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Overview

• Cartesian Abstraction Refinement
• Additive Abstractions
• Diversification Strategies
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Example Cartesian Abstraction Refinement
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Counterexample-guided Abstraction Refinement (CEGAR)

CEGAR algorithm
Start with coarsest abstraction
Until concrete solution is found or time runs out:

• Find abstract solution
• Check if and why it fails in the real world
• Refine abstraction
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Cartesian Abstractions

A set of states is called Cartesian if it is of the form
A1 × A2 × ...× An, where Ai ⊆ dom(vi ) for all vi ∈ V .
An abstraction is called Cartesian if all its abstract states are
Cartesian sets.
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Classes of Abstractions
Suitability for CEGAR

• Pattern databases
Refinement at least doubles number of states

• Domain abstractions
Don’t allow fine-grained refinement

• Cartesian abstractions
Perform refinement operations quickly

• Merge-and-shrink abstractions
Preimage of abstract states not efficiently computable
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Drawbacks of Single Cartesian Abstractions

• Diminishing returns
• Goal facts are considered one after another
• Abstraction more refined in regions around abstract solutions

→ Multiple abstractions
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Additive Abstractions
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Multiple Abstractions
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How to combine heuristic estimates?
• Maximum: h(s0) = max(4, 5) = 5
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Cost Partitioning

A cost partitioning for a planning task with operator set O and
cost function c is a sequence c1, . . . , cn of cost functions
ci : O → R that assign costs to operators o ∈ O such that∑

1≤i≤n ci (o) ≤ c(o) for all o ∈ O.
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Saturated Cost Partitioning

Saturated cost function

ĉ(o) = max
a

o−→b∈T
max{0, h(a)− h(b)}
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• Saturated cost partitioning: h(s0) = 4 + 2 = 6
• ĉ: minimum distance-preserving cost function
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Additive CEGAR Abstractions

• Build n abstractions
• No changes to the CEGAR algorithm
• Problem: abstractions too similar → no improvement
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Diversification Strategies
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Abstraction by Goals

• Build an abstraction for each goal fact
• Focus on different subproblems
• Problem: tasks with single goal fact
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Abstraction by Landmarks

• Compute fact landmarks
• Build an abstraction for each fact landmark L
• Problem: landmarks as goals not admissible
• Solution: hL(s) = 0 if L might have been achieved
• Path-dependent landmark heuristics → state-based criterion
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Abstraction by Landmarks

Modified task for landmark L:
• Compute possibly-before set pb(L)
• Facts: pb(L) ∪ {L}
• Goal: L
• Operators:

• discard operators with preconditions not in pb(L)
• let operators achieving L achieve only L

• Initial state: unmodified

hL(s) = 0 if s * pb(L) ∪ {L}
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Abstraction by Landmarks: Improved

x = 0 x = 1 x = 2
o1 o2

Solution:
• Compute landmark orderings
• Combine facts that have probably already been achieved
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Abstraction by Landmarks: Improved
Example

x = 0 x = 1 x = 2

y = 0

y = 1

y = 2

• x = 1: {y = 0, y = 1}
• x = 2: {y = 0, y = 1, y = 2}, {x = 0, x = 1}
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Conclusion
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Literature

• Clarke et al., CAV 2000: CEGAR for model checking
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Summary

• Cartesian abstractions: useful class of abstractions
• Saturated cost partitioning: preserves distances
• Diversification strategies: focus on different subtasks
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