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1. Theoretical Foundations Introduction
Goal
learn about:

> different levels of correctness guarantees
» unsolvability certificates for classical planning

» how to make your planner certifying
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Target Audience

» familiar with classical planning

» optional: planner developer
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1. Theoretical Foundations

Motivation

» |SP wants to build antenna towers for 5G.
» antenna supplier:
> “You need at least x towers”
» shows calculations with a tool, if using less than x towers tool
says “unsolvable”
» ISP’s options:

» blindly trust the tool
» demand some form of correctness guarantee for their tool
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1. Theoretical Foundations Certifying Algorithms

Levels of Verification

How can we verify the correctness of an algorithm?
@ theoretical: correctness proof in papers
@ implementation:
verification method verified inputs
unit test some predesignated inputs

certifying algorithms each input when it occurs
theorem provers all possible inputs

» Unit tests are easy to do, but it is also easy to miss bugs.

» Theorem provers are very expensive but offer highest guarantee
(tiny core which is checked very carefully).

» Certifying algorithms strike a balance between trust and effort.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 9 /38

1. Theoretical Foundations

Certifying Algorithms [McConnell et al. 2011]

Certifying Algorithms

“A certifying algorithm is an algorithm that produces, with each
output, a certificate or witness (easy-to-verify proof) that the
particular output has not been compromised by a bug.”

— algorithm might still contain bug, but current output is correct

Example
Is CNF formula ¢ satisifiable?
» yes — provide satisfying assignment Z
» no — provide UNSAT certificate (resolution, DRAT proof...)
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Certifying Algorithms in Planning

task

T

Planner ‘ plan validation tool ‘
/ !

\

’ verification tool ‘

!

/

“valid" / “invalid” " . " “valid” / “invalid"
unsolvable” “solvable
cert plan
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Guiding Properties
Soundness & Completeness

We can create a certificate for task I iff I is unsolvable.

Efficient Generation

Certificate creation incurs only polynomial overhead to the planner.

Efficient Verification

Certificate verification is at most polynomial in its size.

Generality

A wide variety of planning techniques can produce a certificate.
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Quis custodiet ipsos custodes?

Certificate must be verified by a verifier. But what if the verifier
has bugs?

» Verify the verifier!
Proof Systems

» Verify the verifier-verifier!
> .7

» At some point we need to trust something.

Good news: Verifiers are often simpler than the original algorithm.
— Verify the verifier with theorem provers.

Example: A Formally Verified Validator for Classical Planning
Problems and Solutions [Abdulaziz & Lammich, 2018]
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Natural Deduction Inference Rules

Inference rule

An inference rule | takes premises A1, ..., A, and concludes B:
» Proof systems are built on axioms and inference rules. A A
. e n

> axioms: tautology (AV —A) B

» inference rules: conclusion based on premises (if AA B then A)
» Hilbert-style systems try to express as much as possible in » Rules use placeholder variables and are universally true for all

axioms. instantiations.

» Natural deduction in contrast focuses on inference rules. » The correctness of rules can be shown in two ways:

> first proposed by Gerhard Genzen [Genzen 1935] > within the proof system using existing rules, or

» should more closely reflect our natural way of reasoning » outside of the proof system.

— Once proven correct, we can use rules purely syntactically.

The proof system presented here uses the natural deduction style. » Axioms are rules with no premises.

» Rules can also use and discard assumptions: For example, if
under assumption A we can prove B, we have shown A — B.
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1. Theoretical Foundations Proof Systems

Example Proof System

Example

Inference Rules:

o
Show o:

# statement justification

(1) o from B

(2) * from C with (1)

(3) O from A with (2) and (1)

(4) o from D with (3), (2) and (1)
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1. Theoretical Foundations

Unsolvability Proof System

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Unsolvability Proof System

18 / 38

First Certificate Attempt
How can we show that a planning task is unsolvable?

S

Inductive Certificate [E et al 2017]

An inductive certificate for a STRIPS planning task
M= (V,A l,G) is a set of states S with the following properties:

> les
> S contains no goal state
> S[A] C S, where S[A] = {5’ | s[a] = s’ for some a € A}
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1. Theoretical Foundations

How Planners Show Unsolvability

Unsolvability Proof System

preprocessing
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How Planners Show Unsolvability

heuristic search with dead-end pruning
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1. Theoretical Foundations

How Planners Show Unsolvability

» Uninteresting search space areas get pruned incrementally
» Later pruning steps can use knowledge from previous ones.

» Distilling these steps into a singular argument is difficult.

— Proof systems can capture this type of incremental reasoning.
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1. Theoretical Foundations Unsolvability Proof System

Proof System Objects

> state sets S represented as

» BDD

» (dual)-Horn formula
» 2CNF formula

» explicit enumeration
>

> action sets A represented as ID enumeration
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1. Theoretical Foundations

Types of Knowledge

Dead State

A state s is dead if no plan traverses s, i.e. there is no plan
m=1(a1,...,apy and 1 <i < nwith s =1[a1]...[a].

— captures idea of pruned states (in both directions)

statements in the proof system:
» S dead (all s € S dead)
» E C E’ (where E and E’ are sets of states or actions)

» unsolvable
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Inference Rules - Showing Deadness

Empty set Dead 0 dead ED
. S dead S’ dead
Union Dead eSaUS’ dead €a
S’ dead sCs
Subset Dead =
ubset Dea < dead
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1. Theoretical Foundations

Inference Rules - Showing Deadness

Unsolvability Proof System

Progression S[AJESUS S’ dead 5N S¢ dead
Goal S dead
|: / / |:

Progression SI[AJESUS _ S’ dead {BES PI
Initial S dead

Regression [A][SCSUS S’ dead SN S¢ dead
Goal S dead

!/ ! —

Regression [A]SESUS S’ dead {ncs -
Initial S dead
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1. Theoretical Foundations

Inference Rules - Showing Unsolvability

. . |
Conclusion Initial {1} dead
unsolvable
; dead
Conclusion Goal _Sg dead
unsolvable
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1. Theoretical Foundations

Inference Rules - Set Theory

Union Left

Intersection Right

Subset Union

Subset Intersection

Subset Transitivity

Eriksson, Roger, Helmert
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Unsolvability Proof System
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E/ C E//

(EUEC E”

ECFE
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EE E//
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ECFE
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El E E//
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Inference Rules - Progression and Regression Is this enough?

S[Alc s SA|CS
S[AUATC S

Action Union

How can we show S[A] C S or similar statements?

. e S[A|lC 5" S'CS » depends on planning task and contents of S
Progression Transitivity — ~  PT i . .
S'ACS” > requires semantic analysis
P set theory rules only syntactical
. . S[A|lC S’
Progression to Regression _—
[A]S'C S — new source of information: basic statements
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Basic Statements Soundness and Completeness
Given a STRIPS planning tasks M1 = (V, A I, G), there is an proof
in the proof system for I iff [T is unsolvable.
B1 ﬂ g C U L;a Xr  state set variable P 4
B2 (VAN ULy - (e by ool
R
B3 [Al(NXr) NN Lr € ULg (either Xg or Xg) Soundness: This follows from the correctness of the inference rules
B4 [r C Ly A action set and basic statements.
B5 AC A Completeness: Consider R, the set of states reachable from I.
N #  statement justification
. 1) 0 dead ED
» In B1-B3 all sets must be represented by the same formalism. §2g RUA]CRTUD B2
» Unions and intersections are bounded. (3) R"NScC® B1
n .
» We only support pro-/regression for set variables. (4) R NSg dead SD with (1) and (3)
_ _ (5) RM dead PG with (2), (1) and (4)
» B4 enables us to mix formalisms. (6) {I}CR" B1
(7) {I1} dead SD with (5) and (6)
(8) unsolvable Cl with (7)
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Efficient Verification
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1. Theoretical Foundations

Verifying Statements

The verifier needs to verify each step of the proof.
» inference rules
» universally true
» check if rule is applied corretly (syntax)
— easy to verify
» basic statements

> sets must be interpreted (semantic)
— depends on set representation formalism
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Formalisms & Operations

How can we analyze whether basic statements can be verified
efficiently?

@ check each formalism separately

@ check what operations a formalism R must support

» SE (sentential entailment): Given R-formulas ¢ and 1), test
whether ¢ = 1.

» ABC (bounded conjunction): Given R-formulas ¢ and ),
construct an R-formula representing ¢ A .

> toCNF (transform to CNF): Given R-formula ¢, construct a
CNF formula that is equivalent to ¢.

» ... [Darwiche & Marquis 2002]
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1. Theoretical Foundations

Efficient Verification of B1

To verify (Y Xr C |J X efficiently R must efficiently support:

NXel =0 INXgl=1 | [NXr] >1
cO CO, ABC
| i
|UXR‘ =0 toDNF
VA SE SE, ABC
1| [}
|UXR‘ =1 toDNF, IM
VA, vBC SE, vBC SE, ABC, vBC
IUX4| > 1| toCNF | toCNF, CE | toDNF, IM, VBC
toCNF, CE, ABC

» multiple rows indicate different possible options

» for B1: move negated literals to the “correct” side
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1. Theoretical Foundations

Efficient Verification of B1 - Example

NXrl=0 | NXe|=1 | [NXr[>1
e co CO, ABC
UXe =0 toDNF
.| VA SE SE, ABC
U Xel =1 toDNF, IM
VA, vBC SE, vBC SE, ABC, VBC
IUXg| >1 | toCNF toCNF, CE | toDNF, IM, VBC
toCNF, CE, ABC
Example

For sets S1 to Ss (all represented with R), the statement
51N Sy € S3U S4U S5 can be verified efficiently iff R supports

» SE (sentential entailment) and VBC(bounded disjunction), or
» toCNF (transform to CNF) and CE (clausal entailment).
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1. Theoretical Foundations

Concrete Formalisms

What do BDDs, (dual-)Horn formulas, 2CNF formulas and explicit
enumeration support?
» Basic statements B1-B3 are fully supported by all formalisms.
» Basic statement B4 between those formalisms is supported in
most cases with the following exceptions:
> R = g where R and R’ are a combination of BDD,
(dual-)Horn and 2CNF
> ©(dual—)Horn/2CNF = VBDD
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