Planning and Optimization F11. Operator Counting

Malte Helmert and Gabriele Röger

Universität Basel

December 15, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

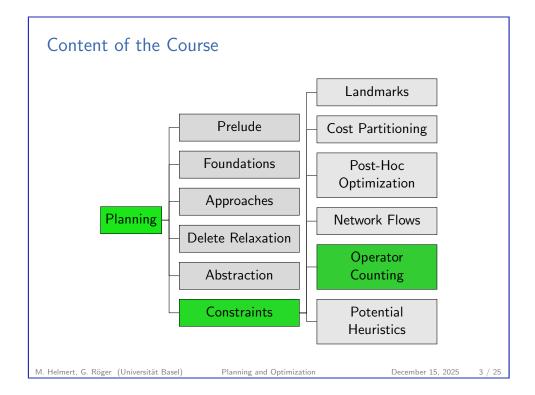
December 15, 2025

Planning and Optimization

December 15, 2025 — F11. Operator Counting

F11.1 Introduction

F11.2 Operator-counting Framework


F11.3 Properties

F11.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

F11. Operator Counting Introduction

F11.1 Introduction

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

F11. Operator Counting Introduction

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe how often operators must be used in each plan.

Example (Flow Constraints)

Let Π be a planning problem with operators $\{o_{red}, o_{green}, o_{blue}\}$. The flow constraint for some atom a is the constraint

$$1 + Count_{Ogreen} = Count_{Ored}$$
 if

- ► a is true in the initial state
- ► o_{green} produces a

► a is false in the goal

Ored consumes a

In natural language, the flow constraint expresses that

every plan uses o_{red} once more than o_{green} .

M. Helmert, G. Röger (Universität Basel)

F11. Operator Counting

Planning and Optimization

December 15, 2025

December 15, 2025

5 / 25

Operator-counting Framework

F11.2 Operator-counting Framework

F11. Operator Counting Introduction Reminder: Flow Heuristic Let us now observe how each flow constraint alters the operator count solution space. $\frac{2}{1} \frac{1}{0}$ 0 1 1 "plans that use → as often as →" 0 2 2 0 0 0 1 1 1 $\begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$ 2 2 0 3 0 2 "plans that use → once more than →' 3 1 0 2 2 1

Planning and Optimization

F11. Operator Counting

Operator-counting Framework

December 15, 2025

Operator Counting

M. Helmert, G. Röger (Universität Basel)

Operator counting

- generalizes this idea to a framework that allows to admissibly combine different heuristics.
- uses linear constraints . . .
- ▶ ... that describe number of occurrences of an operator ...
- ▶ ... and must be satisfied by every plan.
- provides declarative way to describe knowledge about solutions.
- allows reasoning about solutions to derive heuristic estimates.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Operator-counting Framework

Operator-counting Constraint

Definition (Operator-counting Constraints)

Let Π be a planning task with operators O and let s be a state. Let \mathcal{V} be the set of integer variables Count_o for each $o \in O$.

A linear inequality over \mathcal{V} is called an operator-counting constraint for s if for every plan π for s setting each Count, to the number of occurrences of o in π is a feasible variable assignment.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

F11. Operator Counting

Operator-counting Framework

Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IP_C for a set C of operator-counting constraints for state s is

Minimize
$$\sum_{o \in O} cost(o) \cdot Count_o$$
 subject to

C and Count_o > 0 for all $o \in O$.

where O is the set of operators.

The IP heuristic h_C^{IP} is the objective value of IP_C, the LP heuristic h_C^{LP} is the objective value of its LP-relaxation.

If the IP/LP is infeasible, the heuristic estimate is ∞ .

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

F11. Operator Counting

Operator-counting Framework

Operator-counting Constraints

- ▶ Adding more constraints can only remove feasible solutions.
- Fewer feasible solutions can only increase the objective value.
- ▶ Higher objective value means better informed heuristic
- ⇒ Have we already seen other operator-counting constraints?

F11. Operator Counting

Operator-counting Framework

Reminder: Minimum Hitting Set for Landmarks

Variables

Non-negative variable Applied, for each operator of

Objective

Minimize $\sum_{o} cost(o) \cdot Applied_{o}$

Subject to

 $\sum_{o \in L} \mathsf{Applied}_o \geq 1 \text{ for all landmarks } L$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Operator Counting with Disjunctive Action Landmarks

Variables

Non-negative variable Count_o for each operator o

Objective

Minimize $\sum_{o} cost(o) \cdot Count_{o}$

Subject to

$$\sum_{o \in I} \mathsf{Count}_o \ge 1 \text{ for all landmarks } L$$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

Reminder: Post-hoc Optimization Heuristic

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

F11. Operator Counting

Non-negative variables X_o for all operators $o \in O$ X_o is cost incurred by operator o

Objective

Minimize $\sum_{o \in O} X_o$

Subject to

$$\sum\nolimits_{o \in O: o \text{ relev. for } \alpha} X_o \geq h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_o \geq 0 \qquad \text{for all } o \in O$$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

Operator-counting Framework

F11. Operator Counting

Operator-counting Framework

Operator Counting with Post-hoc Optimization Constraints

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

Non-negative variables $Count_o$ for all operators $o \in O$ $Count_o \cdot cost(o)$ is cost incurred by operator o

Objective

Minimize $\sum_{o \in O} cost(o) \cdot Count_o$

Subject to

$$\sum\nolimits_{o \in O:o \text{ relev. for } \alpha} cost(o) \cdot \mathsf{Count}_o \geq h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$cost(o) \cdot \mathsf{Count}_o \geq 0 \qquad \text{for all } o \in O$$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

M. Helmert, G. Röger (Universität Basel)

3 1 0

December 15, 2025

F11. Operator Counting Operator-counting Framework Example $\frac{2}{1} \frac{1}{0}$ 1 1 2 0 0 0"plans that use → at least once' 121 0 0 1 1 3 1 1002 2 0 1 2 0 "plans where → and → "plans that use cost 4 or more together once more than →"

Operator-counting Framework

Further Examples?

- ▶ The definition of operator-counting constraints can be extended to groups of constraints and auxiliary variables.
- ▶ With this extended definition we could also cover more heuristics, e.g., the perfect relaxation heuristic h^+

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

December 15, 2025

F11. Operator Counting Properties

F11.3 Properties

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

Properties

F11. Operator Counting

Admissibility

Theorem (Operator-counting Heuristics are Admissible)

The IP and the IP heuristic are admissible.

Proof.

Let C be a set of operator-counting constraints for state s and π be an optimal plan for s. The number of operator occurrences of π are a feasible solution for C. As the IP/LP minimizes the total plan cost, the objective value cannot exceed the cost of π and is therefore an admissible estimate.

F11. Operator Counting

Dominance

Theorem

Let C and C' be sets of operator-counting constraints for s and let $C \subseteq C'$. Then $IP_C \le IP_{C'}$ and $LP_C \le LP_{C'}$.

Proof.

Every feasible solution of C' is also feasible for C. As the LP/IP is a minimization problem, the objective value subject to C can therefore not be larger than the one subject to C'.

Adding more constraints can only improve the heuristic estimate.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Properties

Heuristic Combination

Operator counting as heuristic combination

- Multiple operator-counting heuristics can be combined by computing h_C^{LP}/h_C^{IP} for the union of their constraints.
- ► This is an admissible combination.
 - ▶ Never worse than maximum of individual heuristics
 - Sometimes even better than their sum
- ► We already know a way of admissibly combining heuristics: cost partitioning.
 - ⇒ How are they related?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

1 / 25

F11. Operator Counting

Properties

Connection to Cost Partitioning

Theorem

Let C_1, \ldots, C_n be sets of operator-counting constraints for s and $C = \bigcup_{i=1}^n C_i$. Then h_C^{LP} is the optimal general cost partitioning over the heuristics h_C^{LP} .

Proof Sketch.

In LP_C, add variables Count_o^i and $\mathsf{constraints}\ \mathsf{Count}_o = \mathsf{Count}_o^i$ for all operators o and $1 \le i \le n$. Then replace Count_o^i by Count_o^i in C_i .

Dualizing the resulting LP shows that h_C^{LP} computes a cost partitioning. Dualizing the component heuristics of that cost partitioning shows that they are h_C^{LP} .

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

F11. Operator Counting

Properties

Comparison to Optimal Cost Partitioning

- some heuristics are more compact if expressed as operator counting
- some heuristics cannot be expressed as operator counting
- operator counting IP even better than optimal cost partitioning
- Cost partitioning maximizes, so heuristics must be encoded perfectly to guarantee admissibility.
 Operator counting minimizes, so missing information just makes the heuristic weaker.

F11. Operator Counting

F11.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025

/ 25

Planning and Optimization

December 15, 2025

24 / 2

Summary

- ▶ Many heuristics can be formulated in terms of operator-counting constraints.
- ▶ The operator counting heuristic framework allows to combine the constraints and to reason on the entire encoded declarative knowledge.
- ► The heuristic estimate for the combined constraints can be better than the one of the best ingredient heuristic but never worse.
- ► Operator counting is equivalent to optimal general cost partitioning over individual constraints.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 15, 2025 25 / 25

