

LP-based Heuristics for Cost-optimal Classical Planning

1. Introduction and Overview

Florian Pommerening Gabriele Röger Malte Helmert

ICAPS 2015 Tutorial

June 7, 2015

About This Tutorial

About Us

Florian

Gabi

Malte

Questions? Don't be shy to talk to us and/or email!

- florian.pommerening@unibas.ch
- gabriele.roeger@unibas.ch
- malte.helmert@unibas.ch

Target Audience

Target Audience

Ideally:

- You know what classical planning is.
keywords: STRIPS, SAS⁺
- You know what planning as heuristic search is.
keywords: A*, admissible heuristic, consistent heuristic
- You are familiar with major concepts of planning heuristics.
keywords: abstraction, landmarks, delete relaxation

Please ask questions at any time!

Tutorial Topic

Dissecting the Title

LP-based Heuristics for Cost-optimal Classical Planning

Tutorial Topic

Dissecting the Title

LP-based Heuristics for Cost-optimal **Classical Planning**

- Find path from initial to goal state
in declaratively specified state space

Tutorial Topic

Dissecting the Title

LP-based Heuristics for **Cost-optimal** Classical Planning

- Find path from initial to goal state in declaratively specified state space
- **with minimal total cost**

Tutorial Topic

Dissecting the Title

LP-based **Heuristics** for Cost-optimal Classical Planning

- Find path from initial to goal state in declaratively specified state space
- with minimal total cost
- using heuristic search algorithms

Tutorial Topic

Dissecting the Title

LP-based Heuristics for Cost-optimal Classical Planning

- Find path from initial to goal state in declaratively specified state space
- with minimal total cost
- using heuristic search algorithms
- with cost estimates based on linear programming.

Tutorial Topic

Dissecting the Title

LP-based Heuristics for Cost-optimal Classical Planning

- Find path from initial to goal state in declaratively specified state space
- with minimal total cost
- using heuristic search algorithms
- with cost estimates based on linear programming.

Background: Linear Programs

Linear Programs and Integer Programs

Linear Program

A **linear program (LP)** consists of:

- a finite set of **real-valued variables** V
- a finite set of **linear inequalities** (constraints) over V
- an **objective function**, which is a linear combination of V
- which should be **minimized** or **maximized**.

Integer program (IP): ditto, but with **integer-valued** variables

Linear Program: Example

Example:

maximize $2x - 3y + z$ subject to

$$\begin{aligned} x + 2y + z &\leq 10 \\ x - z &\leq 0 \end{aligned}$$

$$x \geq 0, \quad y \geq 0, \quad z \geq 0$$

~~> unique optimal solution:

$$x = 5, y = 0, z = 5 \text{ (objective value 15)}$$

Solving Linear Programs and Integer Programs

Complexity:

- LP solving is a **polynomial-time** problem.
- Finding solutions for IPs is **NP-complete**.

Common idea:

- Approximate IP solution with corresponding LP
(**LP relaxation**).

Some LP Theory: Duality

Some LP theory: Every LP has an alternative view (its **dual**).

- roughly: variables and constraints swap roles
- dual of maximization LP is minimization LP and vice versa
- same objective value if one exists
- dual of dual: original LP

Three Key Ideas in This Tutorial

Cost Partitioning

Idea 1: Cost Partitioning

- create **copies** Π_1, \dots, Π_n of planning task Π
- each has its own **operator cost function** $cost$;
(otherwise identical to Π)
- for all o : require $cost_1(o) + \dots + cost_n(o) \leq cost(o)$

↝ sum of solution costs in copies is **admissible heuristic**:

$$h_{\Pi_1}^* + \dots + h_{\Pi_n}^* \leq h_{\Pi}^*$$

Motivation:

- method for obtaining additive admissible heuristics
- very general and powerful

Operator Counting Constraints

Idea 2: Operator Counting Constraints

- **linear constraints** whose variables denote **number of occurrences** of a given operator
- must be satisfied by every plan that solves the task

Examples:

- $Y_{o_1} + Y_{o_2} \geq 1$ "must use o_1 or o_2 at least once"
- $Y_{o_1} - Y_{o_3} \leq 0$ "cannot use o_1 more often than o_3 "

Motivation:

- declarative way to **represent knowledge** about solutions
- allows **reasoning about solutions** to derive heuristic estimates

Potential Heuristics

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

- Define simple numerical **state features** f_1, \dots, f_n .
- Consider heuristics that are **linear combinations** of features:

$$h(s) = w_1 f_1(s) + \dots + w_n f_n(s)$$

with weights (**potentials**) $w_i \in \mathbb{R}$

- Find potentials for which h is admissible and well-informed.

Motivation:

- **declarative approach** to heuristic design
- heuristic **very fast to compute** if features are

Connections

Three unrelated ideas?

- No! It turns out they are closely connected.

Tutorial Structure

- 1 Introduction and Overview
- 2 Cost Partitioning
- 3 Operator Counting
- 4 Potential Heuristics