A Beginner'’s Introduction
to Heuristic Search Planning
3. A Simple Heuristic

Malte Helmert Gabriele Roger
AAAI 2015 Tutorial

January 25, 2015

Hamming Distance Heuristic

900000000

Hamming Distance Heuristic

Hamming Distance Heuristic
[e] Telololelelele)

Hamming Distance Heuristic

o Heuristic h: S — R§
estimates cost to reach a goal from a state

@ Fast Downward can easily be extended with new heuristics

Hamming Distance Heuristic
[e] Telololelelele)

Hamming Distance Heuristic

o Heuristic h: S — R§
estimates cost to reach a goal from a state
@ Fast Downward can easily be extended with new heuristics

@ Simple example: Hamming distance heuristic counts
number of variables that do not have required goal value
o M{A— a,B— b, Crrc})=1
for task with goal {A+ a, B+ b’}

» hands-on

Hamming Distance Heuristic
[e]e] Yololelelele)

Hamming Distance Heuristic in Fast Downward

$ cd hands-on/heuristic-implementation

$ 1s

$./build_all.sh

make: Nothing to be done for ‘default’.
make: Nothing to be done for ‘default’.
make: ‘validate’ is up to date. $ cd search

Hamming Distance Heuristic
[e]e] Yololelelele)

Hamming Distance Heuristic in Fast Downward

$ cd hands-on/heuristic-implementation

$ 1s

$./build_all.sh

make: Nothing to be done for ‘default’.
make: Nothing to be done for ‘default’.
make: ‘validate’ is up to date. $ cd search

Derive from class Heuristic

$ less heuristic.h

Hamming Distance Heuristic
[e]e]eY Tolelelele)

Hamming Distance Heuristic in Fast Downward

Implement constructor and destructor

HammingHeuristic: :HammingHeuristic(const Options &opts)
: Heuristic(opts) {}

HammingHeuristic:: “"HammingHeuristic() {3}

Hamming Distance Heuristic
0000®0000

Hamming Distance Heuristic in Fast Downward

Possibly implement initialize

void HammingHeuristic::initialize() {
cout << "Initializing Hamming distance "
<< "heuristic..." << endl;

}

— executed once before the first call of a heuristic evaluation

Hamming Distance Heuristic
00000®000

Hamming Distance Heuristic in Fast Downward

Implement compute _heuristic

int HammingHeuristic::compute_heuristic(
const GlobalState &state) {
return 0; // TODO

Hamming Distance Heuristic
000000e00

Accessing the task

@ Variables and variable values:
e represented as ints
e vector<int> g variable _domain in globals.h
e variable i has domain {0,...,g variable domain[i] —1}.

Hamming Distance Heuristic
000000e00

Accessing the task

@ Variables and variable values:
e represented as ints
e vector<int> g variable _domain in globals.h
e variable i has domain {0,...,g variable domain[i] —1}.
o Goal: vector<pair<int, int> > g goal in globals.h
e e.g. int var = g goal[0].first;
int value = g_goall[0].second;

Hamming Distance Heuristic
000000e00

Accessing the task

@ Variables and variable values:
e represented as ints
e vector<int> g variable _domain in globals.h
e variable i has domain {0,...,g variable domain[i] —1}.
o Goal: vector<pair<int, int> > g goal in globals.h
e e.g. int var = g goal[0].first;
int value = g_goall[0].second;
@ State: class GlobalState
e internal representation complicated and
optimized for memory-efficiency
e variable values can easily be accessed with operator(],
e.g. int value = statel[var];

Hamming Distance Heuristic
000000e00

Accessing the task

@ Variables and variable values:
e represented as ints
e vector<int> g variable _domain in globals.h
e variable i has domain {0,...,g variable domain[i] —1}.
o Goal: vector<pair<int, int> > g goal in globals.h
e e.g. int var = g goal[0].first;
int value = g_goall[0].second;
@ State: class GlobalState
e internal representation complicated and
optimized for memory-efficiency
e variable values can easily be accessed with operator(],
e.g. int value = statel[var];
@ Operators: class GlobalOperator
e vector<GlobalOperator> g operators in globals.h
o cf. global_operator.h

Hamming Distance Heuristic
000000080

Integration of Heuristic into Planner

@ Make the heuristic known to the search command parser by
extending the heuristic implementation file:

static Heuristic *_parse(OptionParser &parser) {
Heuristic::add_options_to_parser(parser) ;
Options opts = parser.parse();
return new HammingHeuristic(opts);

3

static Plugin<Heuristic> _plugin("hamming", _parse);

v

Hamming Distance Heuristic

Outlook
000000080 [e]e]

Integration of Heuristic into Planner

@ Make the heuristic known to the search command parser by
extending the heuristic implementation file:

static Heuristic *_parse(OptionParser &parser) {
Heuristic::add_options_to_parser(parser) ;
Options opts = parser.parse();
return new HammingHeuristic(opts);

3

static Plugin<Heuristic> _plugin("hamming", _parse);

v

@ Add entry with header filename to Makefile

$ less Makefile

Hamming Distance Heuristic
000000008

Hands on

Files hamming_distance_heuristic.h and
hamming_distance_heuristic.cc contain stub for Hamming
distance heuristic.

© Integrate the heuristic into the planner

@ Finish the heuristic implementation

Test your implementation with

$ make

$ cd ..

$./fast-downward.py \
../ipc/blocks/probBLOCKS-8-0.pddl \
--search "astar (hamming())"

$ cd -

Outlook

Outlook
oce

Outlook

After the break:
@ Five Families of Heuristics
@ Abstraction Heuristics and Pattern Databases
@ Delete Relaxation and Landmarks

o Going Further

e What else happens in heuristic planning?
e What else happens in classical planning?
o What else happens in planning?

	Hamming Distance Heuristic
	Outlook

