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1. Theoretical Foundations Introduction

Goal

learn about:

I different levels of correctness guarantees

I unsolvability certificates for classical planning

I how to make your planner certifying
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1. Theoretical Foundations Introduction

Target Audience

I familiar with classical planning

I optional: planner developer
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About us

Salomé Gabi Malte
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Certifying Algorithms
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1. Theoretical Foundations Certifying Algorithms

Motivation

I ISP wants to build antenna towers for 5G.
I antenna supplier:

I “You need at least x towers”
I shows calculations with a tool, if using less than x towers tool

says “unsolvable”

I ISP’s options:
I blindly trust the tool
I demand some form of correctness guarantee for their tool
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1. Theoretical Foundations Certifying Algorithms

Levels of Verification

How can we verify the correctness of an algorithm?

1 theoretical: correctness proof in papers

2 implementation:

verification method verified inputs

unit test some predesignated inputs
certifying algorithms each input when it occurs
theorem provers all possible inputs

I Unit tests are easy to do, but it is also easy to miss bugs.
I Theorem provers are very expensive but offer highest guarantee

(tiny core which is checked very carefully).
I Certifying algorithms strike a balance between trust and effort.
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1. Theoretical Foundations Certifying Algorithms

Certifying Algorithms [McConnell et al. 2011]

“A certifying algorithm is an algorithm that produces, with each
output, a certificate or witness (easy-to-verify proof) that the
particular output has not been compromised by a bug.”

→ algorithm might still contain bug, but current output is correct

Example

Is CNF formula ϕ satisifiable?

I yes → provide satisfying assignment I
I no → provide UNSAT certificate (resolution, DRAT proof...)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 10 / 38

1. Theoretical Foundations Certifying Algorithms

Certifying Algorithms in Planning

task

Planner

“solvable”

plan

“unsolvable”

cert

verification tool

“valid”/“invalid”

plan validation tool

“valid”/“invalid”
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1. Theoretical Foundations Certifying Algorithms

Guiding Properties

Soundness & Completeness

We can create a certificate for task Π iff Π is unsolvable.

Efficient Generation

Certificate creation incurs only polynomial overhead to the planner.

Efficient Verification

Certificate verification is at most polynomial in its size.

Generality

A wide variety of planning techniques can produce a certificate.
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Quis custodiet ipsos custodes?

Certificate must be verified by a verifier. But what if the verifier
has bugs?

I Verify the verifier!

I Verify the verifier-verifier!

I . . . ?

I At some point we need to trust something.

Good news: Verifiers are often simpler than the original algorithm.
→ Verify the verifier with theorem provers.

Example: A Formally Verified Validator for Classical Planning
Problems and Solutions [Abdulaziz & Lammich, 2018]
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Proof Systems
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1. Theoretical Foundations Proof Systems

Natural Deduction

I Proof systems are built on axioms and inference rules.
I axioms: tautology (A ∨ ¬A)
I inference rules: conclusion based on premises (if A∧B then A)

I Hilbert-style systems try to express as much as possible in
axioms.

I Natural deduction in contrast focuses on inference rules.
I first proposed by Gerhard Genzen [Genzen 1935]
I should more closely reflect our natural way of reasoning

The proof system presented here uses the natural deduction style.
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1. Theoretical Foundations Proof Systems

Inference Rules

Inference rule

An inference rule I takes premises A1, . . . , An and concludes B:
A1 . . . An

I
B

I Rules use placeholder variables and are universally true for all
instantiations.

I The correctness of rules can be shown in two ways:
I within the proof system using existing rules, or
I outside of the proof system.

→ Once proven correct, we can use rules purely syntactically.

I Axioms are rules with no premises.

I Rules can also use and discard assumptions: For example, if
under assumption A we can prove B, we have shown A→ B.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 16 / 38



1. Theoretical Foundations Proof Systems

Example Proof System

Example

Inference Rules:
? �

A�
B� �

C?
� ? �

D◦

Show ◦:
# statement justification

(1) � from B
(2) ? from C with (1)
(3) � from A with (2) and (1)
(4) ◦ from D with (3), (2) and (1)
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Unsolvability Proof System
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1. Theoretical Foundations Unsolvability Proof System

First Certificate Attempt

How can we show that a planning task is unsolvable?

S

I G

Inductive Certificate [E et al 2017]

An inductive certificate for a STRIPS planning task
Π = 〈V,A, I,G〉 is a set of states S with the following properties:

I I ∈ S

I S contains no goal state

I S [A] ⊆ S , where S [A] = {s ′ | s[a] = s ′ for some a ∈ A}
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1. Theoretical Foundations Unsolvability Proof System

How Planners Show Unsolvability

I G

preprocessing

I Uninteresting search space areas get pruned incrementally

I Later pruning steps can use knowledge from previous ones.

I Distilling these steps into a singular argument is difficult.

→ Proof systems can capture this type of incremental reasoning.
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How Planners Show Unsolvability

I G

heuristic search with dead-end pruning

I Uninteresting search space areas get pruned incrementally

I Later pruning steps can use knowledge from previous ones.

I Distilling these steps into a singular argument is difficult.

→ Proof systems can capture this type of incremental reasoning.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 21 / 38

1. Theoretical Foundations Unsolvability Proof System

How Planners Show Unsolvability

I G

I Uninteresting search space areas get pruned incrementally

I Later pruning steps can use knowledge from previous ones.

I Distilling these steps into a singular argument is difficult.

→ Proof systems can capture this type of incremental reasoning.
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1. Theoretical Foundations Unsolvability Proof System

Proof System Objects

I state sets S represented as
I BDD
I (dual)-Horn formula
I 2CNF formula
I explicit enumeration
I . . .

I action sets A represented as ID enumeration
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1. Theoretical Foundations Unsolvability Proof System

Types of Knowledge

Dead State

A state s is dead if no plan traverses s, i.e. there is no plan
π = 〈a1, . . . , an〉 and 1 ≤ i ≤ n with s = I[a1] . . . [ai ].

→ captures idea of pruned states (in both directions)

statements in the proof system:

I S dead (all s ∈ S dead)

I E v E ′ (where E and E ′ are sets of states or actions)

I unsolvable
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1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Showing Deadness

Empty set Dead ED∅ dead

Union Dead S dead S ′ dead
UD

S ∪ S ′ dead

Subset Dead
S ′ dead S v S ′

SD
S dead
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1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Showing Deadness

Progression
Goal

S [A] v S ∪ S ′ S ′ dead S ∩ SG dead
PG

S dead

Progression
Initial

S [A] v S ∪ S ′ S ′ dead {I} v S
PI

S dead

Regression
Goal

[A]S v S ∪ S ′ S ′ dead S ∩ SG dead
RG

S dead

Regression
Initial

[A]S v S ∪ S ′ S ′ dead {I} v S
RI

S dead

S S ′
SG
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1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Showing Unsolvability

Conclusion Initial
{I} dead

CI
unsolvable

Conclusion Goal
SG dead

CG
unsolvable
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1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Set Theory

Union Left UL
E v (E ′ ∪ E )

Intersection Right IR
(E ∩ E ′) v E

Subset Union
E v E ′′ E ′ v E ′′

SU
(E ∪ E ′) v E ′′

Subset Intersection
E v E ′ E v E ′′

SI
E v (E ′ ∩ E ′′)

Subset Transitivity
E v E ′ E ′ v E ′′

ST
E v E ′′

. . .
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1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Progression and Regression

Action Union
S [A] v S ′ S [A′] v S ′

AU
S [A ∪ A′] v S ′

Progression Transitivity
S [A] v S ′′ S ′ v S

PT
S ′[A] v S ′′

Progression to Regression
S [A] v S ′

PR
[A]S ′ v S

. . .
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1. Theoretical Foundations Unsolvability Proof System

Is this enough?

How can we show S [A] ⊆ S or similar statements?

I depends on planning task and contents of S

I requires semantic analysis

I set theory rules only syntactical

→ new source of information: basic statements

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 30 / 38

1. Theoretical Foundations Unsolvability Proof System

Basic Statements

B1
⋂
LR ⊆

⋃
L′R

B2 (
⋂
XR)[A] ∩

⋂
LR ⊆

⋃
L′R

B3 [A](
⋂
XR) ∩

⋂
LR ⊆

⋃
L′R

B4 LR ⊆ L′R′

B5 A ⊆ A′

XR state set variable
(represented by formalism R)

LR state set literal
(either XR or XR)

A action set

I In B1-B3 all sets must be represented by the same formalism.

I Unions and intersections are bounded.

I We only support pro-/regression for set variables.

I B4 enables us to mix formalisms.
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1. Theoretical Foundations Unsolvability Proof System

Soundness and Completeness

Given a STRIPS planning tasks Π = 〈V,A, I,G〉, there is an proof
in the proof system for Π iff Π is unsolvable.

Proof

Soundness: This follows from the correctness of the inference rules
and basic statements.
Completeness: Consider RΠ, the set of states reachable from I.

# statement justification
(1) ∅ dead ED
(2) RΠ[A] v RΠ ∪ ∅ B2
(3) RΠ ∩ SG v ∅ B1
(4) RΠ ∩ SG dead SD with (1) and (3)
(5) RΠ dead PG with (2), (1) and (4)
(6) {I} v RΠ B1
(7) {I} dead SD with (5) and (6)
(8) unsolvable CI with (7)
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Efficient Verification
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1. Theoretical Foundations Efficient Verification

Verifying Statements

The verifier needs to verify each step of the proof.
I inference rules

I universally true
I check if rule is applied corretly (syntax)
→ easy to verify

I basic statements
I sets must be interpreted (semantic)
→ depends on set representation formalism
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1. Theoretical Foundations Efficient Verification

Formalisms & Operations

How can we analyze whether basic statements can be verified
efficiently?

1 check each formalism separately
2 check what operations a formalism R must support

I SE (sentential entailment): Given R-formulas ϕ and ψ, test
whether ϕ |= ψ.

I ∧BC (bounded conjunction): Given R-formulas ϕ and ψ,
construct an R-formula representing ϕ ∧ ψ.

I toCNF (transform to CNF): Given R-formula ϕ, construct a
CNF formula that is equivalent to ϕ.

I . . . [Darwiche & Marquis 2002]
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1. Theoretical Foundations Efficient Verification

Efficient Verification of B1

To verify
⋂
XR ⊆

⋃
X ′
R efficiently R must efficiently support:

|
⋂
XR| = 0 |

⋂
XR| = 1 |

⋂
XR| > 1

|
⋃
X ′
R| = 0

CO CO, ∧BC
toDNF

|
⋃
X ′
R| = 1

VA SE SE, ∧BC
toDNF, IM

|
⋃
X ′
R| > 1

VA, ∨BC SE, ∨BC SE, ∧BC, ∨BC
toCNF toCNF, CE toDNF, IM, ∨BC

toCNF, CE, ∧BC

I multiple rows indicate different possible options

I for B1: move negated literals to the “correct” side
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1. Theoretical Foundations Efficient Verification

Efficient Verification of B1 - Example

|
⋂

XR| = 0 |
⋂

XR| = 1 |
⋂

XR| > 1

|
⋃

X ′
R| = 0

CO CO, ∧BC
toDNF

|
⋃

X ′
R| = 1

VA SE SE, ∧BC
toDNF, IM

|
⋃

X ′
R| > 1

VA, ∨BC SE, ∨BC SE, ∧BC, ∨BC
toCNF toCNF, CE toDNF, IM, ∨BC

toCNF, CE, ∧BC

Example

For sets S1 to S5 (all represented with R), the statement
S1 ∩ S2 ⊆ S3 ∪ S4 ∪ S5 can be verified efficiently iff R supports

I SE (sentential entailment) and ∨BC(bounded disjunction), or

I toCNF (transform to CNF) and CE (clausal entailment).
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1. Theoretical Foundations Efficient Verification

Concrete Formalisms

What do BDDs, (dual-)Horn formulas, 2CNF formulas and explicit
enumeration support?

I Basic statements B1-B3 are fully supported by all formalisms.
I Basic statement B4 between those formalisms is supported in

most cases with the following exceptions:
I ϕR |= ¬ψ′R where R and R′ are a combination of BDD,

(dual-)Horn and 2CNF
I ϕ(dual−)Horn/2CNF |= ψBDD
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