Certified Unsolvability in Classical Planning

1. Theoretical Foundations

Salomé Eriksson Gabriele Roger Malte Helmert

University of Basel, Switzerland

Certified Unsolvability in Classical Planning
1. Theoretical Foundations

1.1 Introduction

1.2 Certifying Algorithms

1.3 Proof Systems

1.4 Unsolvability Proof System

1.5 Efficient Verification

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 1/38
1. Theoretical Foundations Introduction
Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 3 /38

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 2 /38
1. Theoretical Foundations Introduction
Goal
learn about:

> different levels of correctness guarantees
» unsolvability certificates for classical planning

» how to make your planner certifying

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 4 /38

1. Theoretical Foundations

Target Audience

» familiar with classical planning

» optional: planner developer

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Introduction

5 /38

1. Theoretical Foundations Introduction

About us

Salomé Gabi

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

6 /38

1. Theoretical Foundations

Certifying Algorithms

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Certifying Algorithms

7 /38

1. Theoretical Foundations

Motivation

» |SP wants to build antenna towers for 5G.
» antenna supplier:
> “You need at least x towers”
» shows calculations with a tool, if using less than x towers tool
says “unsolvable”
» ISP’s options:

» blindly trust the tool
» demand some form of correctness guarantee for their tool

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Certifying Algorithms

8 /38

1. Theoretical Foundations Certifying Algorithms

Levels of Verification

How can we verify the correctness of an algorithm?
@ theoretical: correctness proof in papers
@ implementation:
verification method verified inputs
unit test some predesignated inputs

certifying algorithms each input when it occurs
theorem provers all possible inputs

» Unit tests are easy to do, but it is also easy to miss bugs.

» Theorem provers are very expensive but offer highest guarantee
(tiny core which is checked very carefully).

» Certifying algorithms strike a balance between trust and effort.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 9 /38

1. Theoretical Foundations

Certifying Algorithms [McConnell et al. 2011]

Certifying Algorithms

“A certifying algorithm is an algorithm that produces, with each
output, a certificate or witness (easy-to-verify proof) that the
particular output has not been compromised by a bug.”

— algorithm might still contain bug, but current output is correct

Example
Is CNF formula ¢ satisifiable?
» yes — provide satisfying assignment Z
» no — provide UNSAT certificate (resolution, DRAT proof...)

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 10 / 38

1. Theoretical Foundations Certifying Algorithms

Certifying Algorithms in Planning

task

T

Planner ‘ plan validation tool ‘
/ !

\

’ verification tool ‘

!

/

“valid" / “invalid” " . " “valid” / “invalid"
unsolvable” “solvable
cert plan
Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 11 / 38

1. Theoretical Foundations Certifying Algorithms

Guiding Properties
Soundness & Completeness

We can create a certificate for task I iff I is unsolvable.

Efficient Generation

Certificate creation incurs only polynomial overhead to the planner.

Efficient Verification

Certificate verification is at most polynomial in its size.

Generality

A wide variety of planning techniques can produce a certificate.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 12 / 38

1. Theoretical Foundations Certifying Algorithms 1. Theoretical Foundations Proof Systems

Quis custodiet ipsos custodes?

Certificate must be verified by a verifier. But what if the verifier
has bugs?

» Verify the verifier!
Proof Systems

» Verify the verifier-verifier!
> .7

» At some point we need to trust something.

Good news: Verifiers are often simpler than the original algorithm.
— Verify the verifier with theorem provers.

Example: A Formally Verified Validator for Classical Planning
Problems and Solutions [Abdulaziz & Lammich, 2018]

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 13 / 38 Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 14 / 38
1. Theoretical Foundations Proof Systems 1. Theoretical Foundations Proof Systems
Natural Deduction Inference Rules

Inference rule

An inference rule | takes premises A1, ..., A, and concludes B:
» Proof systems are built on axioms and inference rules. A A
. e n

> axioms: tautology (AV —A) B

» inference rules: conclusion based on premises (if AA B then A)
» Hilbert-style systems try to express as much as possible in » Rules use placeholder variables and are universally true for all

axioms. instantiations.

» Natural deduction in contrast focuses on inference rules. » The correctness of rules can be shown in two ways:

> first proposed by Gerhard Genzen [Genzen 1935] > within the proof system using existing rules, or

» should more closely reflect our natural way of reasoning » outside of the proof system.

— Once proven correct, we can use rules purely syntactically.

The proof system presented here uses the natural deduction style. » Axioms are rules with no premises.

» Rules can also use and discard assumptions: For example, if
under assumption A we can prove B, we have shown A — B.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 15 / 38 Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 16 / 38

1. Theoretical Foundations Proof Systems

Example Proof System

Example

Inference Rules:

o
Show o:

statement justification

(1) o from B

(2) * from C with (1)

(3) O from A with (2) and (1)

(4) o from D with (3), (2) and (1)

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 17 / 38

1. Theoretical Foundations Unsolvability Proof System

1. Theoretical Foundations

Unsolvability Proof System

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Unsolvability Proof System

18 / 38

First Certificate Attempt
How can we show that a planning task is unsolvable?

S

Inductive Certificate [E et al 2017]

An inductive certificate for a STRIPS planning task
M= (V,A l,G) is a set of states S with the following properties:

> les
> S contains no goal state
> S[A] C S, where S[A] = {5’ | s[a] = s’ for some a € A}

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 19 / 38

1. Theoretical Foundations

How Planners Show Unsolvability

Unsolvability Proof System

preprocessing

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

20 / 38

1. Theoretical Foundations Unsolvability Proof System

How Planners Show Unsolvability

heuristic search with dead-end pruning

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 21 / 38

1. Theoretical Foundations

How Planners Show Unsolvability

» Uninteresting search space areas get pruned incrementally
» Later pruning steps can use knowledge from previous ones.

» Distilling these steps into a singular argument is difficult.

— Proof systems can capture this type of incremental reasoning.

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Unsolvability Proof System

22 / 38

1. Theoretical Foundations Unsolvability Proof System

Proof System Objects

> state sets S represented as

» BDD

» (dual)-Horn formula
» 2CNF formula

» explicit enumeration
>

> action sets A represented as ID enumeration

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 23 / 38

1. Theoretical Foundations

Types of Knowledge

Dead State

A state s is dead if no plan traverses s, i.e. there is no plan
m=1(a1,...,apy and 1 <i < nwith s =1[a1]...[a].

— captures idea of pruned states (in both directions)

statements in the proof system:
» S dead (all s € S dead)
» E C E’ (where E and E’ are sets of states or actions)

» unsolvable

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Unsolvability Proof System

24 / 38

1. Theoretical Foundations

Inference Rules - Showing Deadness

Empty set Dead 0 dead ED
. S dead S’ dead
Union Dead eSaUS’ dead €a
S’ dead sCs
Subset Dead =
ubset Dea < dead

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Unsolvability Proof System

ub

SD

25 / 38

1. Theoretical Foundations

Inference Rules - Showing Deadness

Unsolvability Proof System

Progression S[AJESUS S’ dead 5N S¢ dead
Goal S dead
|: / / |:

Progression SI[AJESUS _ S’ dead {BES PI
Initial S dead

Regression [A][SCSUS S’ dead SN S¢ dead
Goal S dead

!/ ! —

Regression [A]SESUS S’ dead {ncs -
Initial S dead

Eriksson, Roger, Helmert

Certified Unsolvability in Classical Planning

26 / 38

1. Theoretical Foundations

Inference Rules - Showing Unsolvability

. . |
Conclusion Initial {1} dead
unsolvable
; dead
Conclusion Goal _Sg dead
unsolvable

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Unsolvability Proof System

27 / 38

1. Theoretical Foundations

Inference Rules - Set Theory

Union Left

Intersection Right

Subset Union

Subset Intersection

Subset Transitivity

Eriksson, Roger, Helmert

EC (E'UE)

(ENENCE

EEE”

Unsolvability Proof System

UL

IR

E/ C E//

(EUEC E”

ECFE

SuU

EE E//

EC (E'NE"

ECFE

SI

El E E//

EE E//

Certified Unsolvability in Classical Planning

ST

28 / 38

1. Theoretical Foundations Unsolvability Proof System 1. Theoretical Foundations Unsolvability Proof System

Inference Rules - Progression and Regression Is this enough?

S[Alc s SA|CS
S[AUATC S

Action Union

How can we show S[A] C S or similar statements?

. e S[A|lC 5" S'CS » depends on planning task and contents of S
Progression Transitivity — ~ PT i . .
S'ACS” > requires semantic analysis
P set theory rules only syntactical
. . S[A|lC S’
Progression to Regression _—
[A]S'C S — new source of information: basic statements
Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 29 / 38 Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 30 / 38
1. Theoretical Foundations Unsolvability Proof System 1. Theoretical Foundations Unsolvability Proof System
Basic Statements Soundness and Completeness
Given a STRIPS planning tasks M1 = (V, A I, G), there is an proof
in the proof system for I iff [T is unsolvable.
B1 ﬂ g C U L;a Xr state set variable P 4
B2 (VAN ULy - (e by ool
R
B3 [Al(NXr) NN Lr € ULg (either Xg or Xg) Soundness: This follows from the correctness of the inference rules
B4 [r C Ly A action set and basic statements.
B5 AC A Completeness: Consider R, the set of states reachable from I.
N # statement justification
. 1) 0 dead ED
» In B1-B3 all sets must be represented by the same formalism. §2g RUA]CRTUD B2
» Unions and intersections are bounded. (3) R"NScC® B1
n .
» We only support pro-/regression for set variables. (4) R NSg dead SD with (1) and (3)
_ _ (5) RM dead PG with (2), (1) and (4)
» B4 enables us to mix formalisms. (6) {I}CR" B1
(7) {I1} dead SD with (5) and (6)
(8) unsolvable Cl with (7)

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 31 /38 Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 32 /38

1. Theoretical Foundations

Efficient Verification

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Efficient Verification

33 /38

1. Theoretical Foundations

Verifying Statements

The verifier needs to verify each step of the proof.
» inference rules
» universally true
» check if rule is applied corretly (syntax)
— easy to verify
» basic statements

> sets must be interpreted (semantic)
— depends on set representation formalism

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Efficient Verification

34 / 38

1. Theoretical Foundations

Formalisms & Operations

How can we analyze whether basic statements can be verified
efficiently?

@ check each formalism separately

@ check what operations a formalism R must support

» SE (sentential entailment): Given R-formulas ¢ and 1), test
whether ¢ = 1.

» ABC (bounded conjunction): Given R-formulas ¢ and),
construct an R-formula representing ¢ A .

> toCNF (transform to CNF): Given R-formula ¢, construct a
CNF formula that is equivalent to ¢.

» ... [Darwiche & Marquis 2002]

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Efficient Verification

35 /38

1. Theoretical Foundations

Efficient Verification of B1

To verify (Y Xr C |J X efficiently R must efficiently support:

NXel =0 INXgl=1 | [NXr] >1
cO CO, ABC
| i
|UXR‘ =0 toDNF
VA SE SE, ABC
1| [}
|UXR‘ =1 toDNF, IM
VA, vBC SE, vBC SE, ABC, vBC
IUX4| > 1| toCNF | toCNF, CE | toDNF, IM, VBC
toCNF, CE, ABC

» multiple rows indicate different possible options

» for B1: move negated literals to the “correct” side

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

Efficient Verification

36 / 38

Efficient Verification

1. Theoretical Foundations

Efficient Verification of B1 - Example

NXrl=0 | NXe|=1 | [NXr[>1
e co CO, ABC
UXe =0 toDNF
.| VA SE SE, ABC
U Xel =1 toDNF, IM
VA, vBC SE, vBC SE, ABC, VBC
IUXg| >1 | toCNF toCNF, CE | toDNF, IM, VBC
toCNF, CE, ABC
Example

For sets S1 to Ss (all represented with R), the statement
51N Sy € S3U S4U S5 can be verified efficiently iff R supports

» SE (sentential entailment) and VBC(bounded disjunction), or
» toCNF (transform to CNF) and CE (clausal entailment).

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning

37

38

Efficient Verification

1. Theoretical Foundations

Concrete Formalisms

What do BDDs, (dual-)Horn formulas, 2CNF formulas and explicit
enumeration support?
» Basic statements B1-B3 are fully supported by all formalisms.
» Basic statement B4 between those formalisms is supported in
most cases with the following exceptions:
> R = g where R and R’ are a combination of BDD,
(dual-)Horn and 2CNF
> ©(dual—)Horn/2CNF = VBDD

Eriksson, Roger, Helmert Certified Unsolvability in Classical Planning 38

38

	Introduction
	

	Certifying Algorithms
	

	Proof Systems
	

	Unsolvability Proof System
	

	Efficient Verification
	

