Certified Unsolvability in Classical Planning
2. Applications

Salomé Eriksson Gabriele Roger Malte Helmert

University of Basel, Switzerland

ICAPS 2020

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 1/24

Certified Unsolvability in Classical Planning
2. Applications

2.1 Certificate Structure

2.2 Blind Search

2.3 Heuristic Search

2.4 h? Preprocessor

2.5 Recap

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 2 /24

2. Applications Certificate Structure

Certificate Structure

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 3 /24

2. Applications Certificate Structure

First look

on Github: https://github.com/salome-eriksson/helve

A certificate consists of the following files:
> task description

> limited to STRIPS
— STRIPS with negation coming soon
» variable and action IDs (according to occurence in list)
> certificate
> state sets: e ID type description
eOhpecnf 322-10
> action sets: a ID type description
abu2456
> statements: k ID type set-ID(s) justification
premises k 0 d 7 sd 5 4

» (BDD descriptions)

™

(detailed explanation in README.md of github repository)

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 4 /24

https://github.com/salome-eriksson/helve

2. Applications Certificate Structure

Certificate File

Example
what we have seen so far:
statement justification
(0) 0 dead ED
(1) {1} C states(—a V —b) B1
(2) S—|a\/—\b[A] E Sﬂa\/—\b) @ BZ
(3) S-av-p dead Pl with (3),(1) and (2)
the corresponding certificate file:
1 eOce 7 e3p20
2 elci 8 e4u20
3 ao0a 9 k2s340b2
4 k0dOed 10 e5n2
5 e2hpcenf 21120 11 k3d5pi201
6 k1s12hbl
— Demo
Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 5 /24
2. Applications Blind Search

High-Level Certificate

Blind search explores all reachable states R'.
— Recall completeness proof:

Forward Blind Search Certificate

statement justification
(0) 0 dead ED
(1) RMAJCRTUD B2
(2) R"NScCH B1
(3) R"NSgdead SD with (0) and (2)
(4) R" dead PG with (1), (0) and (3)
(5) {IpCcR" B1
(6) {I} dead SD with (4) and (5)
(7) unsolvable Cl with (6)

For backwards search, show {I} C @ and [A]RT C RB U,
deduce Rf} dead (rule RI), and from Sg C R show S¢ dead.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 7 /24

2. Applications Blind Search
Blind Search
Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 6 /24
2. Applications Blind Search
Translation to Certificate File
1 eOce So=10
2 elci S ={l}
3 e2cg S; =S¢
4 a0a A=A
5 k0dOed (0) So(= 0) dead
6 e3... S3=R"
7 e4p30 Si = S3[Ad] = R"[A]
8 e5u30 Ss=5US=R"Ud
9 kls45b2 (1) Si(=R"[A]) C Ss(= R"UD)
10 e6i32 Se=5N%=R"NSe
11 k2s60bl (2) Ss(=R"NSc) C So(=0)
12 k3d6sd20 (3) Ss(=R"NSg) dead
13 k4d3pg103 (4) S3(=R") dead
14 k5s13bl (5) Si(={1}) CS(=R")
15 k6dlsd54 (6) Si(={1}) dead
16 k7uci6b (7) unsolvable
Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 8 /24

2. Applications Blind Search

Implementation Details

Depending on the concrete algorithm, some implementation details
affect performance:
> formalism for R"
» symbolic search: BDD
— overhead if no singular closed BDD!
» explicit search: explicit enumeration or BDD
— fast generation vs fast verification
» when to build the certificate

» during search: unnecessary overhead for solvable problems
> at the end: more overhead (iterate over entire closed list), but
also more localized

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 9 /24

2. Applications

Heuristic Search

Eriksson, Roger, Helmert

Heuristic Search

Certified Unsolvability in Classical Planning 10 / 24

2. Applications Heuristic Search

ldea

© Each dead-end is dead.
@ The set of expanded states contains no goal state.

© The set of expanded states can only reach itself and
dead-ends.

@ — the set of expanded states is dead.
© The initial state is in the set of expanded states.
@ — The initial state is dead and the task unsolvable.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 11 / 24

2. Applications

High-Level Certificate

(1) 0 dead

(2) {1} dead (3) {d-} dead

statement

Heuristic Search

(4) {d,} dead

justification

(5) {di}U{d>} dead

(6) Ui<i<,di dead

(1) SoE U1gi§n d;
(8) Sp dead

(9) Sexp[A] C Sexp U Sp
10) Sey NSc C 0

11) Sep N Sg dead

12) Sep dead

13) {1} C Seop

14) {1} dead

15) task unsolvable

Eriksson, Roger, Helmert

UD with (2) and (3)

UD with ...

Bl

SD with (6) and (7)

B2

Bl

SD with (1) and (10)

PG with (9), (8) and (11)
Bl

SD with (12) and (13)

Cl with (14)

Certified Unsolvability in Classical Planning 12 / 24

2. Applications Heuristic Search

Bridging Representations

Statements “{d;} dead” might use different representations.
1 Show {d;}explicit = {di}r (basic statement B4)
and then either
2a build (Sexp)explicit, and
3a show (Sexp)explicit T (Sexp)explicit U U{di }explicit (B2).

or

2b build (Sp)explicit: (Sp)Bpp and (Sexp)BDD.

3b show (Sp)explicit = U{di }explicit (B2),

4b show (Sp)BpD C (SD)explicit (B4), and

5b show (Sexp)BDD C (Sexp)BDD U (Sp)BDD (B2).

— tradeoff efficient generation vs efficient verification

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 13 / 24

2. Applications Heuristic Search

Delete Relaxation

h™m3* dead-end

hm#(s) = oo <> some g € G relaxed unreachable

Consider R} (s) = {v | v relaxed unreachable from s} and

Y= /\veRlT(s) v
> We can't reach any s’ containing any v € R (s): S,[A] C S,
> All states satisfying ¢ do not satisfy g: S, 1 S¢ =0
> State s satisfies p: {s} C S,

— Show that S, is dead (PG) and thus s is dead (SD).

We can choose between different representations:
BDD, Horn formula, 2CNF formula, explicit (over R (s))

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 14 / 24

2. Applications Heuristic Search

h™& Clause-Learning State Space Search

h™ dead-ends:

> same concept as i © = Aycpm(s) V
are the tuples unreachable from s.

vee TV, where R'(s)

> representation: Horn formulas (or 2CNF formulas for m = 2)
— BDDs not suited [Edelkamp & Kissmann 2011]

Clause-Learning State Space Search [Steinmetz & Hoffmann (2017)]:

> uses h© — same concept (again)
» can be refined to detect | as dead-end — compact certificate

> uses additional source for mutexes
— Integrate additional information into certificate!

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 15 / 24

2. Applications

Other heuristics

Heuristic Search

> h™M2 approach covers all delete-relaxation heuristics
(h*M-Cut “Jandmarks based on delete relaxation, .. .)

» Merge & Shrink:

» transformation from Merge & Shrink representation to ADD
[Helmert et al. 2014] and extract co-paths to BDD
— limited to linear merge strategies [Helmert et al. 2015]
> one set for all dead-ends
— certificate more compact
» implementation detail: unreachable and dead-end states
merged
— disable for certificate generation

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 16 / 24

2. Applications

h? Preprocessor

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

h? Preprocessor

17 / 24

2. Applications

Algorithm Overview

introduced in [Alcdzar & Torralba (2015)]
preprocessing step that simplifies planning task

used in many IPC planners

vvyyy

incremental h? reachability analysis, alternating between
forward and backward
— remove unreachable facts and actions

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

h? Preprocessor

18 / 24

2. Applications

High-Level Certificate

» D;: set of literal pairs shown dead before or in iteration f

> Si={s|{p,q} s forall {p,q} € D; }
> start with iteration 1 and Do = {} — So(= {}) dead

Forward iteration /

given: (1) S;_; dead
7# statement

Si—1

justification

h? Preprocessor

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

2 {BCES B1
(3) S[AlCSUS-; B2
(4) S; dead Pl with (3), (1) and (2)

19 / 24

2. Applications

High-Level Certificate

» D;: set of literal pairs shown dead before or in iteration f

> Si={s|{p,q} £sforall {p,q} € D; }
> start with iteration 1 and Do = {} — So(= {}) dead

Backward iteration /

given: (1) S;_; dead

statement justification

(2) SiNScCSi—1 B1

(3) SiNSc dead SD with (1) and (2)
(4) [A]S, CSu ﬁ B2

(5) Si dead RG with (4), (1) and (3)

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

h? Preprocessor

20 / 24

2. Applications h? Preprocessor

Remarks

> representation of S;: /\{p,q}eD,- -pV g
— 2CNF (Horn not suitable since p and g can be negative)
> If the h? preprocessor detects the task unsolvable, we can
extract a full proof:
» ends in forward iteration: Sg C Sini(aH goal states dead)
> ends in backward iteration: {I} C S, (initial state dead)
» Otherwise, we can use the statement “S, dead" to explain
why we pruned certain states.

» We can also extract more fine-grained statements such as
“Sprg dead” within the proof system.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 21 / 24

2. Applications Recap

Recap

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 22 /24

2. Applications Recap

Take-Home Messages

» We can verify algorithms on different levels (unit tests,
certifying algorithms, theorem provers).

» The unsolvability proof system incrementally deduces
knowledge about dead states.

» Its modularity enables us to combine different sources of
information.

» Efficient verification depends on the representation of state
sets, i.e. which operations are efficiently supported.

» Different representations can offer tradeoffs between efficient
generation and verification.

» Generating certificates often involves reachability arguments.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 23 / 24

2. Applications Recap

Future Work

P cover more planning techniques, e.g.
» dead-end potentials
» partial order reduction
» task transformations

> extend the verifier

P> more representations
— talk in Session E2 next week about CNF
» more inference rules

» verify the verifier!

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 24 /24

	Certificate Structure
	

	Blind Search
	

	Heuristic Search
	

	h2 Preprocessor
	

	Recap
	

