
A Beginner’s Introduction
to Heuristic Search Planning

3. A Simple Heuristic

Malte Helmert Gabriele Röger

AAAI 2015 Tutorial

January 25, 2015



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic

Heuristic h : S → R+
0

estimates cost to reach a goal from a state

Fast Downward can easily be extended with new heuristics

Simple example: Hamming distance heuristic counts
number of variables that do not have required goal value

hH({A 7→ a,B 7→ b,C 7→ c}) = 1
for task with goal {A 7→ a,B 7→ b′}

I hands-on



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic

Heuristic h : S → R+
0

estimates cost to reach a goal from a state

Fast Downward can easily be extended with new heuristics

Simple example: Hamming distance heuristic counts
number of variables that do not have required goal value

hH({A 7→ a,B 7→ b,C 7→ c}) = 1
for task with goal {A 7→ a,B 7→ b′}

I hands-on



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic in Fast Downward

Hands-On

$ cd hands-on/heuristic-implementation

$ ls

$ ./build_all.sh

make: Nothing to be done for ‘default’.

make: Nothing to be done for ‘default’.

make: ‘validate’ is up to date. $ cd search

. . .

Derive from class Heuristic

Hands-On

$ less heuristic.h

. . .



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic in Fast Downward

Hands-On

$ cd hands-on/heuristic-implementation

$ ls

$ ./build_all.sh

make: Nothing to be done for ‘default’.

make: Nothing to be done for ‘default’.

make: ‘validate’ is up to date. $ cd search

. . .

Derive from class Heuristic

Hands-On

$ less heuristic.h

. . .



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic in Fast Downward

Implement constructor and destructor

HammingHeuristic::HammingHeuristic(const Options &opts)

: Heuristic(opts) {}

HammingHeuristic::~HammingHeuristic() {}



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic in Fast Downward

Possibly implement initialize

void HammingHeuristic::initialize() {

cout << "Initializing Hamming distance "

<< "heuristic..." << endl;

}

→ executed once before the first call of a heuristic evaluation



Hamming Distance Heuristic Outlook

Hamming Distance Heuristic in Fast Downward

Implement compute heuristic

int HammingHeuristic::compute_heuristic(

const GlobalState &state) {

return 0; // TODO

}



Hamming Distance Heuristic Outlook

Accessing the task

Variables and variable values:

represented as ints
vector<int> g variable domain in globals.h

variable i has domain {0, . . . , g variable domain[i]− 1}.
Goal: vector<pair<int, int> > g goal in globals.h

e.g. int var = g goal[0].first;

e.g. int value = g goal[0].second;

State: class GlobalState

internal representation complicated and
optimized for memory-efficiency
variable values can easily be accessed with operator[],
e.g. int value = state[var];

Operators: class GlobalOperator

vector<GlobalOperator> g operators in globals.h

cf. global operator.h



Hamming Distance Heuristic Outlook

Accessing the task

Variables and variable values:

represented as ints
vector<int> g variable domain in globals.h

variable i has domain {0, . . . , g variable domain[i]− 1}.
Goal: vector<pair<int, int> > g goal in globals.h

e.g. int var = g goal[0].first;

e.g. int value = g goal[0].second;

State: class GlobalState

internal representation complicated and
optimized for memory-efficiency
variable values can easily be accessed with operator[],
e.g. int value = state[var];

Operators: class GlobalOperator

vector<GlobalOperator> g operators in globals.h

cf. global operator.h



Hamming Distance Heuristic Outlook

Accessing the task

Variables and variable values:

represented as ints
vector<int> g variable domain in globals.h

variable i has domain {0, . . . , g variable domain[i]− 1}.
Goal: vector<pair<int, int> > g goal in globals.h

e.g. int var = g goal[0].first;

e.g. int value = g goal[0].second;

State: class GlobalState

internal representation complicated and
optimized for memory-efficiency
variable values can easily be accessed with operator[],
e.g. int value = state[var];

Operators: class GlobalOperator

vector<GlobalOperator> g operators in globals.h

cf. global operator.h



Hamming Distance Heuristic Outlook

Accessing the task

Variables and variable values:

represented as ints
vector<int> g variable domain in globals.h

variable i has domain {0, . . . , g variable domain[i]− 1}.
Goal: vector<pair<int, int> > g goal in globals.h

e.g. int var = g goal[0].first;

e.g. int value = g goal[0].second;

State: class GlobalState

internal representation complicated and
optimized for memory-efficiency
variable values can easily be accessed with operator[],
e.g. int value = state[var];

Operators: class GlobalOperator

vector<GlobalOperator> g operators in globals.h

cf. global operator.h



Hamming Distance Heuristic Outlook

Integration of Heuristic into Planner

Make the heuristic known to the search command parser by
extending the heuristic implementation file:

static Heuristic *_parse(OptionParser &parser) {

Heuristic::add_options_to_parser(parser);

Options opts = parser.parse();

return new HammingHeuristic(opts);

}

static Plugin<Heuristic> _plugin("hamming", _parse);

Add entry with header filename to Makefile

Hands-On

$ less Makefile

. . .



Hamming Distance Heuristic Outlook

Integration of Heuristic into Planner

Make the heuristic known to the search command parser by
extending the heuristic implementation file:

static Heuristic *_parse(OptionParser &parser) {

Heuristic::add_options_to_parser(parser);

Options opts = parser.parse();

return new HammingHeuristic(opts);

}

static Plugin<Heuristic> _plugin("hamming", _parse);

Add entry with header filename to Makefile

Hands-On

$ less Makefile

. . .



Hamming Distance Heuristic Outlook

Hands on

Files hamming_distance_heuristic.h and
hamming_distance_heuristic.cc contain stub for Hamming
distance heuristic.

1 Integrate the heuristic into the planner

2 Finish the heuristic implementation

Test your implementation with

Hands-On

$ make

$ cd ..

$ ./fast-downward.py \

../ipc/blocks/probBLOCKS-8-0.pddl \

--search "astar(hamming())"

$ cd -



Hamming Distance Heuristic Outlook

Outlook



Hamming Distance Heuristic Outlook

Outlook

After the break:

Five Families of Heuristics

Abstraction Heuristics and Pattern Databases

Delete Relaxation and Landmarks

Going Further

What else happens in heuristic planning?
What else happens in classical planning?
What else happens in planning?


	Hamming Distance Heuristic
	Outlook

