
Certified Unsolvability in Classical Planning
2. Applications

Salomé Eriksson Gabriele Röger Malte Helmert

University of Basel, Switzerland

ICAPS 2020

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 1 / 24

Certified Unsolvability in Classical Planning
2. Applications

2.1 Certificate Structure

2.2 Blind Search

2.3 Heuristic Search

2.4 h2 Preprocessor

2.5 Recap

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 2 / 24

2. Applications Certificate Structure

Certificate Structure

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 3 / 24

2. Applications Certificate Structure

First look

on Github: https://github.com/salome-eriksson/helve

A certificate consists of the following files:
I task description

I limited to STRIPS
→ STRIPS with negation coming soonTM

I variable and action IDs (according to occurence in list)

I certificate
I state sets: e ID type description

e 0 h p cnf 3 2 2 -1 0
I action sets: a ID type description

a 0 u 2 4 5 6
I statements: k ID type set-ID(s) justification

premises k 0 d 7 sd 5 4

I (BDD descriptions)

(detailed explanation in README.md of github repository)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 4 / 24

https://github.com/salome-eriksson/helve

2. Applications Certificate Structure

Certificate File

Example

what we have seen so far:
statement justification

(0) ∅ dead ED
(1) {I} v states(¬a ∨ ¬b) B1
(2) S¬a∨¬b[A] v S¬a∨¬b ∪ ∅ B2
(3) S¬a∨¬b dead PI with (3),(1) and (2)
. . .

the corresponding certificate file:
1 e 0 c e 7 e 3 p 2 0

2 e 1 c i 8 e 4 u 2 0

3 a 0 a 9 k 2 s 3 4 b2

4 k 0 d 0 ed 10 e 5 n 2

5 e 2 h p cnf 2 1 1 2 0 11 k 3 d 5 pi 2 0 1

6 k 1 s 1 2 b1 ...

→ Demo

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 5 / 24

2. Applications Blind Search

Blind Search

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 6 / 24

2. Applications Blind Search

High-Level Certificate

Blind search explores all reachable states RΠ.
→ Recall completeness proof:

Forward Blind Search Certificate

statement justification

(0) ∅ dead ED
(1) RΠ[A] v RΠ ∪ ∅ B2
(2) RΠ ∩ SG v ∅ B1
(3) RΠ ∩ SG dead SD with (0) and (2)
(4) RΠ dead PG with (1), (0) and (3)
(5) {I} v RΠ B1
(6) {I} dead SD with (4) and (5)
(7) unsolvable CI with (6)

For backwards search, show {I} v RΠ
B and [A]RΠ

B v RΠ
B ∪ ∅,

deduce RΠ
B dead (rule RI), and from SG v RΠ

B show SG dead.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 7 / 24

2. Applications Blind Search

Translation to Certificate File

statement justification

1 e 0 c e S0 = ∅
2 e 1 c i S1 = {I}
3 e 2 c g S2 = SG

4 a 0 a A0 = A
5 k 0 d 0 ed (0) S0(= ∅) dead
6 e 3 . . . S3 = RΠ

7 e 4 p 3 0 S4 = S3[A0] = RΠ[A]
8 e 5 u 3 0 S5 = S3 ∪ S0 = RΠ ∪ ∅
9 k 1 s 4 5 b2 (1) S4(= RΠ[A]) v S5(= RΠ ∪ ∅)

10 e 6 i 3 2 S6 = S3 ∩ S2 = RΠ ∩ SG

11 k 2 s 6 0 b1 (2) S6(= RΠ ∩ SG) v S0(= ∅)
12 k 3 d 6 sd 2 0 (3) S6(= RΠ ∩ SG) dead
13 k 4 d 3 pg 1 0 3 (4) S3(= RΠ) dead
14 k 5 s 1 3 b1 (5) S1(= {I}) v S3(= RΠ)
15 k 6 d 1 sd 5 4 (6) S1(= {I}) dead
16 k 7 u ci 6 (7) unsolvable

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 8 / 24

2. Applications Blind Search

Implementation Details

Depending on the concrete algorithm, some implementation details
affect performance:
I formalism for RΠ

I symbolic search: BDD
→ overhead if no singular closed BDD!

I explicit search: explicit enumeration or BDD
→ fast generation vs fast verification

I when to build the certificate
I during search: unnecessary overhead for solvable problems
I at the end: more overhead (iterate over entire closed list), but

also more localized

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 9 / 24

2. Applications Heuristic Search

Heuristic Search

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 10 / 24

2. Applications Heuristic Search

Idea

1 Each dead-end is dead.

2 The set of expanded states contains no goal state.

3 The set of expanded states can only reach itself and
dead-ends.

4 → the set of expanded states is dead.

5 The initial state is in the set of expanded states.

6 → The initial state is dead and the task unsolvable.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 11 / 24

2. Applications Heuristic Search

High-Level Certificate

SD

Sexp

I

d1
. . . dn

. . .

. . .

(1) ∅ dead
(2) {d1} dead (3) {d2} dead . . . (4) {dn} dead

statement justification

(5) {d1} ∪ {d2} dead UD with (2) and (3)
. . .

(6)
⋃

1≤i≤n di dead UD with . . .

(7) SD v
⋃

1≤i≤n di B1

(8) SD dead SD with (6) and (7)
(9) Sexp[A] v Sexp ∪ SD B2

(10) Sexp ∩ SG v ∅ B1
(11) Sexp ∩ SG dead SD with (1) and (10)
(12) Sexp dead PG with (9), (8) and (11)
(13) {I} v Sexp B1
(14) {I} dead SD with (12) and (13)
(15) task unsolvable CI with (14)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 12 / 24

2. Applications Heuristic Search

Bridging Representations

Statements “{di} dead” might use different representations.

1 Show {di}explicit v {di}R (basic statement B4)

and then either

2a build (Sexp)explicit, and

3a show (Sexp)explicit v (Sexp)explicit ∪
⋃
{di}explicit (B2).

or

2b build (SD)explicit, (SD)BDD and (Sexp)BDD,

3b show (SD)explicit v
⋃
{di}explicit (B2),

4b show (SD)BDD v (SD)explicit (B4), and

5b show (Sexp)BDD v (Sexp)BDD ∪ (SD)BDD (B2).

→ tradeoff efficient generation vs efficient verification

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 13 / 24

2. Applications Heuristic Search

Delete Relaxation

hmax dead-end

hmax(s) =∞↔ some g ∈ G relaxed unreachable

Consider R+
u (s) = {v | v relaxed unreachable from s} and

ϕ =
∧

v∈R+
u (s) ¬v .

I We can’t reach any s ′ containing any v ∈ R+
u (s): Sϕ[A] ⊆ Sϕ

I All states satisfying ϕ do not satisfy g : Sϕ ∩ SG = ∅
I State s satisfies ϕ: {s} ⊆ Sϕ

→ Show that Sϕ is dead (PG) and thus s is dead (SD).

We can choose between different representations:
BDD, Horn formula, 2CNF formula, explicit (over R+

u (s))

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 14 / 24

2. Applications Heuristic Search

hm& Clause-Learning State Space Search

hm dead-ends:

I same concept as hmax: ϕ =
∧

t∈Rm
u (s)

∨
v∈t ¬v , where Rm

u (s)
are the tuples unreachable from s.

I representation: Horn formulas (or 2CNF formulas for m = 2)
→ BDDs not suited [Edelkamp & Kissmann 2011]

Clause-Learning State Space Search [Steinmetz & Hoffmann (2017)]:

I uses hC → same concept (again)

I can be refined to detect I as dead-end → compact certificate

I uses additional source for mutexes
→ Integrate additional information into certificate!

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 15 / 24

2. Applications Heuristic Search

Other heuristics

I hmax approach covers all delete-relaxation heuristics
(hLM-Cut, landmarks based on delete relaxation, . . .)

I Merge & Shrink:
I transformation from Merge & Shrink representation to ADD

[Helmert et al. 2014] and extract ∞-paths to BDD
→ limited to linear merge strategies [Helmert et al. 2015]

I one set for all dead-ends
→ certificate more compact

I implementation detail: unreachable and dead-end states
merged
→ disable for certificate generation

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 16 / 24

2. Applications h2 Preprocessor

h2 Preprocessor

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 17 / 24

2. Applications h2 Preprocessor

Algorithm Overview

I introduced in [Alcázar & Torralba (2015)]

I preprocessing step that simplifies planning task

I used in many IPC planners

I incremental h2 reachability analysis, alternating between
forward and backward
→ remove unreachable facts and actions

I

SG

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 18 / 24

2. Applications h2 Preprocessor

High-Level Certificate

I Di : set of literal pairs shown dead before or in iteration i

I Si = {s | {p, q} 6⊆ s for all {p, q} ∈ Di }
I start with iteration 1 and D0 = {} → S0(= {}) dead

Forward iteration i

Si−1

SiI

given: (1) Si−1 dead

statement justification

(2) {I} v Si B1
(3) Si [A] v Si ∪ Si−1 B2
(4) Si dead PI with (3), (1) and (2)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 19 / 24

2. Applications h2 Preprocessor

High-Level Certificate

I Di : set of literal pairs shown dead before or in iteration i

I Si = {s | {p, q} 6⊆ s for all {p, q} ∈ Di }
I start with iteration 1 and D0 = {} → S0(= {}) dead

Backward iteration i

Si−1

SiSG

given: (1) Si−1 dead

statement justification

(2) Si ∩ SG v Si−1 B1
(3) Si ∩ SG dead SD with (1) and (2)

(4) [A]Si v Si ∪ Si−1 B2
(5) Si dead RG with (4), (1) and (3)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 20 / 24

2. Applications h2 Preprocessor

Remarks

I representation of Si :
∧
{p,q}∈Di

¬p ∨ ¬q
→ 2CNF (Horn not suitable since p and q can be negative)

I If the h2 preprocessor detects the task unsolvable, we can
extract a full proof:
I ends in forward iteration: SG ⊆ Sn (all goal states dead)
I ends in backward iteration: {I} ⊆ Sn (initial state dead)

I Otherwise, we can use the statement “Sn dead” to explain
why we pruned certain states.

I We can also extract more fine-grained statements such as
“Sp∧q dead” within the proof system.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 21 / 24

2. Applications Recap

Recap

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 22 / 24

2. Applications Recap

Take-Home Messages

I We can verify algorithms on different levels (unit tests,
certifying algorithms, theorem provers).

I The unsolvability proof system incrementally deduces
knowledge about dead states.

I Its modularity enables us to combine different sources of
information.

I Efficient verification depends on the representation of state
sets, i.e. which operations are efficiently supported.

I Different representations can offer tradeoffs between efficient
generation and verification.

I Generating certificates often involves reachability arguments.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 23 / 24

2. Applications Recap

Future Work

I cover more planning techniques, e.g.
I dead-end potentials
I partial order reduction
I task transformations

I extend the verifier
I more representations
→ talk in Session E2 next week about CNF

I more inference rules

I verify the verifier!

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 24 / 24

	Certificate Structure
	

	Blind Search
	

	Heuristic Search
	

	h2 Preprocessor
	

	Recap
	

