Planning and Optimization F8. Optimal and General Cost-Partitioning

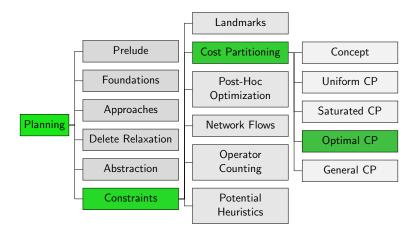
Malte Helmert and Gabriele Röger

Universität Basel

December 8, 2025

Optimal Cost Partitioning

Content of the Course



Optimal Cost Partitioning: General Approach

- Can we find a better cost partitioning than with the uniform or saturation strategy? Even an optimal one?
- Idea: exploit linear programming
 - Use variables for cost of each operator in each task copy
 - Express heuristic values with linear constraints
 - Maximize sum of heuristic values subject to these constraints

Optimal Cost Partitioning: General Approach

- Can we find a better cost partitioning than with the uniform or saturation strategy? Even an optimal one?
- Idea: exploit linear programming
 - Use variables for cost of each operator in each task copy
 - Express heuristic values with linear constraints
 - Maximize sum of heuristic values subject to these constraints

LPs known for

- abstraction heuristics (not covered in this course)
- disjunctive action landmarks (now)

Optimal Cost Partitioning for Landmarks: Basic Version

- Use an LP that covers the heuristic computation and the cost partitioning.
- LP variable $C_{L,o}$ for cost of operator o in induced task for disjunctive action landmark L (cost partitioning)
- LP variable Cost_L for cost of disjunctive action landmark L in induced task (value of individual heuristics)

Optimal Cost Partitioning for Landmarks: Basic LP

Variables

Non-negative variable Cost_L for each disj. action landmark $L \in \mathcal{L}$ Non-negative variable $\mathsf{C}_{L,o}$ for each $L \in \mathcal{L}$ and operator o

Objective

Maximize $\sum_{L \in \mathcal{L}} \mathsf{Cost}_L$

Subject to

$$\sum_{L \in \mathcal{L}} C_{L,o} \leq cost(o) \quad \text{ for all operators } o$$

 $Cost_L \leq C_{L,o}$

for all $L \in \mathcal{L}$ and $o \in L$

Optimal Cost Partitioning for Landmarks: Improved

- Observation: Explicit variables for cost partitioning not necessary.
- Use implicitly $cost_L(o) = Cost_L$ for all $o \in L$ and 0 otherwise.

Optimal Cost Partitioning for Landmarks: Improved LP

Variables

Non-negative variable Cost_L for each disj. action landmark $L \in \mathcal{L}$

Objective

Maximize $\sum_{L \in \mathcal{L}} \mathsf{Cost}_L$

Subject to

$$\sum_{L \in \mathcal{L}: o \in L} \mathsf{Cost}_L \le \mathit{cost}(o) \quad \text{ for all operators } o$$

Example (1)

Example

Let Π be a planning task with operators o_1, \ldots, o_4 and $cost(o_1) = 3$, $cost(o_2) = 4$, $cost(o_3) = 5$ and $cost(o_4) = 0$. Let the following be disjunctive action landmarks for Π :

$$\mathcal{L}_1 = \{o_4\}$$
 $\mathcal{L}_2 = \{o_1, o_2\}$
 $\mathcal{L}_3 = \{o_1, o_3\}$
 $\mathcal{L}_4 = \{o_2, o_3\}$

Example (2)

Example

```
\begin{aligned} & \text{Maximize } \mathsf{Cost}_{\mathcal{L}_1} + \mathsf{Cost}_{\mathcal{L}_2} + \mathsf{Cost}_{\mathcal{L}_3} + \mathsf{Cost}_{\mathcal{L}_4} \text{ subject to} \\ & [o_1] \qquad \mathsf{Cost}_{\mathcal{L}_2} + \mathsf{Cost}_{\mathcal{L}_3} \leq 3 \\ & [o_2] \qquad \mathsf{Cost}_{\mathcal{L}_2} + \mathsf{Cost}_{\mathcal{L}_4} \leq 4 \\ & [o_3] \qquad \mathsf{Cost}_{\mathcal{L}_3} + \mathsf{Cost}_{\mathcal{L}_4} \leq 5 \\ & [o_4] \qquad \mathsf{Cost}_{\mathcal{L}_1} \leq 0 \end{aligned}
```

 $Cost_{\mathcal{L}_i} \ge 0$ for $i \in \{1, 2, 3, 4\}$

Optimal Cost Partitioning for Landmarks (Dual view)

Variables

Non-negative variable Applied of for each operator o

Objective

Minimize $\sum_{o} Applied_{o} \cdot cost(o)$

Subject to

$$\sum_{o \in L} \mathsf{Applied}_o \geq 1 \text{ for all landmarks } L$$

Minimize "plan cost" with all landmarks satisfied.

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)

```
\begin{aligned} \text{Minimize} \quad & 3\mathsf{Applied}_{o_1} + 4\mathsf{Applied}_{o_2} + 5\mathsf{Applied}_{o_3} \quad \text{subject to} \\ & \quad & \mathsf{Applied}_{o_4} \geq 1 \\ & \quad & \mathsf{Applied}_{o_1} + \mathsf{Applied}_{o_2} \geq 1 \\ & \quad & \mathsf{Applied}_{o_1} + \mathsf{Applied}_{o_3} \geq 1 \\ & \quad & \mathsf{Applied}_{o_2} + \mathsf{Applied}_{o_3} \geq 1 \\ & \quad & \quad & \mathsf{Applied}_{o_i} \geq 0 \quad \text{for } i \in \{1,2,3,4\} \end{aligned}
```

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)

```
\begin{aligned} \text{Minimize} \quad & 3\mathsf{Applied}_{o_1} + 4\mathsf{Applied}_{o_2} + 5\mathsf{Applied}_{o_3} \quad \text{subject to} \\ & \quad & \mathsf{Applied}_{o_4} \geq 1 \\ & \quad & \mathsf{Applied}_{o_1} + \mathsf{Applied}_{o_2} \geq 1 \\ & \quad & \mathsf{Applied}_{o_1} + \mathsf{Applied}_{o_3} \geq 1 \\ & \quad & \mathsf{Applied}_{o_2} + \mathsf{Applied}_{o_3} \geq 1 \\ & \quad & \quad & \mathsf{Applied}_{o_i} \geq 0 \quad \text{for } i \in \{1,2,3,4\} \end{aligned}
```

This is equal to the LP relaxation of the MHS heuristic

Reminder: LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)

minimize
$$3X_{o_1} + 4X_{o_2} + 5X_{o_3}$$
 subject to $X_{o_4} > 1$

$$X_{o_1} + X_{o_2} \ge 1$$

$$X_{o_1}+X_{o_3}\geq 1$$

$$X_{o_2} + X_{o_3} \ge 1$$

$$X_{o_1} \ge 0$$
, $X_{o_2} \ge 0$, $X_{o_3} \ge 0$, $X_{o_4} \ge 0$

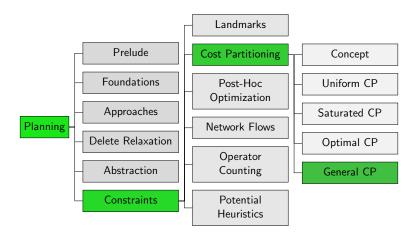
→ optimal solution of LP relaxation:

$$X_{o_4} = 1$$
 and $X_{o_1} = X_{o_2} = X_{o_3} = 0.5$ with objective value 6

LP relaxation of MHS heuristic is admissible and can be computed polynomial time

General Cost Partitioning

Content of the Course



General Cost Partitioning

Cost functions are usually non-negative.

- We tacitly also required this for task copies
- Makes intuitively sense: original costs are non-negative
- But: not necessary for cost-partitioning!

General Cost Partitioning

Definition (General Cost Partitioning)

Let Π be a planning task with operators O.

A general cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

- $cost_i: O \rightarrow \mathbb{R}$ for $1 \leq i \leq n$ and
- $\sum_{i=1}^{n} cost_i(o) \le cost(o)$ for all $o \in O$.

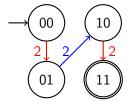
General Cost Partitioning: Admissibility

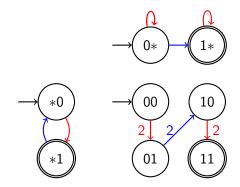
Theorem (Sum of Solution Costs is Admissible)

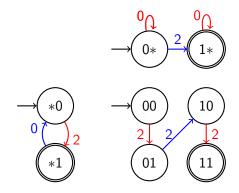
Let Π be a planning task, $\langle cost_1, \ldots, cost_n \rangle$ be a general cost partitioning and $\langle \Pi_1, \ldots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an admissible heuristic for Π , i.e., $\sum_{i=1}^{n} h_{\Pi_{i}}^{*} \leq h_{\Pi}^{*}$.

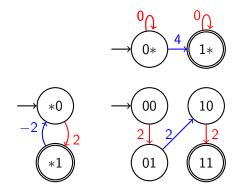
(Proof omitted.)



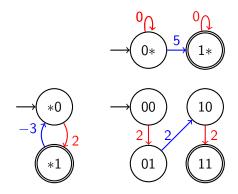




Heuristic value: 2 + 2 = 4



Heuristic value: 4 + 2 = 6



Heuristic value: $-\infty + 5 = -\infty$

Summary

Summary

- For abstraction heuristics and disjunctive action landmarks, we know how to determine an optimal cost partitioning, using linear programming.
- Although solving a linear program is possible in polynomial time, the better heuristic guidance often does not outweigh the overhead (in particular for abstraction heuristics).
- In constrast to standard (non-negative) cost partitioning, general cost partitioning allows negative operators costs.
- General cost partitioning has the same relevant properties as non-negative cost partitioning but is more powerful.