
AI Planning Solving Classical Planning Tasks IPC

An Overview of the
International Planning Competition
Part 1: AI Planning and the IPC

Amanda Coles1 Andrew Coles1

Álvaro Torralba2 Florian Pommerening3

1King’s College London

2Saarland University

3University of Basel, Switzerland

January 27, 2019

We have received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 730086 and from the International Conference on Automated Planning and Scheduling.



AI Planning Solving Classical Planning Tasks IPC

Classical and Temporal Planning in a Nutshell

Classical planning

Find operator sequence to achieve a goal

Discrete, single-agent, observable, deterministic

Temporal planning

actions take time and can be executed in parallel

usually also includes numeric effects



AI Planning Solving Classical Planning Tasks IPC

Classical Planning Tasks

Example task: binary counter

00

01

10

11

State space

States assign values to variables

Initial state

Goal states

Operators have conditions and effects on variables



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Compact Representation with PDDL

Domain
(define (domain trucks-example)

(:requirements :typing)

(:types truck location)

(:predicates

(CONNECTED ?from ?to - location)

(truck-at ?t - truck ?l - location)

)

(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

)

Task
(define (problem task1)

(:domain trucks-example)

(:objects

t1 t2 - truck

l1 l2 l3 - location

)

(:init

(CONNECTED l1 l2)

(CONNECTED l2 l3)

(truck-at t1 l1)

(truck-at t2 l3)

)

(:goal

(and (truck-at t1 l3)

(truck-at t2 l1))

)

)



AI Planning Solving Classical Planning Tasks IPC

Evolution of PDDL

1998, 2000: PDDL 1.0: STRIPS, ADL (quantified effects and
preconditions, conditional effects)

2002: PDDL 2.1: temporal + numeric planning

2004: PDDL 2.2: derived predicates and timed initial literals

2006: PDDL 3.0: soft goals and state trajectory constraints

2008: Restricted PDDL Features: STRIPS + action costs

2014: Re-introduced conditional effects



AI Planning Solving Classical Planning Tasks IPC

Solving Classical Planning Tasks



AI Planning Solving Classical Planning Tasks IPC

Search

Two important approaches

explicit state search (A∗, GBFS, . . . )

every search node represents a state
expansion: generating successors for applicable operators
search guided by heuristic

symbolic seach

every search node represents a set of states
expansion: generating all states reachable in one step
sets of states compactly represented (BDD, . . . )
can also be guided by heuristic



AI Planning Solving Classical Planning Tasks IPC

Abstractions

Abstractions of Planning Tasks

00

01

10

11

full state space too big

example: plan for
10 trucks in 10 cities

map to smaller space

extract lower bound
from abstractions



AI Planning Solving Classical Planning Tasks IPC

Abstractions

Abstractions of Planning Tasks

00

01

10

11

0∗ 1∗ full state space too big

example: plan for
10 trucks in 10 cities

map to smaller space

extract lower bound
from abstractions



AI Planning Solving Classical Planning Tasks IPC

Abstractions

Abstractions of Planning Tasks

00

01

10

11

0∗ 1∗ full state space too big

example: plan for
10 trucks in 10 cities

map to smaller space

extract lower bound
from abstractions



AI Planning Solving Classical Planning Tasks IPC

Delete Relaxations

Domain
(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

Delete Relaxations

modify domain so deleting
a fact never helps

ignore some or all
delete effects

problem is simpler to solve

heuristic value: solution
cost in the relaxation



AI Planning Solving Classical Planning Tasks IPC

Delete Relaxations

Domain
(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

Delete Relaxations

modify domain so deleting
a fact never helps

ignore some or all
delete effects

problem is simpler to solve

heuristic value: solution
cost in the relaxation



AI Planning Solving Classical Planning Tasks IPC

Delete Relaxations

Domain
(:action move

:parameters

(?t - truck ?from ?to - location)

:precondition

(and (CONNECTED ?from ?to)

(truck-at ?t ?from))

:effect

(and (not (truck-at ?t ?from))

(truck-at ?t ?to))

)

Delete Relaxations

modify domain so deleting
a fact never helps

ignore some or all
delete effects

problem is simpler to solve

heuristic value: solution
cost in the relaxation



AI Planning Solving Classical Planning Tasks IPC

Novelty

Novelty

when exploring the state space prefer new areas

a state is novel if we see parts of it for the first time

the more general the part, the more novel the state

limit search to only explore novel states

can be combined with heuristics (best-first width search)



AI Planning Solving Classical Planning Tasks IPC

The International
Planning Competition



AI Planning Solving Classical Planning Tasks IPC

IPC

The International Planning Competition (IPC)

semi-regular competition

1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018

organized in the context of the International Conference on
Planning and Scheduling (ICAPS)

Past and Future IPCs

icaps-conference.org/index.php/Main/Competitions

icaps-conference@googlegroups.com

icaps-conference.org/index.php/Main/Competitions
icaps-conference@googlegroups.com


AI Planning Solving Classical Planning Tasks IPC

Goals of the IPC

Goals

evaluate state-of-the-art planning systems

promote planning research

highlight challenges

provide new benchmarks



AI Planning Solving Classical Planning Tasks IPC

IPC Organization

Organization

different tracks for different planning variants

tracks organized more or less independently

initiative of track organizers
IPC happens if someone organizes a track



AI Planning Solving Classical Planning Tasks IPC

Organizing a Track

Jobs as an organizer

track rules

benchmarks

create/elicit new domains
select instances
find reference solutions

participants

elicit participation
compile planners
assist in testing/bug fixing

experiments

run planners on benchmarks
evaluate results



AI Planning Solving Classical Planning Tasks IPC

IPC Tracks

Classical Planning Tracks

satisficing (1998, 2000, 2004, 2006, 2008, 2011, 2014, 2018)

optimal (2004, 2006, 2008, 2011, 2014, 2018)

satisficing multi-core (2011, 2014)

agile (2014, 2018)

cost-bounded (2018)

Temporal Metric Planning

satisficing (2002, 2004, 2008, 2011, 2014, 2018)

optimal (2006, 2008, 2014)

agile (2018)

. . .



AI Planning Solving Classical Planning Tasks IPC

IPC Tracks (continued)

Probabilistic Planning

MDP (2004, 2006, 2011, 2018)

conformant (2006, 2008)

POMDP (2011)

FOND, NOND (2008)

continuous (2014)

Preferences, Constraints, Net-benefit

satisficing (2006, 2008, 2014)

optimal (2008, 2014)

Learning (2008, 2011, 2014)
Unsolvability (2016)
Hand-Tailored, Domain-Specific tracks (1998, 2000, 2002)


	AI Planning
	Solving Classical Planning Tasks
	IPC

