A Beginner's Introduction to Heuristic Search Planning 1. What is Planning?

Malte Helmert Gabriele Röger

AAAI 2015 Tutorial

January 25, 2015

About This Tutorial	Planning	How Hard is Planning?	Getting to Know a Planner	
•0000000				

About This Tutorial o●oooooo	Planning 000000		Getting to Know a Planner	
Tutorial M	aterials			

Tutorial Materials

http://ai.cs.unibas.ch/misc/tutorial_aaai2015/

About This Tutorial	Planning 000000		Getting to Know a Planner 000000000	
About Us				

Malte Helmert

Gabi Röger

Questions? Don't be shy to talk to us and/or email!

- malte.helmert@unibas.ch
- gabriele.roeger@unibas.ch

About This Tutorial	Planning 000000		Getting to Know a Planner 000000000	
Target Au	dience			

Target Audience

- everyone who is not yet an expert on planning and is interested in learning about it
- especially beginning PhD students and pre-PhD-level students
- we assume basic AI knowledge (e.g., a typical undergrad course) covering topics like A* search
- but even without this, you should be able to follow

Please ask questions at any time!

Planning 200000 s How OOC

ow Hard is Planning? 00 Getting to Know a Planner 00000000 Summary 00

Goals of the Tutorial and Topics Covered

Goals of the Tutorial

- learn about the planning research community
- find out how to become part of it
- get to know some core ideas
- get hands-on experience with planners and modelling

Three levels:

- automated planning: problem and research community
- classical planning: the "simplest" automated planning problem
- heuristics for solving classical planning tasks

More Details on Topics Covered

Automated planning:

- What is automated planning?
- Where is it studied?
- Where can I find out more?

Classical planning:

- What is classical planning?
- How can the problem be formalized?
- How can planning tasks be modelled?

Heuristics for solving classical planning tasks:

- What are heuristics and what is heuristic search?
- What are the major kinds of heuristics?
- Case studies of state-of-the-art heuristics

About This Tutorial 00000000	Planning 000000		Getting to Know a Planner 000000000	
Table of C	ontents	5		

Before the break:

- What is Planning?
- Planning Formalisms (and Heuristic Search)
- A Simple Heuristic

After the break:

- Five Families of Heuristics
- Solution Abstraction Heuristics and Pattern Databases
- O Delete Relaxation and Landmarks
- Going Further

About This Tutorial	Planning 000000		Getting to Know a Planner	
Demo and	Hands-	On		

- Have you set up your hands-on directory/virtual machine?
- If yes, please start it up now and open a terminal window.
- If not, you can follow our demos and do the hands-on later. We will be happy to answer questions.

Hands-on instructions are given as follows:

lands-On							
\$ cd hands-on							
\$./hello.sh							
ello, tutorial!							
./build.sh							
ake: Nothing to be done for 'default'.							
ake: Nothing to be done for 'default'.							
ake: 'validate' is up to date.							

About This Tutorial	Planning	How Hard is Planning?	Getting to Know a Planner	
	00000			

Planning

	Planning 0●0000		Getting to Know a Planner 000000000	
General P	rohlem	Solving		

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created in 1959 by Herbert Simon, J.C. Shaw, and Allen Newell intended to work as a universal problem solver machine.

Any formalized symbolic problem can be solved, in principle, by GPS. $[\ldots]$

GPS was the first computer program which separated its knowledge of problems (rules represented as input data) from its strategy of how to solve problems (a generic solver engine).

 \rightsquigarrow these days called "domain-independent automated planning"

Planning 000000

amples

low Hard is Planning?

Getting to Know a Planner 00000000

So What is Domain-Independent Automated Planning?

Automated Planning (Pithy Definition)

"Planning is the art and practice of thinking before acting." — Patrik Haslum

Automated Planning (More Technical Definition)

"Selecting a goal-leading course of action based on a high-level description of the world."

— Jörg Hoffmann

 \rightsquigarrow formal definition in Part 2

Domain-Independence of Automated Planning

Create one planning algorithm that performs sufficiently well on many application domains (including future ones).

Planning 000000

How H

low Hard is Planning?

Getting to Know a Planner

Summary 00

The Planning Research Landscape

- one of the major subfields of artificial intelligence
- → represented at major AI conferences (IJCAI, AAAI, ECAI)
 - annual specialized conference ICAPS
 - \approx 200–250 participants
 - before 2003: ECP (odd years) + AIPS (even years)
 - major journals: general AI journals (AIJ, JAIR)

	Planning 0000●0		Getting to Know a Planner 000000000	
Classical P	lanning	5		

This tutorial covers classical planning:

- offline (static)
- discrete
- deterministic
- fully observable
- single-agent
- sequential (plans are action sequences)
- o domain-independent

This is just one facet of planning.

Many others are studied in AI (at ICAPS and elsewhere).

About This Tutorial Planning Examples How Hard is Planning? Getting to Know a Planner Summary on More General Planning Topics

More general kinds of planning include:

- offline: online planning; planning and execution
- discrete: continuous planning (e.g., real-time/hybrid systems)
- deterministic: FOND planning; probabilistic planning
- single-agent: multi-agent planning; general game playing; game-theoretic planning
- fully observable: POND planning; conformant planning
- sequential: e.g., temporal planning

Domain-dependent planning problems in AI include:

- pathfinding, including grid-based and multi-agent (MAPF)
- continuous motion planning

Planning 000000	Examples ●0000	Getting to Know a Planner 000000000	

Planning Task Examples

Planning 200000 Examples 00000 How Hard is Planning?

Getting to Know a Planner 000000000 Summary 00

Example: The Seven Bridges of Königsberg

image credits: Bogdan Giușcă (public domain)

Hands-on Material

\$ ls hands-on/koenigsberg

Planning 000000 Examples 00●00 How Hard is Planning? 000 Getting to Know a Planner

Summary 00

Example: Intelligent Greenhouse

photo ⓒ LemnaTec GmbH

Hands-on Material

\$ ls hands-on/ipc/scanalyzer-08-strips

lanning 00000 Examples 000●0 How Hard is Planning?

Getting to Know a Planner 00000000 Summary 00

Example: FreeCell

image credits: GNOME Project (GNU General Public License)

Hands-on Material

\$ ls hands-on/ipc/freecell

	Planning 000000	Examples 00000	Getting to Know a Planner 000000000	
Many Mor	e Exar	nples		

Hands-on Material

. . .

```
$ ls hands-on/ipc
airport
airport-adl
assembly
barman-opt11-strips
barman-sat11-strips
blocks
depot
driverlog
elevators-opt08-strips
```

 \sim (most) benchmarks of planning competitions IPC 1998–2011

Planning	How Hard is Planning?	Getting to Know a Planner	
	000		

How Hard is Planning?

 About This Tutorial
 Planning
 Examples
 How Hard is Planning?
 Getting to Know a Planner
 Summary

 00000000
 00000
 000
 000
 00000000
 00

Planning as State-Space Search

Planning as state-space search:

 \rightsquigarrow more in Part 2

	Planning 000000		How Hard is Planning? ○○●	Getting to Know a Planner 000000000	
Is Planning	g Diffic	ult?			

Classical planning is computationally challenging:

- number of states grows exponentially with description size when using "grounded" representations; doubly exponentially when using "schematic" representations
- provably hard (PSPACE-complete/EXPSPACE-complete)

Problem sizes:

- Seven Bridges of Königsberg: 64 reachable states
- Rubik's Cube: 4.325 · 10¹⁹ reachable states
 → consider 2 billion/second → 1 billion years
- standard benchmarks: some with $> 10^{200}$ reachable states

Planning	How Hard is Planning?	Getting to Know a Planner	
		00000000	

Getting to Know a Planner

	Planning 000000		Getting to Know a Planner o●ooooooo	
Catting to	Know	a Dland		

Getting to Know a Planner

We now play around a bit with a planner and its input:

- look at problem formulation
- run a planner (= planning system/planning algorithm)
- validate plans found by the planner

Getting to Know a Planner 00000000

Planner: Fast Downward

Fast Downward

We use our own Fast Downward planner for this tutorial:

- because we know it well
- because it implements many search algorithms and heuristics
- because it is the classical planner most commonly used as a basis for other planners these days

~> http://www.fast-downward.org

We emphasize that there are other great planners out there.

	Planning 000000		Getting to Know a Planner 000●00000	
Validator:	VAL			

VAL

We use the VAL plan validation tool (Fox, Howey & Long) to independently verify that the plans we generate are correct.

- very useful debugging tool
- included in Fast Downward repository

~~ https://github.com/KCL-Planning/VAL

lanning

amples

How Hard is Planning? 000 Getting to Know a Planner

Summary 00

Illustrating Example: 15-Puzzle

9	2	12	7
5	6	14	13
3		11	1
15	4	10	8

anning 1 00000 How Hard is Plar 000 Getting to Know a Planner

Summary 00

Solving the 15-Puzzle

Hands-On

. . .

. . .

\$ cd hands-on

- \$ less tile/puzzle.pddl
- \$ less tile/puzzle01.pddl

\$./validate tile/puzzle.pddl tile/puzzle01.pddl \
 sas_plan

bout This Tutorial Planı 0000000 000

nning 10000 How H

low Hard is Planning?

Getting to Know a Planner

Summary 00

Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:

- moving different tiles has different cost
- cost of moving tile x = number of prime factors of x

Hands-On

. . .

Planning 000000		Getting to Know a Planner 0000000●0	
	1		

Variation: Glued 15-Puzzle

Glued 15-Puzzle:

some tiles are glued in place and cannot be moved

Hands-On

```
$ cd hands-on
$ meld tile/puzzle.pddl tile/glued.pddl
$ meld tile/puzzle01.pddl tile/glued01.pddl
$ ./fd tile/glued.pddl tile/glued01.pddl\
        --heuristic "h=cg()" \
        --search "eager_greedy(h,preferred=h)"
....
```

Note: different heuristic used!

 About This Tutorial
 Planning
 Examples
 How Hard is Planning?
 Getting to Know a Planner
 Summa

 00000000
 00000
 000
 000
 000
 00
 00

Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

• Can remove tiles from puzzle frame (creating more blanks) and reinsert tiles at any blank location.

Hands-On

. . .

About This Tutorial	Planning	How Hard is Planning?	Getting to Know a Planner	Summary
				•0

Summary

	Planning 000000		Getting to Know a Planner 000000000	Summary ○●
Summary				

- planning = thinking before acting
- mainly studied at ICAPS (specialized), AAAI, IJCAI, ECAI
- domain-independent planning = general problem solving
- classical planning = the "easy case" (deterministic, fully observable etc.)
- still hard enough! PSPACE-/EXPSPACE-complete because of huge number of states
- many examples of planning tasks (~> hands-on material)
- tutorial focuses on one approach to classical planning, based on heuristic search