⋃

1≤i≤n di dead UD with . . .

(7) SD v
⋃

1≤i≤n di B1

(8) SD dead SD with (6) and (7)

(9) Sexp[A] v Sexp ∪ SD B2
(10) Sexp ∩ SG v ∅ B1
(11) Sexp ∩ SG dead SD with (1) and (10)
(12) Sexp dead PG with (9), (8) and (11)
(13) {I} v Sexp B1
(14) {I} dead SD with (12) and (13)
(15) task unsolvable CI with (14)

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

High-Level Certificate

SD

Sexp

I

d1
. . . dn

. . .

. . .

(1) ∅ dead
(2) {d1} dead (3) {d2} dead . . . (4) {dn} dead

statement justification

(5) {d1} ∪ {d2} dead UD with (2) and (3)
. . .

(6)
⋃

1≤i≤n di dead UD with . . .

(7) SD v
⋃

1≤i≤n di B1

(8) SD dead SD with (6) and (7)
(9) Sexp[A] v Sexp ∪ SD B2

(10) Sexp ∩ SG v ∅ B1
(11) Sexp ∩ SG dead SD with (1) and (10)
(12) Sexp dead PG with (9), (8) and (11)
(13) {I} v Sexp B1
(14) {I} dead SD with (12) and (13)
(15) task unsolvable CI with (14)

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Bridging Representations

Statements “{di} dead” might use different representations.

1 Show {di}explicit v {di}R (basic statement B4)

and then either

2a build (Sexp)explicit, and

3a show (Sexp)explicit v (Sexp)explicit ∪
⋃
{di}explicit (B2).

or

2b build (SD)explicit, (SD)BDD and (Sexp)BDD,

3b show (SD)explicit v
⋃
{di}explicit (B2),

4b show (SD)BDD v (SD)explicit (B4), and

5b show (Sexp)BDD v (Sexp)BDD ∪ (SD)BDD (B2).

→ tradeoff efficient generation vs efficient verification

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Delete Relaxation

hmax dead-end

hmax(s) =∞↔ some g ∈ G relaxed unreachable

Consider R+
u (s) = {v | v relaxed unreachable from s} and

ϕ =
∧

v∈R+
u (s) ¬v .

We can’t reach any s ′ containing any v ∈ R+
u (s): Sϕ[A] ⊆ Sϕ

All states satisfying ϕ do not satisfy g : Sϕ ∩ SG = ∅
State s satisfies ϕ: {s} ⊆ Sϕ

→ Show that Sϕ is dead (PG) and thus s is dead (SD).

We can choose between different representations:
BDD, Horn formula, 2CNF formula, explicit (over R+

u (s))

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

hm& Clause-Learning State Space Search

hm dead-ends:

same concept as hmax: ϕ =
∧

t∈Rm
u (s)

∨
v∈t ¬v , where Rm

u (s)
are the tuples unreachable from s.

representation: Horn formulas (or 2CNF formulas for m = 2)
→ BDDs not suited [Edelkamp & Kissmann 2011]

Clause-Learning State Space Search [Steinmetz & Hoffmann (2017)]:

uses hC → same concept (again)

can be refined to detect I as dead-end → compact certificate

uses additional source for mutexes
→ Integrate additional information into certificate!

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Other heuristics

hmax approach covers all delete-relaxation heuristics
(hLM-Cut, landmarks based on delete relaxation, . . .)

Merge & Shrink:

transformation from Merge & Shrink representation to ADD
[Helmert et al. 2014] and extract ∞-paths to BDD
→ limited to linear merge strategies [Helmert et al. 2015]
one set for all dead-ends
→ certificate more compact
implementation detail: unreachable and dead-end states
merged
→ disable for certificate generation

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

h2 Preprocessor

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Algorithm Overview

introduced in [Alcázar & Torralba (2015)]

preprocessing step that simplifies planning task

used in many IPC planners

incremental h2 reachability analysis, alternating between
forward and backward
→ remove unreachable facts and actions

I

SG

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Algorithm Overview

introduced in [Alcázar & Torralba (2015)]

preprocessing step that simplifies planning task

used in many IPC planners

incremental h2 reachability analysis, alternating between
forward and backward
→ remove unreachable facts and actions

I

SG

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Algorithm Overview

introduced in [Alcázar & Torralba (2015)]

preprocessing step that simplifies planning task

used in many IPC planners

incremental h2 reachability analysis, alternating between
forward and backward
→ remove unreachable facts and actions

I

SG

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

High-Level Certificate

Di : set of literal pairs shown dead before or in iteration i

Si = {s | {p, q} 6⊆ s for all {p, q} ∈ Di }
start with iteration 1 and D0 = {} → S0(= {}) dead

Forward iteration i

Si−1

SiI

given: (1) Si−1 dead

statement justification

(2) {I} v Si B1
(3) Si [A] v Si ∪ Si−1 B2
(4) Si dead PI with (3), (1) and (2)

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

High-Level Certificate

Di : set of literal pairs shown dead before or in iteration i

Si = {s | {p, q} 6⊆ s for all {p, q} ∈ Di }
start with iteration 1 and D0 = {} → S0(= {}) dead

Backward iteration i

Si−1

SiSG

given: (1) Si−1 dead

statement justification

(2) Si ∩ SG v Si−1 B1
(3) Si ∩ SG dead SD with (1) and (2)

(4) [A]Si v Si ∪ Si−1 B2
(5) Si dead RG with (4), (1) and (3)

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Remarks

representation of Si :
∧
{p,q}∈Di

¬p ∨ ¬q
→ 2CNF (Horn not suitable since p and q can be negative)

If the h2 preprocessor detects the task unsolvable, we can
extract a full proof:

ends in forward iteration: SG ⊆ Sn (all goal states dead)
ends in backward iteration: {I} ⊆ Sn (initial state dead)

Otherwise, we can use the statement “Sn dead” to explain
why we pruned certain states.

We can also extract more fine-grained statements such as
“Sp∧q dead” within the proof system.

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Recap

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Take-Home Messages

We can verify algorithms on different levels (unit tests,
certifying algorithms, theorem provers).

The unsolvability proof system incrementally deduces
knowledge about dead states.

Its modularity enables us to combine different sources of
information.

Efficient verification depends on the representation of state
sets, i.e. which operations are efficiently supported.

Different representations can offer tradeoffs between efficient
generation and verification.

Generating certificates often involves reachability arguments.

Certificate Structure Blind Search Heuristic Search h2 Preprocessor Recap

Future Work

cover more planning techniques, e.g.

dead-end potentials
partial order reduction
task transformations

extend the verifier

more representations
→ talk in Session E2 next week about CNF
more inference rules

verify the verifier!

	Certificate Structure
	

	Blind Search
	

	Heuristic Search
	

	h2 Preprocessor
	

	Recap
	

