Certified Unsolvability in Classical Planning
2. Applications

Salomé Eriksson Gabriele Roger Malte Helmert
University of Basel, Switzerland

ICAPS 2020

Certificate Structure

Certificate Structure

oeo

First look

on Github: https://github.com/salome-eriksson/helve

A certificate consists of the following files:

@ task description
e limited to STRIPS
— STRIPS with negation coming soon’
o variable and action IDs (according to occurence in list)

M

o certificate
o state sets: e ID type description
eOhpenf322-10
e action sets: a ID type description
alu2456
o statements: k ID type set-ID(s) justification
premisesk 0 d 7 sd 5 4

o (BDD descriptions)

(detailed explanation in README.md of github repository)

https://github.com/salome-eriksson/helve

Certificate Structure
ooe

Certificate File

Example

what we have seen so far:

statement justification
(0) © dead ED
(1) {1} C states(—a V —b) Bl
(2) S-av-b[AlC S.ov-sUD B2
(3) S-av-p dead Pl with (3),(1) and (2)
the corresponding certificate file:
1 eOce 7 e3p20
2 elci 8 ed4u20
3 ao0a 9 k2s340b2
4 k0dOed 10 e 5mn 2
5 e2hpenf 21120 11 k3d5pi201
6 k1s12hbl

— Demo

Blind Search

Blind Search
0e00

High-Level Certificate

Blind search explores all reachable states R
— Recall completeness proof:

Forward Blind Search Certificate

statement justification

(0) 0 dead ED
(1) RTMAICRTUB B2
(2) RTNSgC B1
(3) RMNSg dead SD with (0) and (2)

(4) R" dead PG with (1), (0) and (3)
(5) {IpCcRr" B1

(6) {l} dead SD with (4) and (5)

(7) unsolvable Cl with (6)

For backwards search, show {l} C R_B and [A]JRB C RB U,
deduce R} dead (rule RI), and from Sg = R} show Sg dead.

Blind Search
fete] Y]

Translation to Certificate File

statement justification
(0) () dead ED

1 eOce So=10

2 elci S =A{l}

3 e2cg S =S¢

4 ala A=A

5 k0dOed (0) So(=0) dead

Blind Search
fete] Y]

Translation to Certificate File

statement justification
(1) RUAICRTUO B2

1 eOce So=10

2 elci S =A{l}

3 e2cg S =S¢

4 a0a A=A

5 k0dOed (0) So(=0) dead

6 e3... S =R"

7 e4p30 Sy = S3[Ao] = R"[A]

8 ebu3o0 55=53U50=RHU®

9 kls45b2 (1) Si(=R"A]) C Ss(=R"UD)

Blind Search
fete] Y]

Translation to Certificate File

statement justification
(2) RTNScC 0 B1

1 eOce So=10

2 elci S =Al}

3 e2cg S, =S¢

4 a0a A=A

5 k0dOed (0) So(=0) dead

6 e3... S=R"

7 e4p30 Sy = S3[Ao] = R"[A]

8 ebu3o0 55:53U50=RHU®

9 kls45b2 (1) Si(=R"A]) C Ss(=R"UD)
10 e6i32 Se=5NnS=R"NS¢
11 k2s60bl (2) Ss(=R"NSe) C So(= 0)

Blind Search

ooeo

Translation to Certificate File

statement justification
(3) R" NS¢ dead SD with (0) and (2)

1 eOce So=10

2 elci S =Al}

3 e2cg S, =S¢

4 a0a A=A

5 k0dOed (0) So(=0) dead

6 e3... S=R"

7 e4p30 Sy = S3[Ao] = R"[A]

8 ebu3o0 55:53U50=RHU®

9 kls45b2 (1) Si(=R"A]) C Ss(=R"UD)
10 e6i32 Se=5NnS=R"NS¢
11 k2s60bl (2) Ss(=R"NSe) C So(= 0)
12 k3d6sd20 (3) Ss(=R"NS¢) dead

Blind Search

ooeo

Translation to Certificate File

statement justification
(4) R™ dead PG with (1), (0) and (3)
1 eOce So=10
2 elci S =Al}
3 e2cg S, =S¢
4 ala A=A
5 k0dOed (0) So(=0) dead
6 e3... S3=R"
7 e4p30 Sy = S3[Ao] = R"[A]
8 ebu3o0 55:53U50=RHU®
9 kls45b2 (1) Si(=R"A]) C Ss(=R"UD)
10 e6i32 Ss=%NS=R"NS¢
11 k2s60bl (2) Ss(=R"NSe) C So(= 0)
12 k3d6sd20 (3) Ss(=R"NS¢) dead
13 k4d3pgl103 (4) S3(=R") dead

Blind Search

ooeo

Translation to Certificate File

statement justification
(5) {ycC R B1

1 eOce So=0

2 elci S =Al}

3 e2cg S, =S¢

4 al0a A=A

5 k0dOed (0) So(=0) dead

6 e3... S =R"

7 e4p30 Sy = S3[Ao] = R"[A]

8 ebu3o0 55:53U50=RHU®

9 kls45b2 (1) Si(=R"A]) C Ss(=R"UD)
10 e6i32 Se=5N%=R"NS¢
11 k2s60bl (2) Ss(=R"NSe) C So(= 0)
12 k3d6sd20 (3) Ss(=R"NS¢) dead
13 k4d3pgl103 (4) S3(=R") dead
14 k5s13bl (5) Si(={})CES(=R")

Blind Search

ooeo

Translation to Certificate File

statement justification
(6) {1} dead SD with (4) and (5)
1 eOce So=10
2 elci S =A{l}
3 e2cg S, =S¢
4 al0a A=A
5 k0dOed (0) So(=0) dead
6 e3... S3=R"
7 e4p30 Si = S3[Ad] = R"[A]
8 e5u30 Ss=S5US=R"Ub
9 kls45b2 (1) Si(=R"A]) C Ss(=R"UD)
10 e6i32 Se=5Nn%=R"NS¢
11 k2s60bl (2) Ss(=R"NSq) C So(= 0)
12 k3d6sd20 (3) Ss(=R"NSg) dead
13 k4d3pgl103 (4) S3(=R") dead
14 k5s13bl (5) Si(={})CES(=R"
15 k6dlsd54 (6) Si(= {1}) dead

Blind Search

ooeo

Translation to Certificate File

statement justification
(7) unsolvable Cl with (6)

1 eOce So=10

2 elci S =A{1}

3 e2cg S =S¢

4 a0a A=A

5 k0dOed (0) So(=0) dead

6 e3... S;=R"

7 e4p30 Si = S3[A0] = R"[A]

8 e5u30 Ss=5US=R"Ul

9 kls45b2 (1) Si(=R"[A]) C Ss(=R"U0)
10 e6i32 56253052:72”056
11 k2s60bl (2) Ss(=R"NSe) C So(=0)
12 k3d6sd20 (3) Ss(=R"NSg) dead
13 k4d3pgl103 (4) Si(=R") dead
14 k5s13bl (5) Si(={1})C S(=R"
15 k6dlsd54 (6) Si(={1}) dead
16 k7ucib6 (7) unsolvable

Blind Search
ocooe

Implementation Details

Depending on the concrete algorithm, some implementation details
affect performance:
o formalism for R
e symbolic search: BDD
— overhead if no singular closed BDD!
o explicit search: explicit enumeration or BDD
— fast generation vs fast verification
@ when to build the certificate

e during search: unnecessary overhead for solvable problems
o at the end: more overhead (iterate over entire closed list), but
also more localized

Heuristic Search

Heuristic Search
0®00000

© Each dead-end is dead.
@ The set of expanded states contains no goal state.

© The set of expanded states can only reach itself and
dead-ends.

@ — the set of expanded states is dead.
© The initial state is in the set of expanded states.
@ — The initial state is dead and the task unsolvable.

Heuristic Search
00®0000

High-Level Certificate

(1) O dead
(2) {di} dead (3) {d-} dead ... (4) {dn} dead

Heuristic Search
00®0000

High-Level Certificate

(1) O dead
(2) {di} dead (3) {d-} dead ... (4) {dn} dead
statement justification
(5) {di}U{d>} dead UD with (2) and (3)
(6) .U;Sisn d; dead UD with ...
(1) So EUicic, di B1

(8) Sp dead SD with (6) and (7)

High-Level Certificate

Heuristic Search

00®@0000

(1) O dead
(2) {d1} dead (3) {d-} dead

/SD #

statement

(4) {dn} dead

justification

(5)

(6)

()

(8)

(9)

(10)

Sep (1)
(12)

(13)

(14)

(15)

{di} U{d>} dead

Ui<i<, di dead

S EUici<n @i

Sp dead
Sexp[A] E Sexp U SD
Sep NSc 0

Sexp NS¢ dead

Sexp dead

{1} C Sexp

{1} dead

task unsolvable

UD with (2) and (3)

UD with ...

Bl

SD with (6) and (7)

B2

Bl

SD with (1) and (10)

PG with (9), (8) and (11)
Bl

SD with (12) and (13)

Cl with (14)

Heuristic Search
000®000

Bridging Representations

Statements “{d;} dead” might use different representations.
1 Show {d}explicit C {di}r (basic statement B4)
and then either
2a build (Sexp)explicit. and
3a show (Sexp)explicit = (Sexp)expicit U U{di }explicit (B2).
or
2b build (Sp)explicit: (Sp)BDD and (Sexp)BDD.

(

3b show (SD)exphCIt C U{d }expllClt (BZ)

4b show (SD)BDD E (SD)expllat (B4) and
(

5b show (Sexp)BDD = (Sexp)BDD U (Sp)BDD (B2).

— tradeoff efficient generation vs efficient verification

Heuristic Search
0000®00

Delete Relaxation

h™** dead-end
h™2*(s) = co <> some g € G relaxed unreachable

Consider R (s) = {v | v relaxed unreachable from s} and
Y= /\VER,T(S) v

@ We can't reach any s’ containing any v € R (s): S,[A] C S,
o All states satisfying ¢ do not satisfy g: S, NS¢ =0
@ State s satisfies ¢: {s} C S,

— Show that S, is dead (PG) and thus s is dead (SD).

We can choose between different representations:
BDD, Horn formula, 2CNF formula, explicit (over R (s))

Heuristic Search
000000

h™& Clause-Learning State Space Search

h™ dead-ends:

@ same concept as I o = A,cpm(s) Vyer v, where R7(s)
are the tuples unreachable from s.

e representation: Horn formulas (or 2CNF formulas for m = 2)
— BDDs not suited [Edelkamp & Kissmann 2011]

Clause-Learning State Space Search [Steinmetz & Hoffmann (2017)]:
o uses h® — same concept (again)

@ can be refined to detect | as dead-end — compact certificate
@ uses additional source for mutexes
— Integrate additional information into certificate!

Heuristic Search
©000000e

Other heuristics

@ h™M# approach covers all delete-relaxation heuristics
(h*M-Cut Jandmarks based on delete relaxation, ...)
@ Merge & Shrink:

e transformation from Merge & Shrink representation to ADD
[Helmert et al. 2014] and extract co-paths to BDD
— limited to linear merge strategies [Helmert et al. 2015]

e one set for all dead-ends
— certificate more compact

o implementation detail: unreachable and dead-end states
merged
— disable for certificate generation

h?> Preprocessor

h* Preprocessor
0e00

Algorithm Overview

introduced in [Alcazar & Torralba (2015)]
preprocessing step that simplifies planning task
used in many IPC planners

incremental h? reachability analysis, alternating between
forward and backward
— remove unreachable facts and actions

N

h* Preprocessor

Oe00

Algorithm Overview

introduced in [Alcazar & Torralba (2015)]
preprocessing step that simplifies planning task
used in many IPC planners

incremental h? reachability analysis, alternating between
forward and backward
— remove unreachable facts and actions

h* Preprocessor
0e00

Algorithm Overview

introduced in [Alcazar & Torralba (2015)]
preprocessing step that simplifies planning task

used in many IPC planners

incremental h? reachability analysis, alternating between
forward and backward
— remove unreachable facts and actions

h* Preprocessor
fe]e] ol

High-Level Certificate

@ D;: set of literal pairs shown dead before or in iteration i

o Si={s|{p,q} s forall {p,q} € D; }
e start with iteration 1 and Do = {} — So(= {}) dead

Forward iteration 7

Si-1 | given: (1) S;_1 dead

statement justification

2 {1BCS B1

(3) S[AJCSUS_-: B2

(4) S dead Pl with (3), (1) and (2)

—

h* Preprocessor
fe]e] ol

High-Level Certificate

@ D;: set of literal pairs shown dead before or in iteration /

o Si={s[{p,q} Lsforall {p,q} € Di }
e start with iteration 1 and Dy = {} — So(= {}) dead

Backward iteration i

given: (1) S;_; dead
statement justification
(2) SiNScCSi—1 B1
(3) SinSg dead SD with (1) and (2)
(4) [A]SSCSuUS_;: B2
(5) S dead RG with (4), (1) and (3)

h* Preprocessor
oooe

REMENS

@ representation of S;: /\{p qtep; PV G
— 2CNF (Horn not suitable since p and g can be negative)
o If the h? preprocessor detects the task unsolvable, we can
extract a full proof:
e ends in forward iteration: Sg C S_H_(all goal states dead)
o ends in backward iteration: {I} C S, (initial state dead)
o Otherwise, we can use the statement “S,, dead” to explain
why we pruned certain states.

@ We can also extract more fine-grained statements such as
“Spng dead” within the proof system.

Recap

Take-Home Messages

e We can verify algorithms on different levels (unit tests,
certifying algorithms, theorem provers).

@ The unsolvability proof system incrementally deduces
knowledge about dead states.

@ Its modularity enables us to combine different sources of
information.

o Efficient verification depends on the representation of state
sets, i.e. which operations are efficiently supported.

o Different representations can offer tradeoffs between efficient
generation and verification.

o Generating certificates often involves reachability arguments.

Future Work

@ cover more planning techniques, e.g.
o dead-end potentials
e partial order reduction
e task transformations

@ extend the verifier

e more representations
— talk in Session E2 next week about CNF
e more inference rules

o verify the verifier!

	Certificate Structure
	

	Blind Search
	

	Heuristic Search
	

	h2 Preprocessor
	

	Recap
	

