
Certified Unsolvability in Classical Planning
1. Theoretical Foundations

Salomé Eriksson Gabriele Röger Malte Helmert

University of Basel, Switzerland

ICAPS 2020

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 1 / 38

Certified Unsolvability in Classical Planning
1. Theoretical Foundations

1.1 Introduction

1.2 Certifying Algorithms

1.3 Proof Systems

1.4 Unsolvability Proof System

1.5 Efficient Verification

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 2 / 38

1. Theoretical Foundations Introduction

Introduction

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 3 / 38

1. Theoretical Foundations Introduction

Goal

learn about:

I different levels of correctness guarantees

I unsolvability certificates for classical planning

I how to make your planner certifying

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 4 / 38

1. Theoretical Foundations Introduction

Target Audience

I familiar with classical planning

I optional: planner developer

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 5 / 38

1. Theoretical Foundations Introduction

About us

Salomé Gabi Malte

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 6 / 38

1. Theoretical Foundations Certifying Algorithms

Certifying Algorithms

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 7 / 38

1. Theoretical Foundations Certifying Algorithms

Motivation

I ISP wants to build antenna towers for 5G.
I antenna supplier:

I “You need at least x towers”
I shows calculations with a tool, if using less than x towers tool

says “unsolvable”

I ISP’s options:
I blindly trust the tool
I demand some form of correctness guarantee for their tool

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 8 / 38

1. Theoretical Foundations Certifying Algorithms

Levels of Verification

How can we verify the correctness of an algorithm?

1 theoretical: correctness proof in papers

2 implementation:

verification method verified inputs

unit test some predesignated inputs
certifying algorithms each input when it occurs
theorem provers all possible inputs

I Unit tests are easy to do, but it is also easy to miss bugs.
I Theorem provers are very expensive but offer highest guarantee

(tiny core which is checked very carefully).
I Certifying algorithms strike a balance between trust and effort.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 9 / 38

1. Theoretical Foundations Certifying Algorithms

Certifying Algorithms [McConnell et al. 2011]

“A certifying algorithm is an algorithm that produces, with each
output, a certificate or witness (easy-to-verify proof) that the
particular output has not been compromised by a bug.”

→ algorithm might still contain bug, but current output is correct

Example

Is CNF formula ϕ satisifiable?

I yes → provide satisfying assignment I
I no → provide UNSAT certificate (resolution, DRAT proof...)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 10 / 38

1. Theoretical Foundations Certifying Algorithms

Certifying Algorithms in Planning

task

Planner

“solvable”

plan

“unsolvable”

cert

verification tool

“valid”/“invalid”

plan validation tool

“valid”/“invalid”

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 11 / 38

1. Theoretical Foundations Certifying Algorithms

Guiding Properties

Soundness & Completeness

We can create a certificate for task Π iff Π is unsolvable.

Efficient Generation

Certificate creation incurs only polynomial overhead to the planner.

Efficient Verification

Certificate verification is at most polynomial in its size.

Generality

A wide variety of planning techniques can produce a certificate.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 12 / 38

1. Theoretical Foundations Certifying Algorithms

Quis custodiet ipsos custodes?

Certificate must be verified by a verifier. But what if the verifier
has bugs?

I Verify the verifier!

I Verify the verifier-verifier!

I . . . ?

I At some point we need to trust something.

Good news: Verifiers are often simpler than the original algorithm.
→ Verify the verifier with theorem provers.

Example: A Formally Verified Validator for Classical Planning
Problems and Solutions [Abdulaziz & Lammich, 2018]

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 13 / 38

1. Theoretical Foundations Proof Systems

Proof Systems

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 14 / 38

1. Theoretical Foundations Proof Systems

Natural Deduction

I Proof systems are built on axioms and inference rules.
I axioms: tautology (A ∨ ¬A)
I inference rules: conclusion based on premises (if A∧B then A)

I Hilbert-style systems try to express as much as possible in
axioms.

I Natural deduction in contrast focuses on inference rules.
I first proposed by Gerhard Genzen [Genzen 1935]
I should more closely reflect our natural way of reasoning

The proof system presented here uses the natural deduction style.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 15 / 38

1. Theoretical Foundations Proof Systems

Inference Rules

Inference rule

An inference rule I takes premises A1, . . . , An and concludes B:
A1 . . . An

I
B

I Rules use placeholder variables and are universally true for all
instantiations.

I The correctness of rules can be shown in two ways:
I within the proof system using existing rules, or
I outside of the proof system.

→ Once proven correct, we can use rules purely syntactically.

I Axioms are rules with no premises.

I Rules can also use and discard assumptions: For example, if
under assumption A we can prove B, we have shown A→ B.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 16 / 38

1. Theoretical Foundations Proof Systems

Example Proof System

Example

Inference Rules:
? �

A�
B� �

C?
� ? �

D◦

Show ◦:
statement justification

(1) � from B
(2) ? from C with (1)
(3) � from A with (2) and (1)
(4) ◦ from D with (3), (2) and (1)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 17 / 38

1. Theoretical Foundations Unsolvability Proof System

Unsolvability Proof System

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 18 / 38

1. Theoretical Foundations Unsolvability Proof System

First Certificate Attempt

How can we show that a planning task is unsolvable?

S

I G

Inductive Certificate [E et al 2017]

An inductive certificate for a STRIPS planning task
Π = 〈V,A, I,G〉 is a set of states S with the following properties:

I I ∈ S

I S contains no goal state

I S [A] ⊆ S , where S [A] = {s ′ | s[a] = s ′ for some a ∈ A}
Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 19 / 38

1. Theoretical Foundations Unsolvability Proof System

How Planners Show Unsolvability

I G

preprocessing

I Uninteresting search space areas get pruned incrementally

I Later pruning steps can use knowledge from previous ones.

I Distilling these steps into a singular argument is difficult.

→ Proof systems can capture this type of incremental reasoning.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 20 / 38

1. Theoretical Foundations Unsolvability Proof System

How Planners Show Unsolvability

I G

heuristic search with dead-end pruning

I Uninteresting search space areas get pruned incrementally

I Later pruning steps can use knowledge from previous ones.

I Distilling these steps into a singular argument is difficult.

→ Proof systems can capture this type of incremental reasoning.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 21 / 38

1. Theoretical Foundations Unsolvability Proof System

How Planners Show Unsolvability

I G

I Uninteresting search space areas get pruned incrementally

I Later pruning steps can use knowledge from previous ones.

I Distilling these steps into a singular argument is difficult.

→ Proof systems can capture this type of incremental reasoning.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 22 / 38

1. Theoretical Foundations Unsolvability Proof System

Proof System Objects

I state sets S represented as
I BDD
I (dual)-Horn formula
I 2CNF formula
I explicit enumeration
I . . .

I action sets A represented as ID enumeration

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 23 / 38

1. Theoretical Foundations Unsolvability Proof System

Types of Knowledge

Dead State

A state s is dead if no plan traverses s, i.e. there is no plan
π = 〈a1, . . . , an〉 and 1 ≤ i ≤ n with s = I[a1] . . . [ai].

→ captures idea of pruned states (in both directions)

statements in the proof system:

I S dead (all s ∈ S dead)

I E v E ′ (where E and E ′ are sets of states or actions)

I unsolvable

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 24 / 38

1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Showing Deadness

Empty set Dead ED∅ dead

Union Dead S dead S ′ dead
UD

S ∪ S ′ dead

Subset Dead
S ′ dead S v S ′

SD
S dead

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 25 / 38

1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Showing Deadness

Progression
Goal

S [A] v S ∪ S ′ S ′ dead S ∩ SG dead
PG

S dead

Progression
Initial

S [A] v S ∪ S ′ S ′ dead {I} v S
PI

S dead

Regression
Goal

[A]S v S ∪ S ′ S ′ dead S ∩ SG dead
RG

S dead

Regression
Initial

[A]S v S ∪ S ′ S ′ dead {I} v S
RI

S dead

S S ′
SG

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 26 / 38

1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Showing Unsolvability

Conclusion Initial
{I} dead

CI
unsolvable

Conclusion Goal
SG dead

CG
unsolvable

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 27 / 38

1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Set Theory

Union Left UL
E v (E ′ ∪ E)

Intersection Right IR
(E ∩ E ′) v E

Subset Union
E v E ′′ E ′ v E ′′

SU
(E ∪ E ′) v E ′′

Subset Intersection
E v E ′ E v E ′′

SI
E v (E ′ ∩ E ′′)

Subset Transitivity
E v E ′ E ′ v E ′′

ST
E v E ′′

. . .

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 28 / 38

1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Progression and Regression

Action Union
S [A] v S ′ S [A′] v S ′

AU
S [A ∪ A′] v S ′

Progression Transitivity
S [A] v S ′′ S ′ v S

PT
S ′[A] v S ′′

Progression to Regression
S [A] v S ′

PR
[A]S ′ v S

. . .

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 29 / 38

1. Theoretical Foundations Unsolvability Proof System

Is this enough?

How can we show S [A] ⊆ S or similar statements?

I depends on planning task and contents of S

I requires semantic analysis

I set theory rules only syntactical

→ new source of information: basic statements

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 30 / 38

1. Theoretical Foundations Unsolvability Proof System

Basic Statements

B1
⋂
LR ⊆

⋃
L′R

B2 (
⋂
XR)[A] ∩

⋂
LR ⊆

⋃
L′R

B3 [A](
⋂
XR) ∩

⋂
LR ⊆

⋃
L′R

B4 LR ⊆ L′R′

B5 A ⊆ A′

XR state set variable
(represented by formalism R)

LR state set literal
(either XR or XR)

A action set

I In B1-B3 all sets must be represented by the same formalism.

I Unions and intersections are bounded.

I We only support pro-/regression for set variables.

I B4 enables us to mix formalisms.

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 31 / 38

1. Theoretical Foundations Unsolvability Proof System

Soundness and Completeness

Given a STRIPS planning tasks Π = 〈V,A, I,G〉, there is an proof
in the proof system for Π iff Π is unsolvable.

Proof

Soundness: This follows from the correctness of the inference rules
and basic statements.
Completeness: Consider RΠ, the set of states reachable from I.

statement justification
(1) ∅ dead ED
(2) RΠ[A] v RΠ ∪ ∅ B2
(3) RΠ ∩ SG v ∅ B1
(4) RΠ ∩ SG dead SD with (1) and (3)
(5) RΠ dead PG with (2), (1) and (4)
(6) {I} v RΠ B1
(7) {I} dead SD with (5) and (6)
(8) unsolvable CI with (7)

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 32 / 38

1. Theoretical Foundations Efficient Verification

Efficient Verification

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 33 / 38

1. Theoretical Foundations Efficient Verification

Verifying Statements

The verifier needs to verify each step of the proof.
I inference rules

I universally true
I check if rule is applied corretly (syntax)
→ easy to verify

I basic statements
I sets must be interpreted (semantic)
→ depends on set representation formalism

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 34 / 38

1. Theoretical Foundations Efficient Verification

Formalisms & Operations

How can we analyze whether basic statements can be verified
efficiently?

1 check each formalism separately
2 check what operations a formalism R must support

I SE (sentential entailment): Given R-formulas ϕ and ψ, test
whether ϕ |= ψ.

I ∧BC (bounded conjunction): Given R-formulas ϕ and ψ,
construct an R-formula representing ϕ ∧ ψ.

I toCNF (transform to CNF): Given R-formula ϕ, construct a
CNF formula that is equivalent to ϕ.

I . . . [Darwiche & Marquis 2002]

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 35 / 38

1. Theoretical Foundations Efficient Verification

Efficient Verification of B1

To verify
⋂
XR ⊆

⋃
X ′
R efficiently R must efficiently support:

|
⋂
XR| = 0 |

⋂
XR| = 1 |

⋂
XR| > 1

|
⋃
X ′
R| = 0

CO CO, ∧BC
toDNF

|
⋃
X ′
R| = 1

VA SE SE, ∧BC
toDNF, IM

|
⋃
X ′
R| > 1

VA, ∨BC SE, ∨BC SE, ∧BC, ∨BC
toCNF toCNF, CE toDNF, IM, ∨BC

toCNF, CE, ∧BC

I multiple rows indicate different possible options

I for B1: move negated literals to the “correct” side

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 36 / 38

1. Theoretical Foundations Efficient Verification

Efficient Verification of B1 - Example

|
⋂

XR| = 0 |
⋂

XR| = 1 |
⋂

XR| > 1

|
⋃

X ′
R| = 0

CO CO, ∧BC
toDNF

|
⋃

X ′
R| = 1

VA SE SE, ∧BC
toDNF, IM

|
⋃

X ′
R| > 1

VA, ∨BC SE, ∨BC SE, ∧BC, ∨BC
toCNF toCNF, CE toDNF, IM, ∨BC

toCNF, CE, ∧BC

Example

For sets S1 to S5 (all represented with R), the statement
S1 ∩ S2 ⊆ S3 ∪ S4 ∪ S5 can be verified efficiently iff R supports

I SE (sentential entailment) and ∨BC(bounded disjunction), or

I toCNF (transform to CNF) and CE (clausal entailment).

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 37 / 38

1. Theoretical Foundations Efficient Verification

Concrete Formalisms

What do BDDs, (dual-)Horn formulas, 2CNF formulas and explicit
enumeration support?

I Basic statements B1-B3 are fully supported by all formalisms.
I Basic statement B4 between those formalisms is supported in

most cases with the following exceptions:
I ϕR |= ¬ψ′R where R and R′ are a combination of BDD,

(dual-)Horn and 2CNF
I ϕ(dual−)Horn/2CNF |= ψBDD

Eriksson, Röger, Helmert Certified Unsolvability in Classical Planning 38 / 38

	Introduction
	

	Certifying Algorithms
	

	Proof Systems
	

	Unsolvability Proof System
	

	Efficient Verification
	

