

A Beginner's Introduction to Heuristic Search Planning

2. Planning Formalisms (and Heuristic Search)

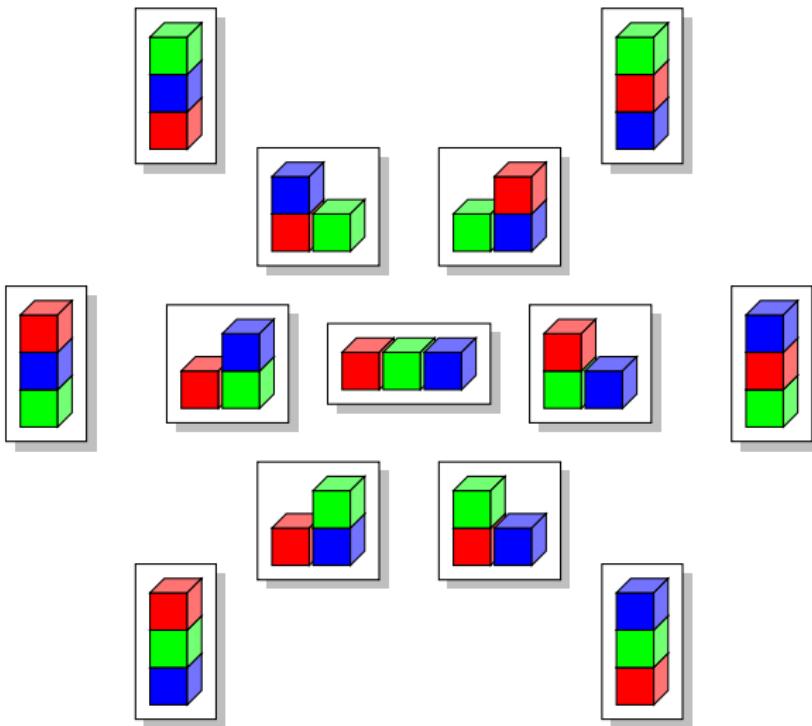
Malte Helmert Gabriele Röger

AAAI 2015 Tutorial

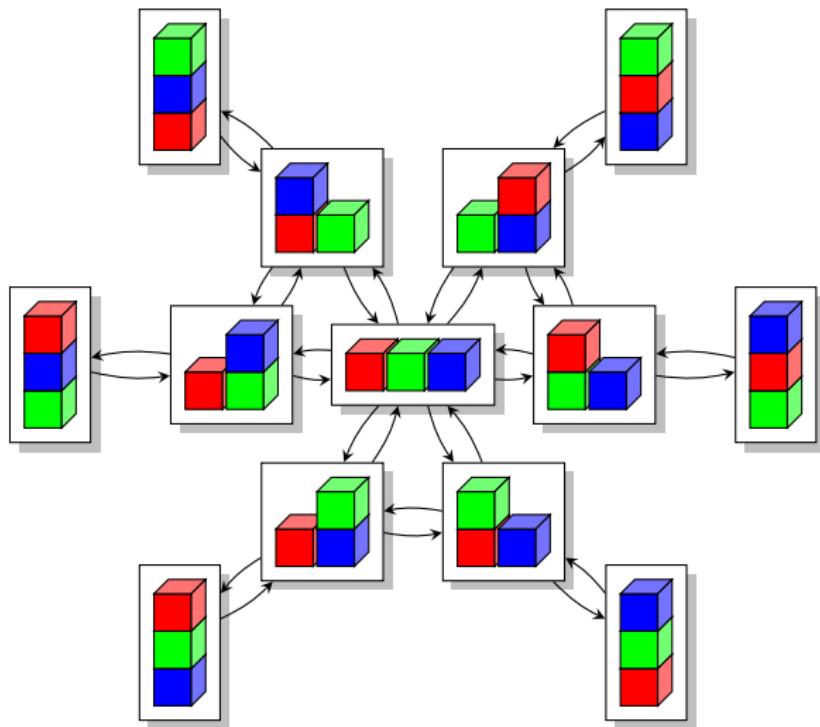
January 25, 2015

Transition Systems & Search

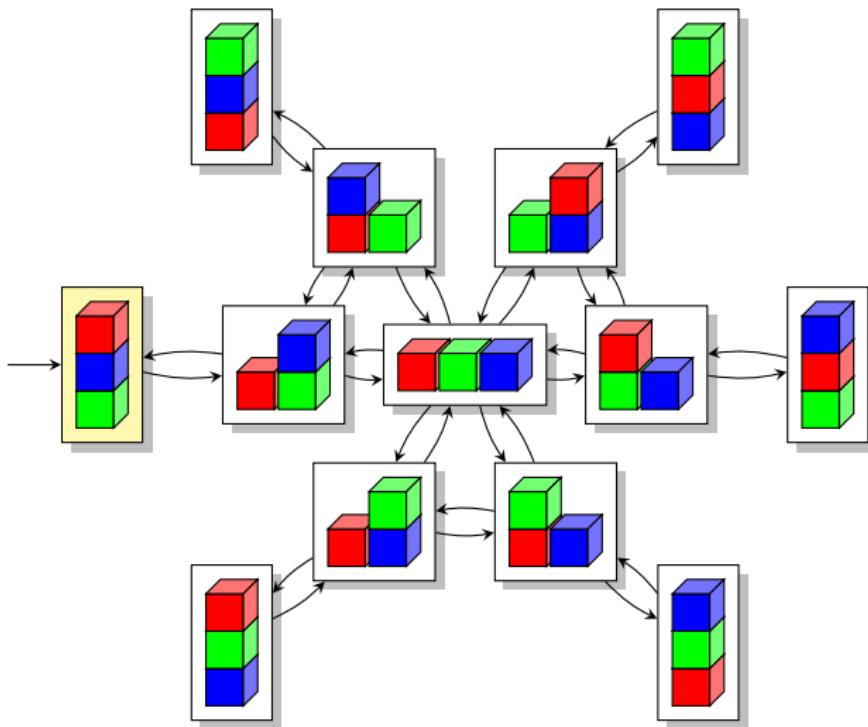
Example: Blocks World



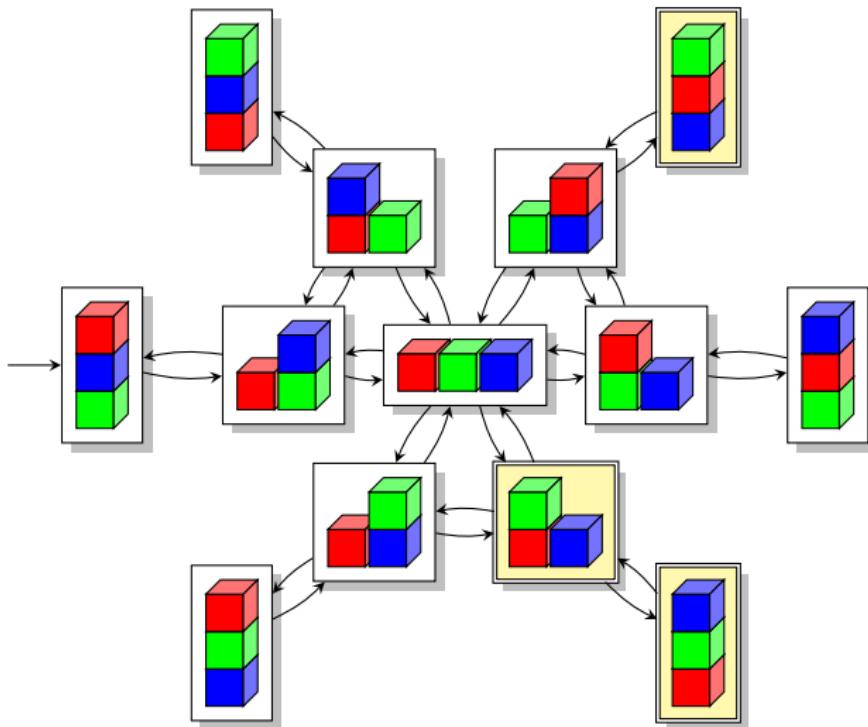
Example: Blocks World



Example: Blocks World



Example: Blocks World



Transition Systems

Definition (Transition system)

A **transition system** (or **state space**) is a 6-tuple

$\mathcal{T} = \langle S, s_0, S_*, A, \text{cost}, T \rangle$ with

- S finite set of **states**
- $s_0 \in S$ **initial state**
- $S_* \subseteq S$ set of **goal states**
- A finite set of **actions**
- $\text{cost} : A \rightarrow \mathbb{R}_0^+$ **action costs**
- $T \subseteq S \times A \times S$ **transition relation**
 - **deterministic** in $\langle s, a \rangle$:
for each $\langle s, a \rangle$ at most one **transition** $\langle s, a, s' \rangle \in T$

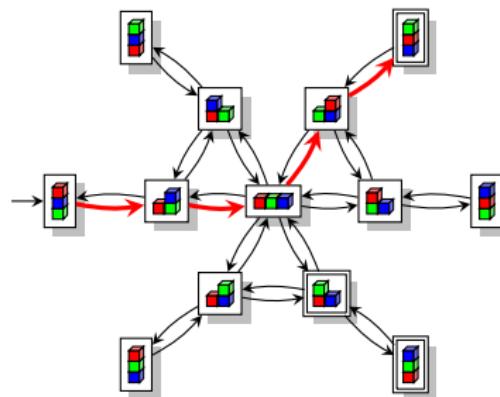
Plan

Definition (Plan)

A **plan** for a transition system is a **sequence of actions** occurring as labels on a **path from the initial state to a goal state**.

The **cost** of a plan $\langle a_1, \dots, a_n \rangle$ is $\sum_{i=1}^n \text{cost}(a_i)$.

A plan is **optimal** if it has minimal cost.



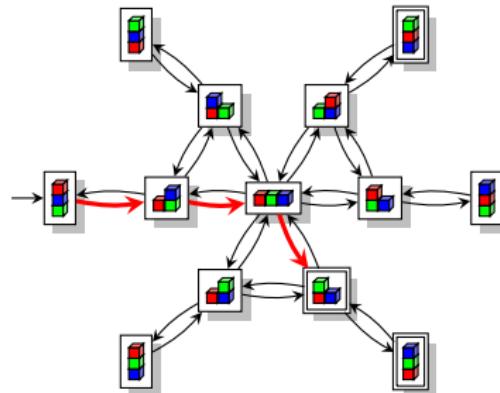
Plan

Definition (Plan)

A **plan** for a transition system is a **sequence of actions** occurring as labels on a **path from the initial state to a goal state**.

The **cost** of a plan $\langle a_1, \dots, a_n \rangle$ is $\sum_{i=1}^n \text{cost}(a_i)$.

A plan is **optimal** if it has minimal cost.



Automated Planning

Definition (Optimal Planning)

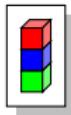
Given an encoding of a transition system, **find an optimal plan**.

Definition (Satisficing Planning)

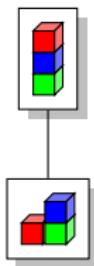
Given an encoding of a transition system, **find a** (not necessarily optimal) **plan**.

Cheaper plans are better solutions.

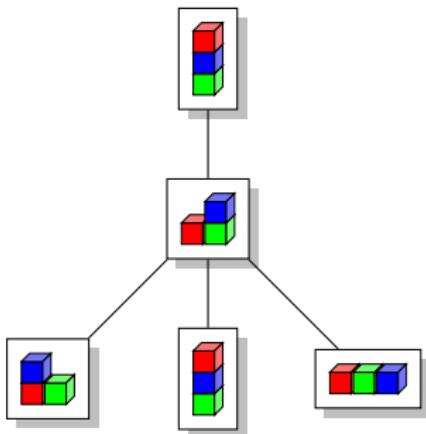
Search in a Nutshell



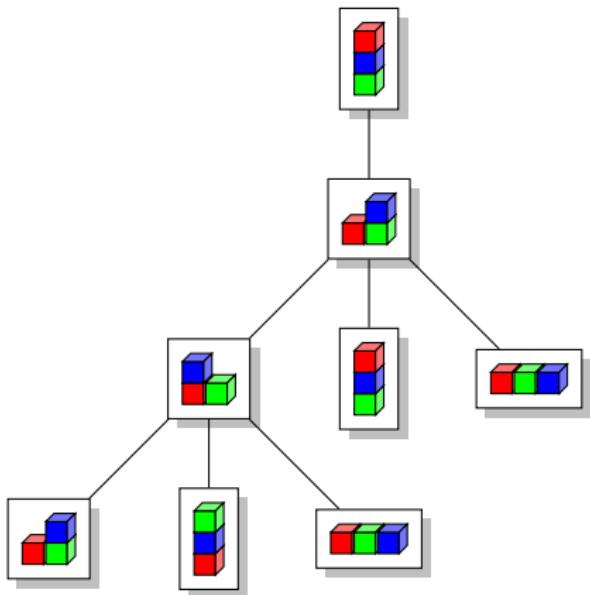
Search in a Nutshell



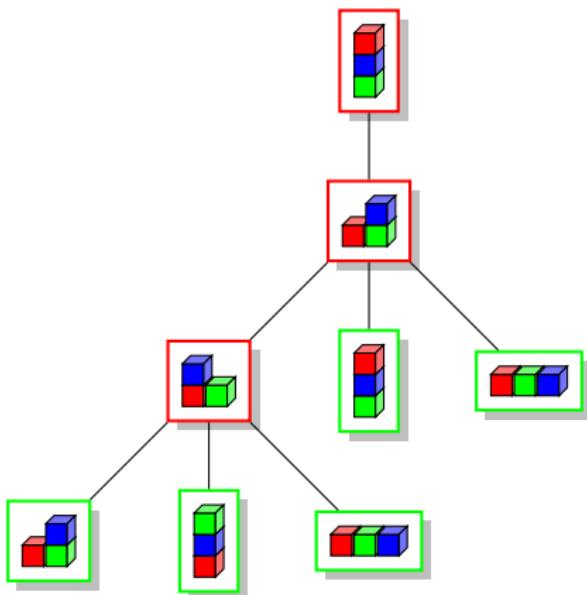
Search in a Nutshell



Search in a Nutshell



Search in a Nutshell



Closed node

Open node

Which open node
should we select
for expansion?

Heuristic Search

- Prioritize open nodes with **heuristic**
 - **Heuristic**
 - estimates cost of path from state to closest goal state
 - $h : S \rightarrow \mathbb{R}_0^+$
 - Search algorithms differ in how they exploit the heuristic:
 - **h** : heuristic estimate of state
 - **g** : cost of path from initial state to open node
 - **Greedy best-first search**: expand node with minimum **h**
 - **A* algorithm**: expand node with minimum **$g + h$**

Transition Systems as Input Formalism?

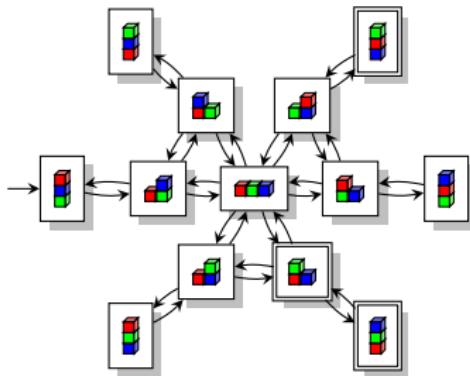
Definition (Transition system)

A **transition system** (or **state space**) is a 6-tuple
 $\mathcal{T} = \langle S, s_0, S_*, A, cost, T \rangle$ with ...

Transition Systems as Input Formalism?

Definition (Transition system)

A **transition system** (or **state space**) is a 6-tuple
 $\mathcal{T} = \langle S, s_0, S_*, A, \text{cost}, T \rangle$ with ...

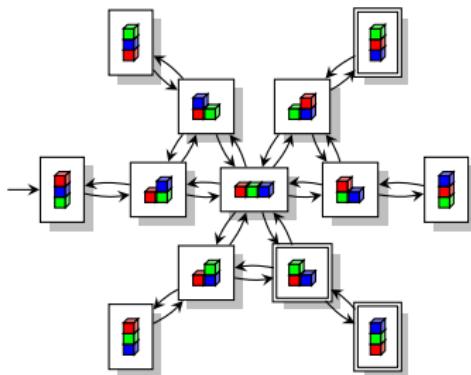


n blocks: more than $n!$ states

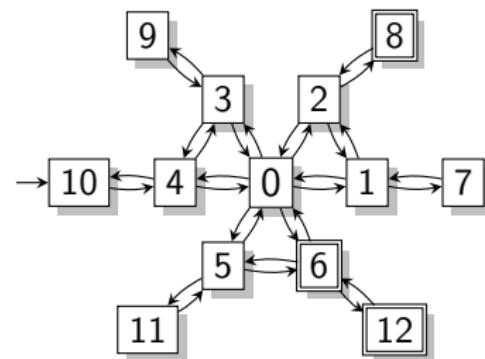
Transition Systems as Input Formalism?

Definition (Transition system)

A **transition system** (or **state space**) is a 6-tuple
 $\mathcal{T} = \langle S, s_0, S_*, A, \text{cost}, T \rangle$ with ...



n blocks: more than $n!$ states

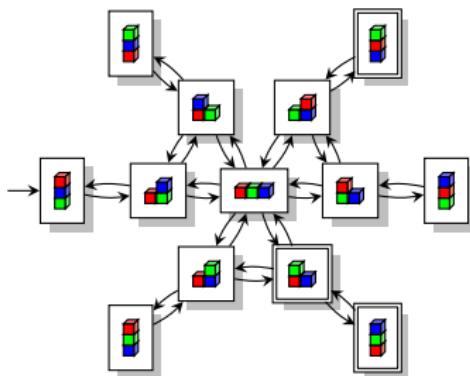


Heuristics require structure

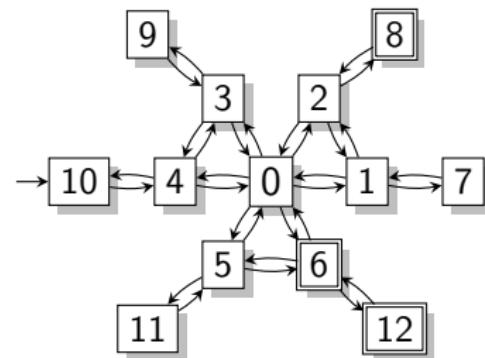
Transition Systems as Input Formalism?

Definition (Transition system)

A **transition system** (or **state space**) is a 6-tuple
 $\mathcal{T} = \langle S, s_0, S_*, A, cost, T \rangle$ with ...



n blocks: more than $n!$ states



Heuristics require structure

not suitable as input formalism for planning systems

Planning Formalism in Theory

Propositional STRIPS

- **Most basic** common planning formalism
- States and actions specified in terms of **propositional state variables**

Propositional STRIPS

- **Most basic** common planning formalism
- States and actions specified in terms of **propositional state variables**
- **State**: set of state variables
 - $v \in s$: variable v is **true** in state s
 - $v \notin s$: variable v is **false** in state s

Propositional STRIPS

- Most basic common planning formalism
- States and actions specified in terms of propositional state variables
- State: set of state variables
 - $v \in s$: variable v is true in state s
 - $v \notin s$: variable v is false in state s
- Actions have preconditions, add effects and delete effects
 - action is applicable in state s if all preconditions are true in s
 - add effects become true in successor state
 - delete effects become false in successor state
(except if also included in add effects)

Propositional STRIPS: Planning Task

Definition (Propositional STRIPS planning task)

A **propositional STRIPS** planning task is a 4-tuple

$\Pi = \langle V, I, G, A \rangle$ with the following components:

- V : finite set of **state variables**
- $I \subseteq V$: **initial state**
- $G \subseteq V$: set of **goal variables**
- A : finite set of **actions** (or **operators**),
where each action $a \in A$ has the following components:
 - $pre(a) \subseteq V$: **preconditions**
 - $add(a) \subseteq V$: **add effects**
 - $del(a) \subseteq V$: **del effects**
 - $cost(a) \in \mathbb{R}_0^+$: **action cost**

Remark: Actions costs are an extension of traditional STRIPS.

Propositional STRIPS: Semantics

Definition (transition system induced by a STRIPS planning task)

Let $\Pi = \langle V, I, G, A \rangle$ be a (propositional) STRIPS planning task.

Task Π induces the transition system $\langle S, s_0, S_*, A, \text{cost}, T \rangle$:

- states: $S = 2^V$ (= power set of V)
- initial state: $s_0 = I$
- goal states: $s \in S_*$ iff $G \subseteq s$
- actions: actions A of Π
- action costs: cost defined as in Π
- transitions: $\langle s, a, s' \rangle \in T$ iff
 - $\text{pre}(a) \subseteq s$, and
 - $s' = (s \setminus \text{del}(a)) \cup \text{add}(a)$

Example: Blocks World in Propositional STRIPS

Example

$\Pi = \langle V, I, G, A \rangle$ with:

- $V = \{on_{R,G}, on_{R,B}, on_{G,R}, on_{G,B}, on_{B,R}, on_{B,G},$
 $on-table_R, on-table_G, on-table_B,$
 $clear_R, clear_G, clear_B\}$
- $I = \{on_{R,B}, on_{B,G}, on-table_G, clear_R\}$
- $G = \{on_{G,R}\}$
- $A = \{move_{R,B,G}, move_{R,G,B}, move_{B,R,G},$
 $move_{B,G,R}, move_{G,R,B}, move_{G,B,R},$
 $to-table_{R,B}, to-table_{R,G}, to-table_{B,R},$
 $to-table_{B,G}, to-table_{G,R}, to-table_{G,B},$
 $from-table_{R,B}, from-table_{R,G}, from-table_{B,R},$
 $from-table_{B,G}, from-table_{G,R}, from-table_{G,B}\}$

...

Example: Blocks World in Propositional STRIPS

Example

move actions encode movements of a block
from a block onto another

For example:

- $pre(move_{R,B,G}) = \{on_{R,B}, clear_R, clear_G\}$
- $add(move_{R,B,G}) = \{on_{R,G}, clear_B\}$
- $del(move_{R,B,G}) = \{on_{R,B}, clear_G\}$
- $cost(move_{R,B,G}) = 1$

Example: Blocks World in Propositional STRIPS

Example

to-table actions encode movements of a block
from a block to the table

For example:

- $pre(to-table_{R,B}) = \{on_{R,B}, clear_R\}$
- $add(to-table_{R,B}) = \{on-table_R, clear_B\}$
- $del(to-table_{R,B}) = \{on_{R,B}\}$
- $cost(to-table_{R,B}) = 1$

Example: Blocks World in Propositional STRIPS

Example

to-table actions encode movements of a block from a block to the table

For example:

- $pre(to-table_{R,B}) = \{on_{R,B}, clear_R\}$
- $add(to-table_{R,B}) = \{on-table_R, clear_B\}$
- $del(to-table_{R,B}) = \{on_{R,B}\}$
- $cost(to-table_{R,B}) = 1$

from-table actions encode the inverse action (movements of blocks from table onto block).

SAS⁺ Formalism

- similar to propositional STRIPS but **state variables** have a (possibly non-binary) **finite domain**
- often more natural formulation than with STRIPS
- **State**: variable assignment

SAS⁺ Formalism

- similar to propositional STRIPS but **state variables** have a (possibly non-binary) **finite domain**
- often more natural formulation than with STRIPS
- **State**: variable assignment
- **Preconditions and goal**: partial variable assignment

Example: $\{v_1 \mapsto a, v_3 \mapsto b\}$ as precondition (or goal)

- If it holds for state s that $s(v_1) = a$ and $s(v_3) = b$, then the action is applicable (or s is a goal state).
- Other variable values are irrelevant.

SAS⁺ Formalism

- similar to propositional STRIPS but **state variables** have a (possibly non-binary) **finite domain**
- often more natural formulation than with STRIPS
- **State**: variable assignment
- **Preconditions and goal**: partial variable assignment

Example: $\{v_1 \mapsto a, v_3 \mapsto b\}$ as precondition (or goal)

- If it holds for state s that $s(v_1) = a$ and $s(v_3) = b$, then the action is applicable (or s is a goal state).
- Other variable values are irrelevant.

- **Effects**: partial variable assignment

Example: Effect $\{v_1 \mapsto b, v_2 \mapsto c\}$

- For successor state s' it holds that $s'(v_1) = b$ and $s'(v_2) = c$.
- All other variable values stay unchanged.

SAS⁺ Planning Task

Definition (SAS⁺ planning task)

A SAS⁺ planning task is a 5-tuple

$\Pi = \langle V, s_0, s_*, A \rangle$ with the following components:

- V : finite set of **state variables** v ,
each with finite domain $dom(v)$,
- s_0 : variable assignment defining the **initial state**
- s_* : partial variable assignment defining the **goal**
- A : finite set of **actions** (or **operators**),
where each action $a \in A$ has the following components:
 - **Preconditions** $pre(a)$: partial variable assignment
 - **Effects** $eff(a)$: partial variable assignment
 - **Cost** $cost(a)$: non-negative real number

Example: Blocks World in SAS⁺

Example

 $\Pi = \langle V, s_0, s_*, A \rangle$ with:

- $V = \{on_R, on_G, on_B, clear_R, clear_G, clear_B\}$ with
 $dom(on_X) = \{R, G, B, \text{Table}\} \setminus \{X\}$ and
 $dom(clear_X) = \{T, F\}$ for $X \in \{R, G, B\}$
- $s_0 = \{on_R \mapsto B, on_G \mapsto \text{Table}, on_B \mapsto G,$
 $clear_R \mapsto T, clear_G \mapsto F, clear_B \mapsto F\}$
- $s_* = \{on_G \mapsto R\}$
- $A = \text{same action labels as in STRIPS example}$

...

Example: Blocks World in SAS⁺

Example

move actions encode movements of a block
from a block onto another

For example:

- $pre(move_{R,B,G}) = \{on_R \mapsto B, clear_R \mapsto T, clear_G \mapsto T\}$
- $eff(move_{R,B,G}) = \{on_R \mapsto G, clear_B \mapsto T, clear_G \mapsto F\}$
- $cost(move_{R,B,G}) = 1$

Other Formalisms

Extensions of these formalisms include additional features, e.g.

- Propositional **formulas in conditions**
- **Conditional effects**
- **Derived predicates**
- Schematic representation with first-order formulas in conditions and all-quantified effects
- ...

Planner Input Language PDDL

PDDL

PDDL

- Planning Domain Definition Language
- Input language of most planning systems
- Used by the International Planning Competitions
- Several requirements denote different language **fragments**
- Some fragments beyond classical planning
- Supports **parameterized, schematic definition** of operators

Internal Planner Format

Most planners transform the PDDL input into an internal format.

Fast Downward: **SAS⁺** (+ some extensions)

Hands-On

```
$ cd hands-on
$ ./fd --translate tile/puzzle.pddl \
          tile/puzzle01.pddl
$ less output.sas
$ less fd-internal/search/global_operator.h
```

Summary

Summary

- **classical planning**: path finding in **large deterministic transition systems**
- **optimal planning**: only **optimal plans** are solutions
- **satisficing planning**: any **plan** is a solution but cheaper plans are better
- **best-first search**: guided by heuristics
- **heuristics**: estimate cost to reach closest goal state
- **planning formalisms**: implicit and structured specification of transition systems
- research papers: mostly **propositional STRIPS** or **SAS⁺**
- **PDDL**: standard input language for planning systems