Latest Trends in Abstraction Heuristics
for Classical Planning
3. Merge-and-Shrink Abstractions

Malte Helmert Jendrik Seipp Silvan Sievers
ICAPS 2015 Tutorial

June 7, 2015

Merge-and-Shrink Algorithm

9000000000000 0000

Merge-and-Shrink Algorithm

Merge-and-Shrink Algorithm
0@000000000000000

Merge-and-Shrink Abstractions

@ Main idea:

o PDBs: perfectly reflect some state variables
o M&S: Reflect all state variables in a potentially lossy way

o Theoretically represent arbitrary abstractions of SAS™ tasks
@ Usage as heuristics:

o Not discussed in this talk
e Talk at main conference about representational power of
merge-and-shrink (Helmert et al., Thursday)

Merge-and-Shrink Algorithm
00®00000000000000

Running Example

Example (one package, two trucks)
Consider the unit-cost SAS™ planning task (V, O, sg, s,) with:
°o V= {P7 ta, tB}
e dom(p) = {L,R,A,B} and dom(ta) = dom(tg) = {L,R}
e so={p— L ta— R tg— R} and s, ={p— R}
° 0= {piCkuPi,j | S {Aa B}a./ < {L? R}}
U {dropij | S {A7 B}?J S {L7 R}}
U {movei,j,j’ ’ S {Aa B}a.j7j, € {L7 R}vJ #Jl}

Merge-and-Shrink Algorithm
00®00000000000000

Running Example

Example (one package, two trucks)
Consider the unit-cost SAS™ planning task (V, O, sg, s,) with:
°o V= {P7 ta, tB}
e dom(p) = {L,R,A,B} and dom(ta) = dom(tg) = {L,R}
e so={p— L ta— R tg— R} and s, ={p— R}
° 0= {piCkuPi,j | S {Aa B}a./ < {L? R}}
U {dropij | S {A7 B}?J S {L7 R}}
U {movei,j,j’ ’ S {Aa B}a.j7j, € {L7 R}vJ #Jl}

@ Abbreviations for labels:

e MALR: move truck A from left to right
e DAR: drop package from truck A at right location
e *: wildcard

Merge-and-Shrink Algorithm
000®0000000000000

Initialization

@ Maintain a set X of current TS

@ Initialize X to contain all TS corresponding to
atomic projections

Merge-and-Shrink Algorithm
0000®000000000000

Running Example: Atomic Projections

@W{packags} :

Merge-and-Shrink Algorithm
00000®00000000000

Running Example: Atomic Projections

@W{truck A} -
PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx%,DBx PBx%,DBx

MALR

Merge-and-Shrink Algorithm
000000@0000000000

Synchronized product

Definition (synchronized product)
For i€ {1,2}, let © = (S',L, T' s}, S!) be TS (with identical
labels and cost)
The synchronized product of ©! and ©2, in symbols ©! ® ©2,
is the TS ©% = (§%,L, T®, s ©. S®) with
0 S®:=51x§?
° T® = {<<51752>7e7 <t17 t2>> | <51a€7 tl) S Tl N <52a£7 t2> € T2}
o 53 := (s}, s3)
0 S®:=S! x §2

Merge-and-Shrink Algorithm Shrinking Strategies
000000e0000000000 000

Synchronized product

Definition (synchronized product)
For i€ {1,2}, let © = (S',L, T' s}, S!) be TS (with identical
labels and cost)
The synchronized product of ©! and ©2, in symbols ©! ® ©2,
is the TS ©% = (§%,L, T®, s ©. S®) with
0 S®:=51x§?
° T® = {<<51752>7£7 <t17 t2>> | <51a£7 tl) S Tl N <52a€7 t2> € T2}
o 53 := (s}, s3)
0 S®:=S! x §2

Theorem

| A\

Let I be an SAS™ planning task with variables set V.
Then ©(MN) ~ @),y O™,

\

Merge-and-Shrink Algorithm
00000008000000000

Merging

Definition (merging)

Merging is the operation that replaces two TS by their
synchronized product in the current set of TS X.

Merge-and-Shrink Algorithm
00000000e00000000

Running Example: Merging

el = eﬂ—{package} X @W{truck A} -

Muoxx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx*,DBx PBx*,DBx

Merge-and-Shrink Algorithm
00000000e00000000

Running Example: Merging

el = eﬂ—{package} ® @W{truckA}: 5® — 51 X 52

Muoxx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx*,DBx PBx*,DBx

Merge-and-Shrink Algorithm
00000000e00000000

Running Example: Merging

el e eﬂ'{package} X @W{ff“d‘ A}: S(()8 — <5(:)lv 58)

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx*,DBx PBx*,DBx

Merge-and-Shrink Algorithm
00000000e00000000

Running Example: Merging

el = eﬂ—{package} X @W{truck A} - 5;8) — S} X 53

Moxxx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx*,DBx PB*,DBx

Merge-and-Shrink Algorithm
00000000e00000000

Running Example: Merging

O := OMirsckage} © @tk A} T = [((s1,5),a, (t;,t2)) | ...}

Moxxx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx*,DBx PB*,DBx

Merge-and-Shrink Algorithm
000000000®0000000

Merging

Merging is an exact operation, i.e. it preserves goal states,
transitions, and label cost.

Merge-and-Shrink Algorithm
0000000000e000000

Shrinking

Definition (abstraction)

An abstraction of a transition system © with states S
is a function o : S — 5.

Merge-and-Shrink Algorithm
0000000000e000000

Shrinking

Definition (abstraction)

An abstraction of a transition system © with states S
is a function o : S — 5.

Definition (shrinking)

Shrinking is the operation that applies an abstraction to a TS in
the current set of TS X.

Merge-and-Shrink Algorithm
00000000000e00000

Running Example: Shrinking

©2 := an abstraction of &1

Merge-and-Shrink Algorithm
00000000000e00000

Running Example: Shrinking

©2 := an abstraction of &1

Merge-and-Shrink Algorithm
00000000000e00000

Running Example: Shrinking

©2 := an abstraction of &1

Merge-and-Shrink Algorithm
00000000000e00000

Running Example: Shrinking

©2 := an abstraction of &1

Merge-and-Shrink Algorithm
00000000000e00000

Running Example: Shrinking

©2 := an abstraction of &1

Merge-and-Shrink Algorithm
00000000000080000

Shrinking

Shrinking is a safe operation, i.e. it preserves goal states, does not
increase label cost, and all concrete transitions have a
corresponding abstract transition.

Merge-and-Shrink Algorithm
0000000000000 e000

Label Reduction

Definition (generalized label reduction)

Let L be the common label set of all TS in the current set of TS
X. A label reduction is a mapping 7 defined on L which satisfies
cost(7(¢)) < cost(¢) for all £ € L.

Merge-and-Shrink Algorithm
0000000000000 e000

Label Reduction

Definition (generalized label reduction)

Let L be the common label set of all TS in the current set of TS
X. A label reduction is a mapping 7 defined on L which satisfies
cost(7(¢)) < cost(¢) for all £ € L.

Label reduction is safe. l

Merge-and-Shrink Algorithm
00000000000000e00

Exact Label Reduction

Definitions
@ Labels are locally equivalent in TS © if they label the same
set of transitions in ©.
@ Labels are ©-combinable for TS © if they are locally
equivalent in all TS in X but ©.

Merge-and-Shrink Algorithm
00000000000000e00

Exact Label Reduction

@ Labels are locally equivalent in TS © if they label the same
set of transitions in ©.

@ Labels are ©-combinable for TS © if they are locally
equivalent in all TS in X but ©.

Theorem
A label reduction T is exact if it only combines labels of the same
cost that are ©-combinable for some © € X. |

| \

Merge-and-Shrink Algorithm

0000000000000 00e0

Running Example: Exact Label Reduction

PAL,DAL,MBx*, PAR,DAR,MBxx,
PBx*,DBx PBx*,DBx

O (®

PBL,DBL,MAxx, PBR,DBR,MAxx*,
PAx, DA% PAx, DA%

MBLR
(D (®)

Merge-and-Shrink Algorithm

0000000000000 00e0

Running Example: Exact Label Reduction

@ Exact label reduction: PAL, DAL

PAL,DAL,MBx*, PAR,DAR,MBxx,
PBx*,DBx PBx%,DBx

MALR
Or=>0

PBL,DBL,MAxx, PBR,DBR,MAxx*,
PAx, DA% PAx,DAx

MBLR
(D —(R)

Merge-and-Shrink Algorithm
000000000000000e0

Running Example: Exact Label Reduction

e Exact label reduction: 7(PAL) = X, 7(DAL) = X

X,MBxx, PAR,DAR,MBxx,
PBx*,DBx PBx*,DBx

MALR
(O e (®)

PBL,DBL,MAxx, PBR,DBR,MAxx*,
X,PAR,DAR X,PAR,DAR

Hw ()

Merge-and-Shrink Algorithm
0000000000000000e

Merge-and-Shrink Algorithm

Generic algorithm to compute M&S abstractions

X ={0™ |veV} [TS for atomic projections]
while |X| > 1:
apply exact label reduction to L (and all TS in X)
select ©1, ©2 from X
shrink ©1 and/or ©2 until size(0!) - size(©?) < K
X :=X\{6!e?lu{elwoe?} [Merging]

return the remaining TS in X, an abstraction of Il

Merge-and-Shrink Algorithm
0000000000000000e

Merge-and-Shrink Algorithm

Generic algorithm to compute M&S abstractions

X ={0™ |veV} [TS for atomic projections]
while |X| > 1:
apply exact label reduction to L (and all TS in X)
select ©1, ©2 from X
shrink ©1 and/or ©2 until size(0!) - size(©?) < K
X :=X\{6!e?lu{elwoe?} [Merging]

return the remaining TS in X, an abstraction of Il

@ How to choose K? ~~ according to memory constraints
@ How to select ©!,02? ~» Merging strategies

@ How to shrink? ~~ Shrinking strategies

Shrinking Strategies
.

(e]e]

Shrinking Strategies

Shrinking Strategies
fe] T}

F-preserving

@ Repeatedly combine state with the same g- and h-values if
possible

o Prefer high f-values (high h-values)

@ Lose precision only in regions far away from goal states

Shrinking Strategies
ooe

Bisimulation

Definition (bisimulation)

Let © = (S,L, T,sp, Si) be a TS. An equivalence relation ~ on S
is a bisimulation for © if s ~ t implies that

©Q eithers,t € S, or s, t ¢ S,, and
@ for all (s,£,s") € T there exists (t,¢,t') € T and s’ ~ t'.

Shrinking Strategies
ooe

Bisimulation

Definition (bisimulation)

Let © = (S, L, T,sp,S«) be a TS. An equivalence relation ~ on S
is a bisimulation for © if s ~ t implies that

©Q eithers,t € S, or s, t ¢ S,, and
@ for all (s,£,s") € T there exists (t,¢,t') € T and s’ ~ t'.

@ Shrinking: combine bisimilar states
@ Exact if based on full bisimulation

@ In practice: bisimulation too large, approximate

Merging Strategies

Merging Strategies
0e00

Merging Strategies

@ Linear merging strategies:

o Based on a (precomputed) order of variables
e Only maintain one large TS at a time

Merging Strategies
0e00

Merging Strategies

@ Linear merging strategies:

o Based on a (precomputed) order of variables
e Only maintain one large TS at a time

@ Non-linear merging strategy: DFP

o Preferably merge TS with labels inducing transitions close to
goal states
o Build fine-grained abstractions around goal states

Merging Strategies
0e00

Merging Strategies

@ Linear merging strategies:
o Based on a (precomputed) order of variables
e Only maintain one large TS at a time

@ Non-linear merging strategy: DFP

o Preferably merge TS with labels inducing transitions close to
goal states
o Build fine-grained abstractions around goal states

@ Non-linear merging strategy: MIASM

o Preferably merge TS such that the product contains many
unreachable and irrelevant states
e Prune TS by removing unreachable and irrelevant states

Merging Strategies
feteT Yo

Non-Linear Merging Based on Symmetries

@ Factored symmetries:

e Permutation of states and labels of all TS
e Preserve structure and path cost of all TS
o Local if states not mapped accross different TS

Merging Strategies
ocooe

How to Use Local Factored Symmetries

@ Merging based on local factored symmetries:

o Compute a symmetry affecting several TS
o Merge all affected TS, the symmetry is then atomic, i.e.
affects only one TS

Merging Strategies
ocooe

How to Use Local Factored Symmetries

@ Merging based on local factored symmetries:

o Compute a symmetry affecting several TS
o Merge all affected TS, the symmetry is then atomic, i.e.
affects only one TS

@ Why are atomic symmetries useful?

e Shrinking based on atomic symmetries is exact
e Atomic symmetries implicitly captured by shrinking based on
bisimulation and label reduction

Literature

Drager et al., SPIN 2006: original contribution (model
checking)

Helmert et al., ICAPS 2007: adaptation to planning
(f-preserving shrinking, linear merging)

Nissim et al., IJCAI 2011: bisimulation based shrinking
Edelkamp et al., ECAI 2012: symbolic m&s

Torralba et al., IJCAI 2013: symbolic m&s

Helmert et al., JACM 2014: overview journal paper

Sievers et al., AAAI 2014: generalized label reduction, DFP
Fan and Holte, SoCS 2014: MIASM

Hoffmann et al., ECAI 2014: m&s for detecting unsolvability
Sievers et al., AAAI 2015: symmetry based merging

Pointers for the Conference

e Torralba and Hoffmann, [JCAI 2015 (Monday in the HSDIP
workshop):

Simulation-Based Admissible Dominance Pruning

@ Helmert et al., ICAPS 2015 (Tuesday):
On the Expressive Power of
Non-Linear Merge-and-Shrink Representations
e Torralba and Kissmann, SoCS 2015 (Thursday in the joint
ICAPS/SoCS session):

Focusing on What Really Matters:
Irrelevance Pruning in Merge-and-Shrink

	Merge-and-Shrink Algorithm
	Shrinking Strategies
	Merging Strategies

