

Certified Unsolvability in Classical Planning

1. Theoretical Foundations

Salomé Eriksson Gabriele Röger Malte Helmert

University of Basel, Switzerland

ICAPS 2020

Eriksson, Röger, Helmert

Certified Unsolvability in Classical Planning

1 / 38

Certified Unsolvability in Classical Planning

1. Theoretical Foundations

1.1 Introduction

1.2 Certifying Algorithms

1.3 Proof Systems

1.4 Unsolvability Proof System

1.5 Efficient Verification

Eriksson, Röger, Helmert

Certified Unsolvability in Classical Planning

2 / 38

1. Theoretical Foundations

Introduction

Introduction

Eriksson, Röger, Helmert

Certified Unsolvability in Classical Planning

3 / 38

1. Theoretical Foundations

Introduction

Goal

learn about:

- ▶ different levels of correctness guarantees
- ▶ unsolvability certificates for classical planning
- ▶ how to make your planner certifying

Eriksson, Röger, Helmert

Certified Unsolvability in Classical Planning

4 / 38

Target Audience

- ▶ familiar with classical planning
- ▶ optional: planner developer

Certifying Algorithms

About us

Salomé

Gabi

Malte

Motivation

- ▶ ISP wants to build antenna towers for 5G.
- ▶ antenna supplier:
 - ▶ "You need **at least** x towers"
 - ▶ shows calculations with a tool, if using less than x towers tool says "unsolvable"
- ▶ ISP's options:
 - ▶ blindly trust the tool
 - ▶ demand some form of **correctness guarantee** for their tool

Levels of Verification

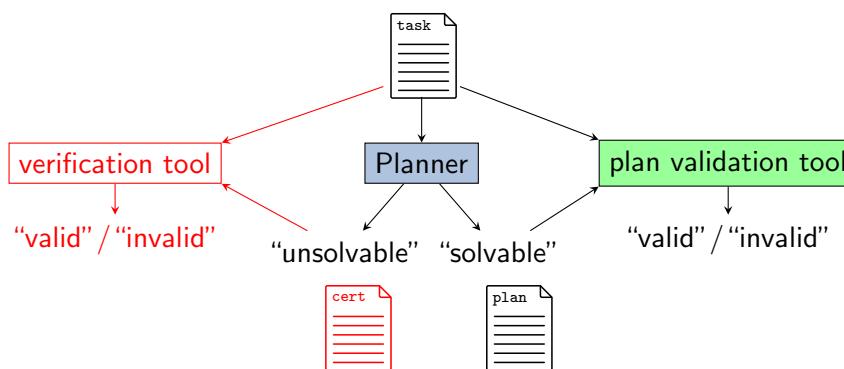
How can we verify the correctness of an algorithm?

- ① **theoretical**: correctness proof in papers
- ② **implementation**:

verification method	verified inputs
unit test	some predesignated inputs
certifying algorithms	each input when it occurs
theorem provers	all possible inputs

- ▶ Unit tests are easy to do, but it is also easy to miss bugs.
- ▶ Theorem provers are very expensive but offer highest guarantee (tiny core which is checked very carefully).
- ▶ Certifying algorithms strike a balance between trust and effort.

Certifying Algorithms in Planning



Certifying Algorithms [McConnell et al. 2011]

"A certifying algorithm is an algorithm that produces, with each output, a certificate or witness (easy-to-verify proof) that the particular output has not been compromised by a bug."

→ algorithm might still contain bug, but current output is correct

Example

Is CNF formula φ satisfiable?

- ▶ yes → provide satisfying assignment \mathcal{I}
- ▶ no → provide UNSAT certificate (resolution, DRAT proof...)

Guiding Properties

Soundness & Completeness

We can create a certificate for task Π iff Π is unsolvable.

Efficient Generation

Certificate creation incurs only polynomial overhead to the planner.

Efficient Verification

Certificate verification is at most polynomial in its size.

Generality

A wide variety of planning techniques can produce a certificate.

Quis custodiet ipsos custodes?

Certificate must be verified by a verifier. But what if the verifier has bugs?

- ▶ Verify the verifier!
- ▶ Verify the verifier-verifier!
- ▶ ...?
- ▶ At some point we need to trust something.

Good news: Verifiers are often simpler than the original algorithm.

→ [Verify the verifier with theorem provers.](#)

Example: A Formally Verified Validator for Classical Planning Problems and Solutions [Abdulaziz & Lammich, 2018]

Proof Systems

Natural Deduction

- ▶ Proof systems are built on [axioms](#) and [inference rules](#).
 - ▶ axioms: tautology ($A \vee \neg A$)
 - ▶ inference rules: conclusion based on premises (if $A \wedge B$ then A)
- ▶ [Hilbert-style systems](#) try to express as much as possible in axioms.
- ▶ [Natural deduction](#) in contrast focuses on inference rules.
 - ▶ first proposed by Gerhard Genzen [Genzen 1935]
 - ▶ should more closely reflect our natural way of reasoning

The proof system presented here uses the natural deduction style.

Inference Rules

Inference rule

An inference rule \mathbf{I} takes premises A_1, \dots, A_n and concludes B :

$$\frac{A_1 \quad \dots \quad A_n}{B} \mathbf{I}$$

- ▶ Rules use placeholder variables and are [universally true](#) for all instantiations.
- ▶ The correctness of rules can be shown in two ways:
 - ▶ within the proof system using existing rules, or
 - ▶ outside of the proof system.
- ▶ Once proven correct, we can use rules purely [syntactically](#).
- ▶ [Axioms](#) are rules with no premises.
- ▶ Rules can also use and discard [assumptions](#): For example, if under assumption A we can prove B , we have shown $A \rightarrow B$.

Example Proof System

Example

Inference Rules:

$$\frac{\star \quad \diamond}{\square} \mathbf{A} \quad \overline{\diamond} \mathbf{B} \quad \frac{\diamond}{\star} \mathbf{C} \quad \frac{\square}{\circ} \quad \frac{\star}{\circ} \quad \frac{\diamond}{\circ} \mathbf{D}$$

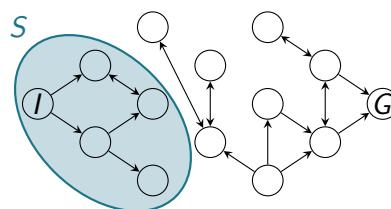
Show \circ :

#	statement	justification
(1)	\diamond	from B
(2)	\star	from C with (1)
(3)	\square	from A with (2) and (1)
(4)	\circ	from D with (3), (2) and (1)

Unsolvability Proof System

First Certificate Attempt

How can we show that a planning task is unsolvable?



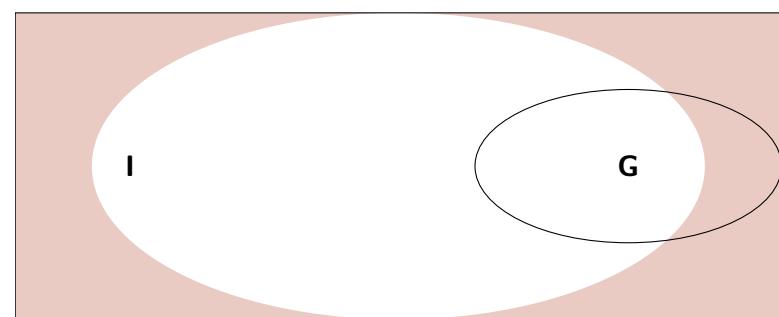
Inductive Certificate [E et al 2017]

An inductive certificate for a STRIPS planning task

$\Pi = \langle \mathbf{V}, \mathbf{A}, \mathbf{I}, \mathbf{G} \rangle$ is a set of states S with the following properties:

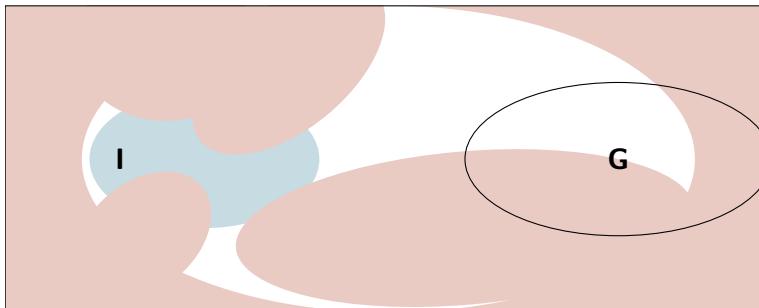
- ▶ $\mathbf{I} \in S$
- ▶ S contains no goal state
- ▶ $S[\mathbf{A}] \subseteq S$, where $S[\mathbf{A}] = \{s' \mid s[a] = s' \text{ for some } a \in \mathbf{A}\}$

How Planners Show Unsolvability



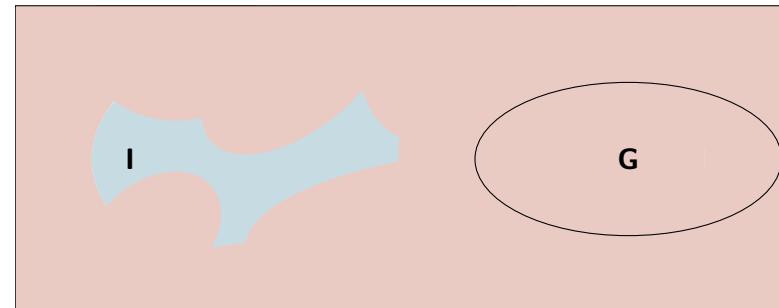
preprocessing

How Planners Show Unsolvability



heuristic search with dead-end pruning

How Planners Show Unsolvability



- ▶ Uninteresting search space areas get pruned [incrementally](#)
- ▶ Later pruning steps can use knowledge from previous ones.
- ▶ Distilling these steps into a singular argument is difficult.

→ Proof systems can capture this type of incremental reasoning.

Proof System Objects

- ▶ state sets S represented as
 - ▶ BDD
 - ▶ (dual)-Horn formula
 - ▶ 2CNF formula
 - ▶ explicit enumeration
 - ▶ ...
- ▶ action sets A represented as ID enumeration

Types of Knowledge

Dead State

A state s is dead if no plan traverses s , i.e. there is no plan $\pi = \langle a_1, \dots, a_n \rangle$ and $1 \leq i \leq n$ with $s = I[a_1] \dots [a_i]$.

→ captures idea of pruned states (in both directions)

statements in the proof system:

- ▶ S dead (all $s \in S$ dead)
- ▶ $E \sqsubseteq E'$ (where E and E' are sets of states or actions)
- ▶ unsolvable

Inference Rules - Showing Deadness

Empty set Dead

$$\frac{}{\emptyset \text{ dead}} \mathbf{ED}$$

Union Dead

$$\frac{S \text{ dead} \quad S' \text{ dead}}{S \cup S' \text{ dead}} \mathbf{UD}$$

Subset Dead

$$\frac{S' \text{ dead} \quad S \sqsubseteq S'}{S \text{ dead}} \mathbf{SD}$$

Inference Rules - Showing Unsolvability

Conclusion Initial

$$\frac{\{I\} \text{ dead}}{\text{unsolvable}} \mathbf{CI}$$

Conclusion Goal

$$\frac{S_G \text{ dead}}{\text{unsolvable}} \mathbf{CG}$$

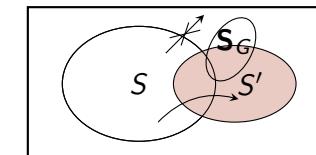
Inference Rules - Showing Deadness

$$\frac{\begin{array}{c} \mathbf{Progression} \\ \mathbf{Goal} \end{array} \quad S[\mathbf{A}] \sqsubseteq S \cup S' \quad S' \text{ dead} \quad S \cap S_G \text{ dead}}{S \text{ dead}} \mathbf{PG}$$

$$\frac{\begin{array}{c} \mathbf{Progression} \\ \mathbf{Initial} \end{array} \quad S[\mathbf{A}] \sqsubseteq S \cup S' \quad S' \text{ dead} \quad \{I\} \sqsubseteq S}{\overline{S} \text{ dead}} \mathbf{PI}$$

$$\frac{\begin{array}{c} \mathbf{Regression} \\ \mathbf{Goal} \end{array} \quad [\mathbf{A}]S \sqsubseteq S \cup S' \quad S' \text{ dead}}{\overline{S} \text{ dead}} \mathbf{RG}$$

$$\frac{\begin{array}{c} \mathbf{Regression} \\ \mathbf{Initial} \end{array} \quad [\mathbf{A}]S \sqsubseteq S \cup S' \quad S' \text{ dead} \quad \{I\} \sqsubseteq \overline{S}}{S \text{ dead}} \mathbf{RI}$$



Inference Rules - Set Theory

Union Left

$$\frac{}{E \sqsubseteq (E' \cup E)} \mathbf{UL}$$

Intersection Right

$$\frac{}{(E \cap E') \sqsubseteq E} \mathbf{IR}$$

Subset Union

$$\frac{E \sqsubseteq E'' \quad E' \sqsubseteq E''}{(E \cup E') \sqsubseteq E''} \mathbf{SU}$$

Subset Intersection

$$\frac{E \sqsubseteq E' \quad E \sqsubseteq E''}{E \sqsubseteq (E' \cap E'')} \mathbf{SI}$$

Subset Transitivity

$$\frac{E \sqsubseteq E' \quad E' \sqsubseteq E''}{E \sqsubseteq E''} \mathbf{ST}$$

...

Inference Rules - Progression and Regression

Action Union

$$\frac{S[A] \sqsubseteq S' \quad S[A'] \sqsubseteq S'}{S[A \cup A'] \sqsubseteq S'} \text{AU}$$

Progression Transitivity

$$\frac{S[A] \sqsubseteq S'' \quad S' \sqsubseteq S}{S'[A] \sqsubseteq S''} \text{PT}$$

Progression to Regression

$$\frac{S[A] \sqsubseteq S'}{[A]\bar{S}' \sqsubseteq \bar{S}} \text{PR}$$

...

Is this enough?

How can we show $S[A] \sqsubseteq S$ or similar statements?

- ▶ depends on planning task and contents of S
- ▶ requires *semantic* analysis
- ▶ set theory rules only syntactical

→ new source of information: [basic statements](#)

Basic Statements

$$\mathbf{B1} \cap L_R \subseteq \bigcup L'_R$$

$$\mathbf{B2} (\bigcap X_R)[A] \cap \bigcap L_R \subseteq \bigcup L'_R$$

$$\mathbf{B3} [A](\bigcap X_R) \cap \bigcap L_R \subseteq \bigcup L'_R$$

$$\mathbf{B4} L_R \subseteq L'_R$$

$$\mathbf{B5} A \subseteq A'$$

X_R state set variable
(represented by formalism R)

L_R state set literal
(either X_R or \bar{X}_R)

A action set

- ▶ In **B1-B3** all sets must be represented by the *same* formalism.
- ▶ Unions and intersections are *bounded*.
- ▶ We only support pro-/regression for set *variables*.
- ▶ **B4** enables us to *mix* formalisms.

Soundness and Completeness

Given a STRIPS planning tasks $\Pi = \langle \mathbf{V}, \mathbf{A}, \mathbf{I}, \mathbf{G} \rangle$, there is an proof in the proof system for Π iff Π is unsolvable.

Proof

Soundness: This follows from the correctness of the inference rules and basic statements.

Completeness: Consider \mathcal{R}^Π , the set of states reachable from \mathbf{I} .

#	statement	justification
(1)	\emptyset dead	ED
(2)	$\mathcal{R}^\Pi[A] \sqsubseteq \mathcal{R}^\Pi \cup \emptyset$	B2
(3)	$\mathcal{R}^\Pi \cap \mathbf{S}_G \sqsubseteq \emptyset$	B1
(4)	$\mathcal{R}^\Pi \cap \mathbf{S}_G$ dead	SD with (1) and (3)
(5)	\mathcal{R}^Π dead	PG with (2), (1) and (4)
(6)	$\{\mathbf{I}\} \sqsubseteq \mathcal{R}^\Pi$	B1
(7)	$\{\mathbf{I}\}$ dead	SD with (5) and (6)
(8)	unsolvable	CI with (7)

Efficient Verification

Formalisms & Operations

How can we analyze whether basic statements can be verified efficiently?

- ➊ check each formalism separately
- ➋ check what **operations** a formalism **R** must support
 - ▶ **SE** (sentential entailment): Given **R**-formulas φ and ψ , test whether $\varphi \models \psi$.
 - ▶ **\wedge BC** (bounded conjunction): Given **R**-formulas φ and ψ , construct an **R**-formula representing $\varphi \wedge \psi$.
 - ▶ **toCNF** (transform to CNF): Given **R**-formula φ , construct a CNF formula that is equivalent to φ .
 - ▶ ... [Darwiche & Marquis 2002]

Verifying Statements

The verifier needs to verify each step of the proof.

- ▶ inference rules
 - ▶ universally true
 - ▶ check if rule is applied correctly ([syntax](#))
 - easy to verify
- ▶ basic statements
 - ▶ sets must be interpreted ([semantic](#))
 - depends on set representation formalism

Efficient Verification of B1

To verify $\bigcap X_R \subseteq \bigcup X'_R$ efficiently **R** must efficiently support:

	$ \bigcap X_R = 0$	$ \bigcap X_R = 1$	$ \bigcap X_R > 1$
$ \bigcup X'_R = 0$		CO	CO, \wedgeBC toDNF
$ \bigcup X'_R = 1$	VA	SE	SE, \wedgeBC toDNF, IM
$ \bigcup X'_R > 1$	VA, \veeBC toCNF	SE, \veeBC toCNF, CE	SE, \wedgeBC, \veeBC toDNF, IM, \veeBC toCNF, CE, \wedgeBC

- ▶ multiple rows indicate different possible options
- ▶ for **B1**: move negated literals to the “correct” side

Efficient Verification of B1 - Example

	$ \cap X_R = 0$	$ \cap X_R = 1$	$ \cap X_R > 1$
$ \cup X'_R = 0$		CO	CO, \wedgeBC toDNF
$ \cup X'_R = 1$	VA	SE	SE, \wedgeBC toDNF, IM
$ \cup X'_R > 1$	VA, \veeBC toCNF	SE, \veeBC toCNF, CE	SE, \wedgeBC, \veeBC toDNF, IM, \veeBC toCNF, CE, \wedgeBC

Example

For sets S_1 to S_5 (all represented with \mathbf{R}), the statement $S_1 \cap \overline{S_2} \subseteq S_3 \cup S_4 \cup S_5$ can be verified efficiently iff \mathbf{R} supports

- ▶ **SE** (sentential entailment) and **\vee BC**(bounded disjunction), or
- ▶ **toCNF** (transform to CNF) and **CE** (clausal entailment).

Concrete Formalisms

What do BDDs, (dual-)Horn formulas, 2CNF formulas and explicit enumeration support?

- ▶ Basic statements **B1-B3** are fully supported by all formalisms.
- ▶ Basic statement **B4** between those formalisms is supported in most cases with the following exceptions:
 - ▶ $\varphi_R \models \neg\psi'_R$ where R and R' are a combination of BDD, (dual-)Horn and 2CNF
 - ▶ $\varphi_{(\text{dual-})\text{Horn}/2\text{CNF}} \models \psi_{\text{BDD}}$