Latest Trends in Abstraction Heuristics for Classical Planning

3. Merge-and-Shrink Abstractions

Malte Helmert Jendrik Seipp Silvan Sievers
ICAPS 2015 Tutorial
June 7, 2015

Merge-and-Shrink Algorithm

Merge-and-Shrink Abstractions

- Main idea:
- PDBs: perfectly reflect some state variables
- M\&S: Reflect all state variables in a potentially lossy way
- Theoretically represent arbitrary abstractions of SAS ${ }^{+}$tasks
- Usage as heuristics:
- Not discussed in this talk
- Talk at main conference about representational power of merge-and-shrink (Helmert et al., Thursday)

Running Example

Example (one package, two trucks)

Consider the unit-cost SAS^{+}planning task $\left\langle V, O, s_{0}, s_{\star}\right\rangle$ with:

- $V=\left\{p, t_{\mathrm{A}}, t_{\mathrm{B}}\right\}$
- $\operatorname{dom}(p)=\{\mathrm{L}, \mathrm{R}, \mathrm{A}, \mathrm{B}\}$ and $\operatorname{dom}\left(t_{\mathrm{A}}\right)=\operatorname{dom}\left(t_{\mathrm{B}}\right)=\{\mathrm{L}, \mathrm{R}\}$
- $s_{0}=\left\{p \mapsto \mathrm{~L}, t_{\mathrm{A}} \mapsto \mathrm{R}, t_{\mathrm{B}} \mapsto \mathrm{R}\right\}$ and $s_{\star}=\{p \mapsto \mathrm{R}\}$
- $O=\left\{\right.$ pickup $\left._{i, j} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j \in\{\mathrm{~L}, \mathrm{R}\}\right\}$
$\cup\left\{\operatorname{drop}_{i, j} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j \in\{\mathrm{~L}, \mathrm{R}\}\right\}$
$\cup\left\{\right.$ move $\left._{i, j, j^{\prime}} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j, j^{\prime} \in\{\mathrm{L}, \mathrm{R}\}, j \neq j^{\prime}\right\}$

Running Example

Example (one package, two trucks)

Consider the unit-cost SAS^{+}planning task $\left\langle V, O, s_{0}, s_{\star}\right\rangle$ with:

- $V=\left\{p, t_{\mathrm{A}}, t_{\mathrm{B}}\right\}$
- $\operatorname{dom}(p)=\{\mathrm{L}, \mathrm{R}, \mathrm{A}, \mathrm{B}\}$ and $\operatorname{dom}\left(t_{\mathrm{A}}\right)=\operatorname{dom}\left(t_{\mathrm{B}}\right)=\{\mathrm{L}, \mathrm{R}\}$
- $s_{0}=\left\{p \mapsto \mathrm{~L}, t_{\mathrm{A}} \mapsto \mathrm{R}, t_{\mathrm{B}} \mapsto \mathrm{R}\right\}$ and $s_{\star}=\{p \mapsto \mathrm{R}\}$
- $O=\left\{\right.$ pickup $\left._{i, j} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j \in\{\mathrm{~L}, \mathrm{R}\}\right\}$
$\cup\left\{d r o p_{i, j} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j \in\{\mathrm{~L}, \mathrm{R}\}\right\}$
$\cup\left\{\right.$ move $\left._{i, j, j^{\prime}} \mid i \in\{\mathrm{~A}, \mathrm{~B}\}, j, j^{\prime} \in\{\mathrm{L}, \mathrm{R}\}, j \neq j^{\prime}\right\}$
- Abbreviations for labels:
- MALR: move truck A from left to right
- DAR: drop package from truck A at right location
- *: wildcard

Initialization

- Maintain a set X of current TS
- Initialize X to contain all TS corresponding to atomic projections

Running Example: Atomic Projections

$\Theta^{\pi_{\{\text {package }\}}}$:

Running Example: Atomic Projections

$\Theta^{\pi_{\{\text {truck A }}}$:

Synchronized product

Definition (synchronized product)

For $i \in\{1,2\}$, let $\Theta^{i}=\left\langle S^{i}, L, T^{i}, s_{0}^{i}, S_{\star}^{i}\right\rangle$ be TS (with identical labels and cost)
The synchronized product of Θ^{1} and Θ^{2}, in symbols $\Theta^{1} \otimes \Theta^{2}$, is the TS $\Theta^{\otimes}=\left\langle S^{\otimes}, L, T^{\otimes}, s_{0}^{\otimes}, S_{\star}^{\otimes}\right\rangle$ with

- $S^{\otimes}:=S^{1} \times S^{2}$
- $T^{\otimes}:=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, \ell,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid\left\langle s_{1}, \ell, t_{1}\right\rangle \in T^{1} \wedge\left\langle s_{2}, \ell, t_{2}\right\rangle \in T^{2}\right\}$
- $s_{0}^{\otimes}:=\left\langle s_{0}^{1}, s_{0}^{2}\right\rangle$
- $S_{\star}^{\otimes}:=S_{\star}^{1} \times S_{\star}^{2}$

Synchronized product

Definition (synchronized product)

For $i \in\{1,2\}$, let $\Theta^{i}=\left\langle S^{i}, L, T^{i}, s_{0}^{i}, S_{\star}^{i}\right\rangle$ be TS (with identical labels and cost)
The synchronized product of Θ^{1} and Θ^{2}, in symbols $\Theta^{1} \otimes \Theta^{2}$, is the TS $\Theta^{\otimes}=\left\langle S^{\otimes}, L, T^{\otimes}, s_{0}^{\otimes}, S_{\star}^{\otimes}\right\rangle$ with

- $S^{\otimes}:=S^{1} \times S^{2}$
- $T^{\otimes}:=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, \ell,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid\left\langle s_{1}, \ell, t_{1}\right\rangle \in T^{1} \wedge\left\langle s_{2}, \ell, t_{2}\right\rangle \in T^{2}\right\}$
- $s_{0}^{\otimes}:=\left\langle s_{0}^{1}, s_{0}^{2}\right\rangle$
- $S_{\star}^{\otimes}:=S_{\star}^{1} \times S_{\star}^{2}$

Theorem

Let Π be an SAS^{+}planning task with variables set V. Then $\Theta(\Pi) \sim \bigotimes_{v \in V} \Theta^{\pi\{v\}}$.

Merging

Definition (merging)

Merging is the operation that replaces two TS by their synchronized product in the current set of TS X.

Running Example: Merging

$\Theta^{1}:=\Theta^{\pi_{\{\text {package }\}}} \otimes \Theta^{\pi_{\{\text {truck } A\}}}:$

Running Example: Merging

$$
\Theta^{1}:=\Theta^{\pi_{\{\text {package }\}}} \otimes \Theta^{\pi_{\{\text {truck A }\}}}: S^{\otimes}=S^{1} \times S^{2}
$$

Running Example: Merging

$\Theta^{1}:=\Theta^{\pi_{\{\text {paccage }\}}} \otimes \Theta^{\pi_{\{\text {truck } A\}}}: s_{0}^{\otimes}=\left\langle s_{0}^{1}, s_{0}^{2}\right\rangle$

Running Example: Merging

$\Theta^{1}:=\Theta^{\pi_{\{\text {ppactage }\}}} \otimes \Theta^{\pi_{\{\text {truck } A\}}}: S_{\star}^{\otimes}=S_{\star}^{1} \times S_{\star}^{2}$

Running Example: Merging

$$
\Theta^{1}:=\Theta^{\pi_{\{\text {paccages }\}}} \otimes \Theta^{\pi_{\{\text {truck A }\}}:}: T^{\otimes}=\left\{\left\langle\left\langle s_{1}, s_{2}\right\rangle, a,\left\langle t_{1}, t_{2}\right\rangle\right\rangle \mid \ldots\right\}
$$

Merging

Theorem

Merging is an exact operation, i.e. it preserves goal states, transitions, and label cost.

Shrinking

Definition (abstraction)

An abstraction of a transition system Θ with states S
is a function $\alpha: S \rightarrow S^{\prime}$.

Shrinking

Definition (abstraction)

An abstraction of a transition system Θ with states S
is a function $\alpha: S \rightarrow S^{\prime}$.

Definition (shrinking)

Shrinking is the operation that applies an abstraction to a TS in the current set of TS X.

Running Example: Shrinking

$\Theta^{2}:=$ an abstraction of Θ^{1}

Running Example: Shrinking

$\Theta^{2}:=$ an abstraction of Θ^{1}

Running Example: Shrinking

$\Theta^{2}:=$ an abstraction of Θ^{1}

Running Example: Shrinking

$\Theta^{2}:=$ an abstraction of Θ^{1}

Running Example: Shrinking

$\Theta^{2}:=$ an abstraction of Θ^{1}

Shrinking

Theorem

Shrinking is a safe operation, i.e. it preserves goal states, does not increase label cost, and all concrete transitions have a corresponding abstract transition.

Label Reduction

Definition (generalized label reduction)

Let L be the common label set of all TS in the current set of TS X. A label reduction is a mapping τ defined on L which satisfies $\operatorname{cost}(\tau(\ell)) \leq \operatorname{cost}(\ell)$ for all $\ell \in L$.

Label Reduction

Definition (generalized label reduction)

Let L be the common label set of all TS in the current set of TS X. A label reduction is a mapping τ defined on L which satisfies $\operatorname{cost}(\tau(\ell)) \leq \operatorname{cost}(\ell)$ for all $\ell \in L$.

Theorem

Label reduction is safe.

Exact Label Reduction

Definitions

- Labels are locally equivalent in TS Θ if they label the same set of transitions in Θ.
- Labels are Θ-combinable for TS Θ if they are locally equivalent in all TS in X but Θ.

Exact Label Reduction

Definitions

- Labels are locally equivalent in TS Θ if they label the same set of transitions in Θ.
- Labels are Θ-combinable for TS Θ if they are locally equivalent in all TS in X but Θ.

Theorem

A label reduction τ is exact if it only combines labels of the same cost that are Θ-combinable for some $\Theta \in X$.

Running Example: Exact Label Reduction

PAL,DAL,MB $\star \star$, PAR,DAR,MB $\star \star$,
$P B \star, D B \star$
$P B \star, D B \star$

PBL,DBL,MA $\star \star$, PBR,DBR,MA $\star \star$,

Running Example: Exact Label Reduction

- Exact label reduction: PAL, DAL

PAL,DAL,MB $\star \star$, PAR,DAR,MB $\star \star$, $P B \star, D B \star$
$P B \star, D B \star$

PBL,DBL,MA**, PBR,DBR,MA $\mathrm{PA} \star, \mathrm{DA} \star \quad \mathrm{PA} \star, \mathrm{DA} \star$

Running Example: Exact Label Reduction

- Exact label reduction: $\tau(\mathrm{PAL})=\mathrm{X}, \tau(\mathrm{DAL})=\mathrm{X}$

Merge-and-Shrink Algorithm

Generic algorithm to compute M\&S abstractions

$X:=\left\{\Theta^{\pi_{\{v\}}} \mid v \in V\right\} \quad$ [TS for atomic projections] while $|X|>1$:
apply exact label reduction to L (and all TS in X) select Θ^{1}, Θ^{2} from X shrink Θ^{1} and/or Θ^{2} until size $\left(\Theta^{1}\right) \cdot \operatorname{size}\left(\Theta^{2}\right) \leq K$ $X:=X \backslash\left\{\Theta^{1}, \Theta^{2}\right\} \cup\left\{\Theta^{1} \otimes \Theta^{2}\right\} \quad$ [Merging]
return the remaining TS in X, an abstraction of Π

Merge-and-Shrink Algorithm

Generic algorithm to compute M\&S abstractions

$X:=\left\{\Theta^{\pi_{\{v\}}} \mid v \in V\right\} \quad$ [TS for atomic projections] while $|X|>1$:
apply exact label reduction to L (and all TS in X) select Θ^{1}, Θ^{2} from X shrink Θ^{1} and/or Θ^{2} until size $\left(\Theta^{1}\right) \cdot \operatorname{size}\left(\Theta^{2}\right) \leq K$ $X:=X \backslash\left\{\Theta^{1}, \Theta^{2}\right\} \cup\left\{\Theta^{1} \otimes \Theta^{2}\right\} \quad$ [Merging]
return the remaining TS in X, an abstraction of Π

- How to choose K ? \rightsquigarrow according to memory constraints
- How to select Θ^{1}, Θ^{2} ? \rightsquigarrow Merging strategies
- How to shrink? \rightsquigarrow Shrinking strategies

Shrinking Strategies

F-preserving

- Repeatedly combine state with the same g- and h-values if possible
- Prefer high f-values (high h-values)
- Lose precision only in regions far away from goal states

Bisimulation

Definition (bisimulation)

Let $\Theta=\left\langle S, L, T, s_{0}, S_{\star}\right\rangle$ be a TS. An equivalence relation \sim on S is a bisimulation for Θ if $s \sim t$ implies that
(1) either $s, t \in S_{\star}$ or $s, t \notin S_{\star}$, and
(2) for all $\left\langle s, \ell, s^{\prime}\right\rangle \in T$ there exists $\left\langle t, \ell, t^{\prime}\right\rangle \in T$ and $s^{\prime} \sim t^{\prime}$.

Bisimulation

Definition (bisimulation)

Let $\Theta=\left\langle S, L, T, s_{0}, S_{\star}\right\rangle$ be a TS. An equivalence relation \sim on S is a bisimulation for Θ if $s \sim t$ implies that
(1) either $s, t \in S_{\star}$ or $s, t \notin S_{\star}$, and
(2) for all $\left\langle s, \ell, s^{\prime}\right\rangle \in T$ there exists $\left\langle t, \ell, t^{\prime}\right\rangle \in T$ and $s^{\prime} \sim t^{\prime}$.

- Shrinking: combine bisimilar states
- Exact if based on full bisimulation
- In practice: bisimulation too large, approximate

Merging Strategies

Merging Strategies

- Linear merging strategies:
- Based on a (precomputed) order of variables
- Only maintain one large TS at a time

Merging Strategies

- Linear merging strategies:
- Based on a (precomputed) order of variables
- Only maintain one large TS at a time
- Non-linear merging strategy: DFP
- Preferably merge TS with labels inducing transitions close to goal states
- Build fine-grained abstractions around goal states

Merging Strategies

- Linear merging strategies:
- Based on a (precomputed) order of variables
- Only maintain one large TS at a time
- Non-linear merging strategy: DFP
- Preferably merge TS with labels inducing transitions close to goal states
- Build fine-grained abstractions around goal states
- Non-linear merging strategy: MIASM
- Preferably merge TS such that the product contains many unreachable and irrelevant states
- Prune TS by removing unreachable and irrelevant states

Non-Linear Merging Based on Symmetries

- Factored symmetries:
- Permutation of states and labels of all TS
- Preserve structure and path cost of all TS
- Local if states not mapped accross different TS

How to Use Local Factored Symmetries

- Merging based on local factored symmetries:
- Compute a symmetry affecting several TS
- Merge all affected TS, the symmetry is then atomic, i.e. affects only one TS

How to Use Local Factored Symmetries

- Merging based on local factored symmetries:
- Compute a symmetry affecting several TS
- Merge all affected TS, the symmetry is then atomic, i.e. affects only one TS
- Why are atomic symmetries useful?
- Shrinking based on atomic symmetries is exact
- Atomic symmetries implicitly captured by shrinking based on bisimulation and label reduction

Literature

- Dräger et al., SPIN 2006: original contribution (model checking)
- Helmert et al., ICAPS 2007: adaptation to planning (f-preserving shrinking, linear merging)
- Nissim et al., IJCAI 2011: bisimulation based shrinking
- Edelkamp et al., ECAI 2012: symbolic m\&s
- Torralba et al., IJCAI 2013: symbolic m\&s
- Helmert et al., JACM 2014: overview journal paper
- Sievers et al., AAAI 2014: generalized label reduction, DFP
- Fan and Holte, SoCS 2014: MIASM
- Hoffmann et al., ECAI 2014: m\&s for detecting unsolvability
- Sievers et al., AAAI 2015: symmetry based merging

Pointers for the Conference

- Torralba and Hoffmann, IJCAI 2015 (Monday in the HSDIP workshop):

Simulation-Based Admissible Dominance Pruning

- Helmert et al., ICAPS 2015 (Tuesday):

On the Expressive Power of
Non-Linear Merge-and-Shrink Representations

- Torralba and Kissmann, SoCS 2015 (Thursday in the joint ICAPS/SoCS session):

Focusing on What Really Matters: Irrelevance Pruning in Merge-and-Shrink

