

LP-based Heuristics for Cost-optimal Classical Planning

2. Cost Partitioning

Florian Pommerening Gabriele Röger Malte Helmert

ICAPS 2015 Tutorial

June 7, 2015

Cost Partitioning

●○○

Optimal Cost Partitioning

○○○○○○○○○○

General Cost Partitioning

○○○○○

Cost Partitioning

Cost Partitioning

Idea 1: Cost Partitioning

- create **copies** Π_1, \dots, Π_n of planning task Π
- each has its own **operator cost function** $cost_i : \mathcal{O} \rightarrow \mathbb{R}_0^+$ (otherwise identical to Π)
- for all o : require $cost_1(o) + \dots + cost_n(o) \leq cost(o)$
 - ↝ sum of solution costs in copies is **admissible heuristic**:
$$h_{\Pi_1}^* + \dots + h_{\Pi_n}^* \leq h_{\Pi}^*$$

Cost Partitioning

- for admissible heuristics h_1, \dots, h_n ,
$$h(s) = h_{1,\Pi_1}(s) + \dots + h_{n,\Pi_n}(s)$$
is an **admissible** estimate
- $h(s)$ can be **better or worse** than any $h_{i,\Pi}(s)$
→ depending on cost partitioning
- strategies for defining cost-functions
 - uniform: $\text{cost}_i(o) = \text{cost}(o)/n$
 - zero-one: full operator cost in one copy, zero in all others
 - ...

Can we find an **optimal** cost partitioning?

Cost Partitioning
ooo

Optimal Cost Partitioning
●oooooooooo

General Cost Partitioning
oooooo

Optimal Cost Partitioning

Optimal Cost Partitioning

Optimal Cost Partitioning with LPs

- Use variables for cost of each operator in each task copy
- Express heuristic values with linear constraints
- Maximize sum of heuristic values subject to these constraints

LPs known for

- abstraction heuristics
- landmark heuristic

Optimal Cost Partitioning for Abstractions

Abstractions

- Simplified versions of the planning task, e.g. projections
- Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?

Optimal Cost Partitioning for Abstractions

Abstractions

- Simplified versions of the planning task, e.g. projections
- Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?

~~ Shortest path problem in abstract transition system

LP for Shortest Path in State Space

Variables

Distance_s for each state s ,
GoalDist

Objective

Maximize GoalDist

Subject to

$\text{Distance}_{s_i} = 0$ for the initial state s_i

$\text{Distance}_{s'} \leq \text{Distance}_s + \text{cost}(o)$ for all transition $s \xrightarrow{o} s'$

$\text{GoalDist} \leq \text{Distance}_{s_*}$ for all goal states s_*

Optimal Cost Partitioning for Abstractions I

Variables

For each abstraction α :

Distance $^\alpha_s$ for each abstract state s ,
cost $^\alpha_o$ for each operator o ,
GoalDist $^\alpha$

Objective

Maximize \sum_α GoalDist $^\alpha$

...

Optimal Cost Partitioning for Abstractions II

Subject to

for all operators o

$$\sum_{\alpha} \text{Cost}_o^{\alpha} \leq \text{cost}(o)$$

$$\text{Cost}_o^{\alpha} \geq 0 \quad \text{for all abstractions } \alpha$$

and for all abstractions α

$$\text{Distance}_{s_i}^{\alpha} = 0 \quad \text{for the abstract initial state } s_i$$

$$\text{Distance}_{s'}^{\alpha} \leq \text{Distance}_s^{\alpha} + \text{Cost}_o^{\alpha} \quad \text{for all transition } s \xrightarrow{o} s'$$

$$\text{GoalDist}^{\alpha} \leq \text{Distance}_{s_*}^{\alpha} \quad \text{for all abstract goal states } s_*$$

Optimal Cost Partitioning for Landmarks

Disjunctive action landmark

- Set of operators
- Every plan uses at least one of them
- Landmark cost = cost of cheapest operator

Optimal Cost Partitioning for Landmarks

Variables

Cost_L for each landmark L

Objective

Maximize $\sum_L \text{Cost}_L$

Subject to

$$\sum_{L: o \in L} \text{Cost}_L \leq \text{cost}(o) \quad \text{for all operators } o$$

$$\text{Cost}_L \geq 0 \quad \text{for all landmarks } L$$

Optimal Cost Partitioning for Landmarks (Dual view)

Variables

Occurrences_o for each operator o

Objective

Minimize $\sum_o \text{Occurrences}_o \cdot \text{cost}(o)$

Subject to

$$\sum_{o \in L} \text{Occurrences}_o \geq 1 \text{ for all landmarks } L$$
$$\text{Occurrences}_o \geq 0 \text{ for all operators } o$$

Caution

A word of warning

- optimization for every state gives **best-possible** cost partitioning
- but **takes time**

Better heuristic guidance often does not outweigh the overhead.

Cost Partitioning
ooo

Optimal Cost Partitioning
oooooooooooo

General Cost Partitioning
●ooooo

General Cost Partitioning

General Cost Partitioning

Cost functions **usually non-negative**

- We tacitly also required this for task copies
- Makes intuitively sense: original costs are non-negative
- But: not necessary for cost-partitioning!

General Cost Partitioning

General Cost Partitioning

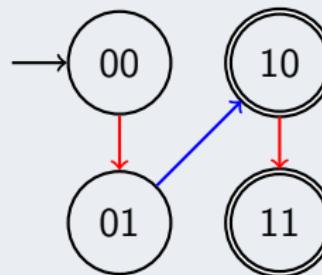
- Create copies Π_1, \dots, Π_n of planning task Π
- each has its own operator cost function $cost_i : \mathcal{O} \rightarrow \mathbb{R}$ (otherwise identical to Π)
- for all o : require $cost_1(o) + \dots + cost_n(o) \leq cost(o)$

↝ sum of solution costs in copies is admissible heuristic:

$$h_{\Pi_1}^* + \dots + h_{\Pi_n}^* \leq h_{\Pi}^*$$

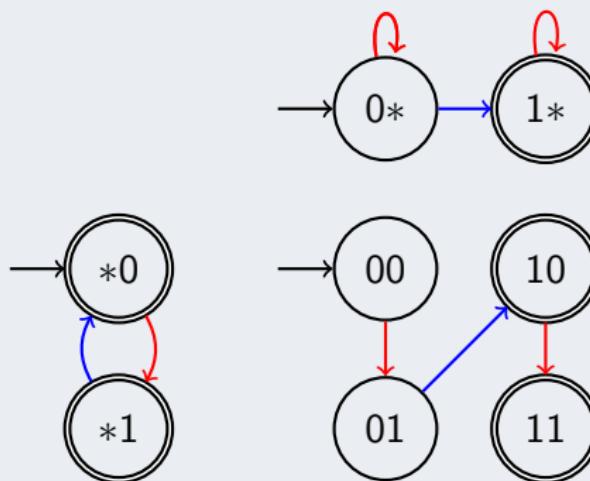
General Cost Partitioning: Example

Example



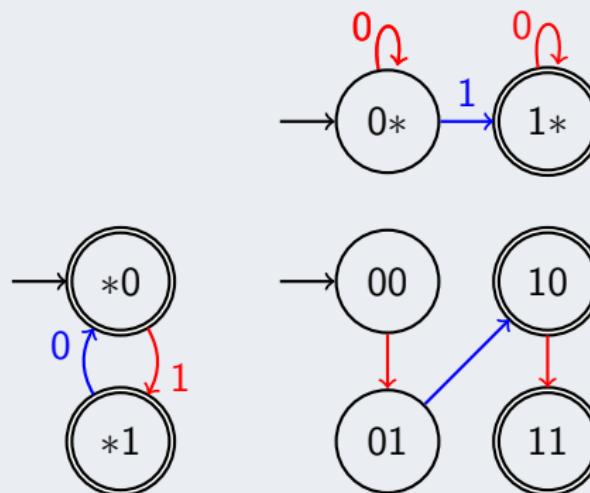
General Cost Partitioning: Example

Example



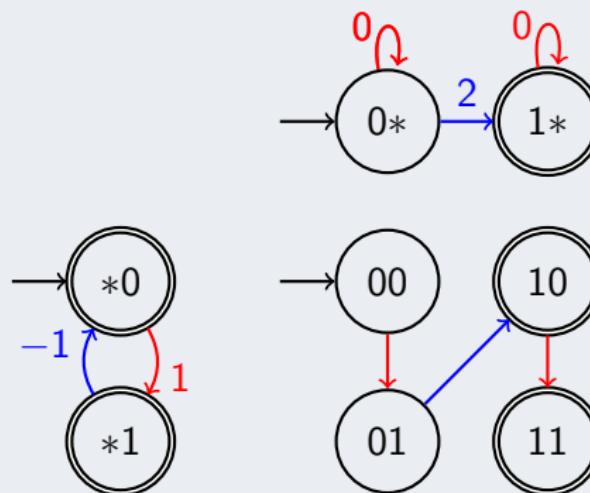
General Cost Partitioning: Example

Example

Heuristic value: $0 + 1 = 1$

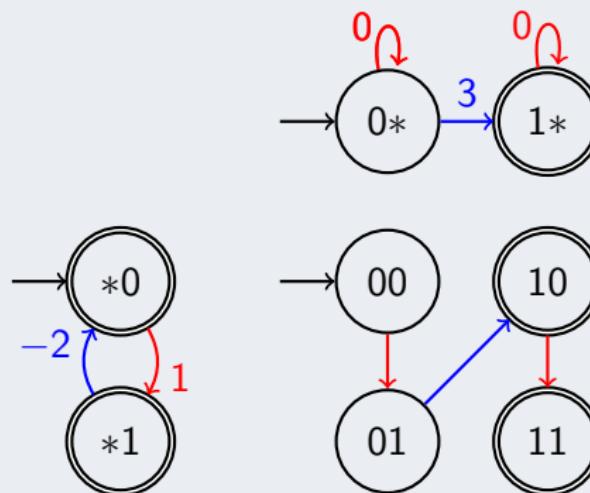
General Cost Partitioning: Example

Example

Heuristic value: $0 + 2 = 2$

General Cost Partitioning: Example

Example



Heuristic value: $-\infty + 3 = -\infty$

General Cost Partitioning: Conclusion

- More powerful than non-negative cost partitioning
- Optimal general cost partitioning:
omit constraints to non-negative cost variables
 - optimal cost partitioning maximizes objective value
 - removing constraints can only increase heuristic value
- Next section: connection to operator counting

Tutorial Structure

- ① ~~Introduction and Overview~~
- ② ~~Cost Partitioning~~
- ③ Operator Counting
- ④ Potential Heuristics