A Beginner's Introduction
to Heuristic Search Planning

2. Planning Formalisms (and Heuristic Search)

Malte Helmert Gabriele Roger
AAAI 2015 Tutorial

January 25, 2015

Transition Systems & Search

Transition Systems & Search
0®000000

Example: Blocks World

Transition Systems & Search
00®00000

Transition Systems

Definition (Transition system)

A transition system (or state space) is a 6-tuple
T =<(S, 50, S«, A, cost, Ty with
S finite set of states

sp € S initial state

A finite set of actions

cost: A— R{ action costs
T < S x A x S transition relation
e deterministic in (s, a):
for each (s, ay at most one transition (s,a,s’ye T

°
°
@ S, C© S set of goal states
°
°
°

Transition Systems & Search
000®0000

Plan

Definition (Plan)
A plan for a transition system is a sequence of actions occurring as
labels on a path from the initial state to a goal state.

The cost of a plan (a1, ...,any is >,i_; cost(a;).

A plan is optimal if it has minimal cost.

Transition Systems & Search
000®0000

Plan

Definition (Plan)
A plan for a transition system is a sequence of actions occurring as
labels on a path from the initial state to a goal state.

The cost of a plan (a1, ...,any is >,i_; cost(a;).

A plan is optimal if it has minimal cost.

Transition Systems & Search
0000®000

Automated Planning

Definition (Optimal Planning)

Given an encoding of a transition system, find an optimal plan.

Definition (Satisficing Planning)

Given an encoding of a transition system, find a (not necessarily
optimal) plan.

Cheaper plans are better solutions.

Transition Systems & Search
00000e00

Search in a Nutshell

Transition Systems & Search
00000e00

Search in a Nutshell

Transition Systems & Search
00000e00

Search in a Nutshell

Transition Systems & Search
00000e00

Search in a Nutshell

should we select
for expansion?

Ll
o
|E| EI Which open node
-

€ i

Transition Systems & Search
00000080

Heuristic Search

@ Prioritize open nodes with heuristic

@ Heuristic
e estimates cost of path from state to closest goal state
e h:S— Rg
@ Search algorithms differ in how they exploit the heuristic:
e h: heuristic estimate of state
g: cost of path from initial state to open node
Greedy best-first search: expand node with minimum h
A* algorithm: expand node with minimum g + h

Transition Systems & Search
©0000000e

Transition Systems as Input Formalism?

Definition (Transition system)

A transition system (or state space) is a 6-tuple
T =S, s0,S«, A, cost, T) with ...

Transition Systems & Search
©0000000e

Transition Systems as Input Formalism?

Definition (Transition system)

A transition system (or state space) is a 6-tuple
T =S, s0,S«, A, cost, T) with ...

n blocks: more than n! states

Transition Systems & Search
©0000000e

Transition Systems as Input Formalism?

Definition (Transition system)

A transition system (or state space) is a 6-tuple
T = (S, s0,S«, A, cost, T) with ...

n blocks: more than n! states Heuristics require structure

Transition Systems & Search
©0000000e

Transition Systems as Input Formalism?

Definition (Transition system)

A transition system (or state space) is a 6-tuple
T = (S, s0,S«, A, cost, T) with ...

n blocks: more than n! states Heuristics require structure

not suitable as input formalism for planning systems

Planning Formalism in Theory

Planning Formalism in Theory

Planning Formalism in Theory
©000

Propositional STRIPS

@ Most basic common planning formalism

@ States and actions specified in terms of
propositional state variables

Planning Formalism in Theory
©000

Propositional STRIPS

@ Most basic common planning formalism

@ States and actions specified in terms of
propositional state variables

@ State: set of state variables

e v € s: variable v is true in state s
e v ¢ s: variable v is false in state s

Planning Formalism in Theory
©000

Propositional STRIPS

@ Most basic common planning formalism

@ States and actions specified in terms of
propositional state variables

@ State: set of state variables
e v € s: variable v is true in state s
e v ¢ s: variable v is false in state s

@ Actions have preconditions, add effects and delete effects
e action is applicable in state s if all preconditions are true in s
o add effects become true in successor state

o delete effects become false in successor state
(except if also included in add effects)

Planning Formalism in Theory
0®00

Propositional STRIPS: Planning Task

Definition (Propositional STRIPS planning task)

A propositional STRIPS planning task is a 4-tuple
M =<V.I,G,A) with the following components:

@ V: finite set of state variables
@ [/ < V: initial state
@ G < V: set of goal variables

@ A: finite set of actions (or operators),
where each action a € A has the following components:
e pre(a) < V: preconditions
add(a) < V: add effects
del(a) < V: del effects
cost(a) € Ry : action cost

Remark: Actions costs are an extension of traditional STRIPS.

Planning Formalism in Theory
fe]eY 1o}

Propositional STRIPS: Semantics

Definition (transition system induced by a STRIPS planning task)
Let M =<V, I, G,A) be a (propositional) STRIPS planning task.
Task I induces the transition system (S, sp, S, A, cost, T):

o states: S =2 (= power set of V)

@ initial state: sp =/
@ goal states: s€ S, iff GC s
@ actions: actions A of I1

@ action costs: cost defined as in [1
e transitions: {s,a,s’y e T iff

e pre(a) C s, and
o s’ = (s\del(a)) u add(a)

Summar

N=<(V,I,G,A with:

o V = {ong ¢, ong B, ong Rr,ong,s,ongr,oNs,c,
on-tableg, on-tablec, on-tableg,
clearg, clearg, clearg}

o | = {ong B, 0ng g, on-tableg, clearr}

o G = {onG’R}

o A = {mover g g, mover G g, MOVER R G,
moveép G R, MOVEG R.B, MOVEG B R,
to-tabler g, to-tableg g, to-tableg g,
to-tableg ¢, to-tablec g, to-tableg g,
from-tabler g, from-tabler g, from-tableg g,
from-tableg g, from-tableg r, from-tableg g}

Plannlng Formallsm in Theory Summar
000080

Example Blocks World in Proposmonal STRIPS

Example

move actions encode movements of a block
from a block onto another

For example:
o pre(moveg g) = {ong g, clearr, clearg}
e add(mover p.c) = {ongr. ¢, clearg}
e del(mover p.c) = {ong g, clearg}

e cost(movegr g) =1

Planning Formalism in Theory PDDL
0000@0000

Example: Blocks World in Propositional STRIPS

Example

to-table actions encode movements of a block
from a block to the table

For example:

pre(to-tabler g) = {ongr g, clearr}

@ add(to-tabler g) = {on-tablegr, clearg}
o del(to-tabler g) = {ong g}

o cost(to-tabler g) = 1

Plannlng Formallsm in Theory Summar
000080

Example Blocks World in Proposmonal STRIPS

Example

to-table actions encode movements of a block
from a block to the table

For example:

pre(to-tabler g) = {ongr g, clearr}

@ add(to-tabler g) = {on-tablegr, clearg}
o del(to-tabler g) = {ong g}
°

cost(to-tablegr g) = 1

from-table actions encode the inverse action
(movements of blocks from table onto block).

Planning Formalism in Theory
®00

SAS™ Formalism

@ similar to propositional STRIPS but state variables have a
(possibly non-binary) finite domain

@ often more natural formulation than with STRIPS

@ State: variable assignment

Planning Formalism in Theory
®00

SAS™ Formalism

@ similar to propositional STRIPS but state variables have a
(possibly non-binary) finite domain

@ often more natural formulation than with STRIPS

@ State: variable assignment

@ Preconditions and goal: partial variable assignment
Example: {v1 — a, v3 — b} as precondition (or goal)
o If it holds for state s that s(v;) = a and s(v3) = b,

then the action is applicable (or s is a goal state).
e Other variable values are irrelevant.

Planning Formalism in Theory
®00

Formalism

@ similar to propositional STRIPS but state variables have a
(possibly non-binary) finite domain

@ often more natural formulation than with STRIPS
@ State: variable assignment

@ Preconditions and goal: partial variable assignment
Example: {v1 — a, v3 — b} as precondition (or goal)
o If it holds for state s that s(v;) = a and s(v3) = b,
then the action is applicable (or s is a goal state).
o Other variable values are irrelevant.
o Effects: partial variable assignment
Example: Effect {v1 — b, vo — c}
o For successor state s’ it holds that s’(vy) = b and s'(wv,) = c.
o All other variable values stay unchanged.

ing Formalism in Theory
0e00

SAS™ Planning Task

Definition (SAS™ planning task)
A SAS™ planning task is a 5-tuple
M= {V,sp,s., A) with the following components:
@ V/: finite set of state variables v,
each with finite domain dom(v),
@ sp: variable assignment defining the initial state
@ s,: partial variable assignment defining the goal

@ A: finite set of actions (or operators),
where each action a € A has the following components:
o Preconditions pre(a): partial variable assignment
o Effects eff(a): partial variable assignment
o Cost cost(a): non-negative real number

Plannlng Formalism in Theory DD Summar

Example Blocks World in SAS™

M =<V, sy, s, A) with:

e V = {ong, ong,ong, clearg, clearg, clearg} with
dom(onx) = {R, G, B, Table}\{X} and
dom(clearx) = {T, F} for X € {R, G, B}

e sop = {ong — B, ong — Table, ong — G,

cleargr — T, clearg — F,clearg — F}

e s, = {ong — R}

@ A = same action labels as in STRIPS example

Plannlng Formalism in Theory DD Summar

Example Blocks World in SAS™

Example

move actions encode movements of a block
from a block onto another

For example:
o pre(movegr g,g) = {ongr — B, clearr — T,clearg — T}
o effimover g) = {ong — G, clearg — T,clearg — F}

o cost(moveg g) =1

Planning Formalism in Theory
°

Other Formalisms

Extensions of these formalisms include additional features, e.g.
@ Propositional formulas in conditions
e Conditional effects
@ Derived predicates

@ Schematic representation with first-order formulas in
conditions and all-quantified effects

Planner Input Language PDDL

PDDL

Planning Domain Definition Language

Input language of most planning systems

Used by the International Planning Competitions
@ Several requirements denote different language fragments
@ Some fragments beyond classical planning

@ Supports parameterized, schematic definition of operators

Internal Planner Format

Most planners transform the PDDL input into an internal format.

Fast Downward: SAS™ (4 some extensions)

$ cd hands-on

$./fd --translate tile/puzzle.pddl \
tile/puzzleO1.pddl

$ less output.sas

$ less fd-internal/search/global_operator.h

Summary

Summary
oce

Summary

@ classical planning: path finding in large deterministic
transition systems

@ optimal planning: only optimal plans are solutions

@ satisficing planning: any plan is a solution
but cheaper plans are better

@ best-first search: guided by heuristics
@ heuristics: estimate cost to reach closest goal state

@ planning formalisms: implicit and structured specification
of transition systems

@ research papers: mostly propositional STRIPS or SAS™
e PDDL: standard input language for planning systems

	Transition Systems & Search
	Planning Formalism in Theory
	Propositional STRIPS
	SAS+
	Other Formalisms

	Planner Input Language PDDL
	Summary

