Planning and Optimization F7. Cost Partitioning

Malte Helmert and Gabriele Röger

Universität Basel

December 8, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

1 / 49

Planning and Optimization

December 8, 2025 — F7. Cost Partitioning

F7.1 Introduction

F7.2 Cost Partitioning

F7.3 Uniform Cost Partitioning

F7.4 Saturated Cost Partitioning

F7.5 Summary

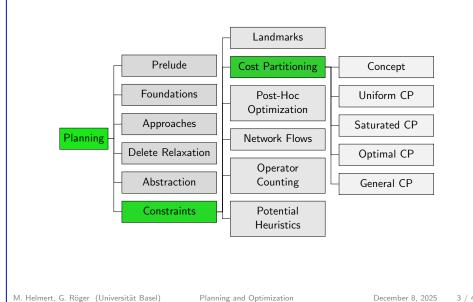
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

2 / 40

Content of the Course



F7. Cost Partitioning Introduction

F7.1 Introduction

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

4 / 4

Introduction

Exploiting Additivity

- Additivity allows to add up heuristic estimates admissibly. This gives better heuristic estimates than the maximum.
- ► For example, the canonical heuristic for PDBs sums up where addition is admissible (by an additivity criterion) and takes the maximum otherwise.
- Cost partitioning provides a more general additivity criterion, based on an adaption of the operator costs.

M. Helmert, G. Röger (Universität Basel)

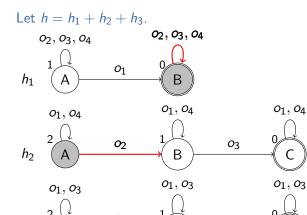
Planning and Optimization

December 8, 2025

F7. Cost Partitioning

Introduction

Combining Heuristics (In)admissibly: Example



 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but h(s) = 4. Heuristics h_2 and h_3 both account for the single application of o_2 .

M. Helmert, G. Röger (Universität Basel)

 o_2, o_3, o_4

 o_1, o_4

F7. Cost Partitioning

Let $h' = h_1 + h_2 + h'_3$, where $h'_3 = h^{v_3}$ assuming $cost_3(o_2) = 0$.

 o_1, o_4

Combining Heuristics Admissibly: Example

F7. Cost Partitioning

Introduction

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o₂ between the abstractions that use it (i.e. $cost_1(o_2) = 0$,

 $cost_2(o_2) = cost_3(o_2) = 0.5$).

This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^n \mathit{cost}_i(o) \leq \mathit{cost}(o) \; \mathsf{for \; all} \; o \in O$$

What about o_1 , o_3 and o_4 ?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and

h'(s) = 3 an admissible estimate.

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o₂ between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$).

This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^{n} cost_{i}(o) \leq cost(o) \text{ for all } o \in O$$

What about o_1 , o_3 and o_4 ?

M. Helmert, G. Röger (Universität Basel)

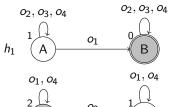
Planning and Optimization

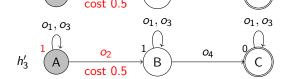
December 8, 2025

F7. Cost Partitioning

Combining Heuristics Admissibly: Example

Let $h' = h'_1 + h'_2 + h'_3$, where $h'_i = h^{v_i}$ assuming $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$.





 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and h'(s) = 0 + 1.5 + 1.5 = 3 an admissible estimate.

M. Helmert, G. Röger (Universität Basel)

December 8, 2025

F7. Cost Partitioning

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o₂ between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$).

This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^n cost_i(o) \leq cost(o) ext{ for all } o \in O$$

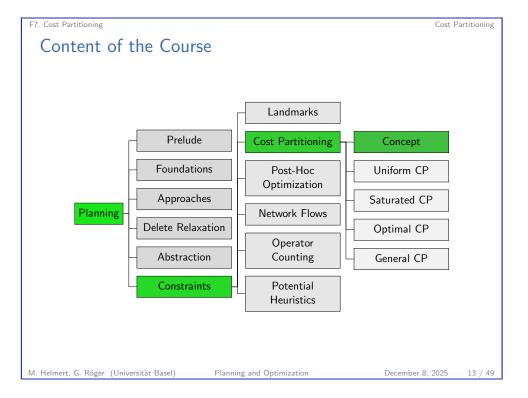
What about o_1 , o_3 and o_4 ?

F7. Cost Partitioning

Cost Partitioning

F7.2 Cost Partitioning

M. Helmert, G. Röger (Universität Basel)



F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, $\langle cost_1, \ldots, cost_n \rangle$ be a cost partitioning and $\langle \Pi_1, \ldots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an admissible heuristic for Π , i.e., $\sum_{i=1}^{n} h_{\Pi_{i}}^{*} \leq h_{\Pi}^{*}$.

F7. Cost Partitioning Cost Partitioning

Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators O.

A cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

- $ightharpoonup cost_i: O \to \mathbb{R}_0^+ \text{ for } 1 \leq i \leq n \text{ and }$
- $ightharpoonup \sum_{i=1}^n cost_i(o) \le cost(o)$ for all $o \in O$.

The cost partitioning induces a tuple $\langle \Pi_1, \dots, \Pi_n \rangle$ of planning tasks, where each Π_i is identical to Π except that the cost of each operator o is $cost_i(o)$.

M. Helmert, G. Röger (Universität Basel)

F7. Cost Partitioning

Planning and Optimization

December 8, 2025

Cost Partitioning

Cost Partitioning: Admissibility (2)

Proof of Theorem.

If there is no plan for state s of Π , both sides are ∞ . Otherwise, let $\pi = \langle o_1, \dots, o_m \rangle$ be an optimal plan for s. Then

$$\sum_{i=1}^{n} h_{\Pi_{i}}^{*}(s) \leq \sum_{i=1}^{n} \sum_{j=1}^{m} cost_{i}(o_{j}) \qquad (\pi \text{ plan in each } \Pi_{i})$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} cost_{i}(o_{j}) \qquad (comm./ass. \text{ of sum})$$

$$\leq \sum_{j=1}^{m} cost(o_{j}) \qquad (cost \text{ partitioning})$$

$$= h_{\Pi}^{*}(s) \qquad (\pi \text{ optimal plan in } \Pi)$$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

15 / 49

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write h_{Π} to denote heuristic h evaluated on task Π .

Corollary (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let $\langle \Pi_1, \dots, \Pi_n \rangle$ be induced by a cost partitioning.

For admissible heuristics h_1, \ldots, h_n , the sum $h(s) = \sum_{i=1}^n h_{i,\Pi_i}(s)$ is an admissible estimate for s in Π .

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

December 8, 2025

17 / 40

Cost Partitioning

Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let Π be a planning task and let $\langle \Pi_1, \dots, \Pi_n \rangle$ be induced by a cost partitioning $\langle cost_1, \dots, cost_n \rangle$.

If h_1, \ldots, h_n are consistent heuristics then $h = \sum_{i=1}^n h_{i,\Pi_i}$ is a consistent heuristic for Π .

Proof.

Let o be an operator that is applicable in state s.

$$egin{aligned} h(s) &= \sum_{i=1}^n h_{i,\Pi_i}(s) \leq \sum_{i=1}^n (cost_i(o) + h_{i,\Pi_i}(s\llbracket o
rbracket)) \ &= \sum_{i=1}^n cost_i(o) + \sum_{i=1}^n h_{i,\Pi_i}(s\llbracket o
rbracket) \leq cost(o) + h(s\llbracket o
rbracket) \end{aligned}$$

M. Helmert, G. Röger (Universität Basel)

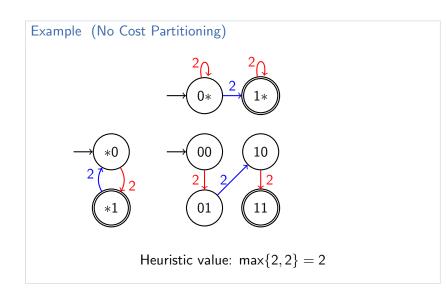
Planning and Optimization

December 8, 2025

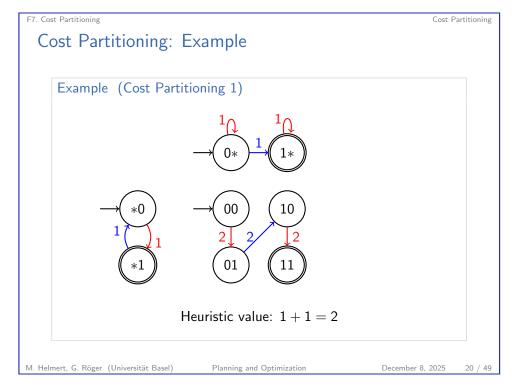
18 / 49

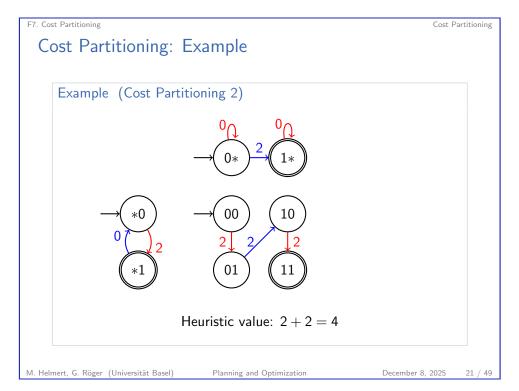
F7. Cost Partitioning Cost Part

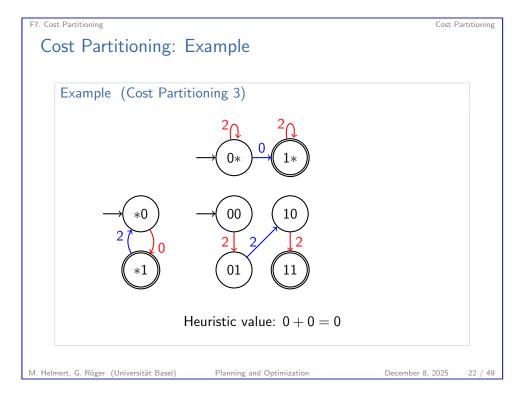
Cost Partitioning: Example



Planning and Optimization







F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Quality

- $h(s) = h_{1,\Pi_1}(s) + \cdots + h_{n,\Pi_n}(s)$ can be better or worse than any $h_{i,\Pi}(s)$ \rightarrow depending on cost partitioning
- strategies for defining cost-functions
 - uniform (now)
 - zero-one
 - ► saturated (afterwards)
 - optimal (next chapter)

F7. Cost Partitioning Uniform Cost Partitioning

F7.3 Uniform Cost Partitioning

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

F7. Cost Partitioning

- Principal idea: Distribute the cost of each operator equally (= uniformly) among all heuristics.
- ▶ But: Some heuristics do only account for the cost of certain operators and the cost of other operators does not affect the heuristic estimate. For example:
 - a disjunctive action landmark accounts for the contained
 - a PDB heuristic accounts for all operators affecting the variables in the pattern.
- ⇒ Distribute the cost of each operator uniformly among all heuristics that account for this operator.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

F7. Cost Partitioning

M. Helmert, G. Röger (Universität Basel)

Uniform Cost Partitioning

December 8, 2025

Example: Uniform Cost Partitioning for Landmarks

For disjunctive action landmark L of state s in task Π' , let $h_{L,\Pi'}(s)$ be the cost of L in Π' .

Planning and Optimization

- ▶ Then $h_{L,\Pi'}(s)$ is admissible (in Π').
- ▶ Consider set $\mathcal{L} = \{L_1, \dots, L_n\}$ of disjunctive action landmarks for state s of task Π .
- ▶ Use cost partitioning $\langle cost_{L_1}, \ldots, cost_{L_n} \rangle$, where

$$cost_{L_i}(o) = \begin{cases} cost(o)/|\{L \in \mathcal{L} \mid o \in L\}| & \text{if } o \in L_i \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Let $\langle \Pi_{L_1}, \dots, \Pi_{L_n} \rangle$ be the tuple of induced tasks.
- $h(s) = \sum_{i=1}^{n} h_{L_i,\Pi_{L_i}}(s)$ is an admissible estimate for s in Π.
- ▶ h is the uniform cost partitioning heuristic for landmarks.

F7. Cost Partitioning

Uniform Cost Partitioning

Example: Uniform Cost Partitioning for Landmarks

Definition (Uniform Cost Partitioning Heuristic for Landmarks) Let \mathcal{L} be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic $h^{UCP}(\mathcal{L})$ is defined as

$$h^{UCP}(\mathcal{L}) = \sum_{L \in \mathcal{L}} \min_{o \in L} c'(o)$$
 with

$$c'(o) = cost(o)/|\{L \in \mathcal{L} \mid o \in L\}|.$$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks

$$L_1 = \{o_1, o_3\}, L_2 = \{o_1, o_2, o_4\}, L_3 = \{o_1, o_4, o_5\}$$

with operator cost function

$$c(o_1) = 6$$
, $c(o_2) = 4$, $c(o_3) = 1$, $c(o_4) = 6$, $c(o_5) = 3$

UCP for landmarks uses adapted costs

$$c'(o_1) = 2$$
, $c'(o_2) = 4$, $c'(o_3) = 1$, $c'(o_4) = 3$, $c'(o_5) = 3$

with resulting heuristic estimate

$$h^{UCP}(\{L_1, L_2, L_3\}) = 1 + 2 + 2 = 5.$$

Constraints

(MHS heuristic estimate: 6)

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

F7. Cost Partitioning

Planning and Optimization

December 8, 2025

December 8, 2025

Saturated Cost Partitioning

29 / 4

F7.4 Saturated Cost Partitioning

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

20 / 4

Content of the Course Landmarks Prelude Cost Partitioning Concept Foundations Uniform CP Post-Hoc Optimization Approaches Saturated CP Planning Network Flows Delete Relaxation Optimal CP Operator Abstraction Counting General CP

Potential Heuristics

Planning and Optimization

F7. Cost Partitioning Saturated Cost Partitioning

ldea

F7. Cost Partitioning

Heuristics do not always "need" all operator costs

- Pick a heuristic and use minimum costs preserving all estimates
- Continue with remaining cost until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff between computation time and heuristic guidance in practice.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

F7. Cost Partitioning

Saturated Cost Partitioning

Saturated Cost Function

Definition (Saturated Cost Function)

Let Π be a planning task and h be a heuristic.

A cost function scf is saturated for h and cost if

- $h_{\Pi_{sef}}(s) = h_{\Pi}(s)$ for all states s, where Π_{scf} is Π with cost function scf.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

F7. Cost Partitioning

Saturated Cost Partitioning

Minimal Saturated Cost Function

For abstractions, there exists a unique minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)

Let Π be a planning task and α be an abstraction heuristic.

The minimal saturated cost function for α is

$$\mathsf{mscf}(o) = \mathsf{max}(\max_{\alpha(s) \stackrel{o}{ o} \alpha(t)} h^{lpha}(s) - h^{lpha}(t), 0)$$

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

F7. Cost Partitioning

Saturated Cost Partitioning

Algorithm

Saturated Cost Partitioning: Seipp & Helmert (2014)

Iterate:

- \bigcirc Pick a heuristic h_i that hasn't been picked before. Terminate if none is left.
- Compute h_i given current cost
- Ompute an (ideally minimal) saturated cost function scf; for h;
- **1** Decrease cost(o) by $scf_i(o)$ for all operators o

 $\langle scf_1, \dots, scf_n \rangle$ is a saturated cost partitioning (SCP) for $\langle h_1, \ldots, h_n \rangle$ (in pick order)

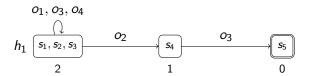
F7. Cost Partitioning

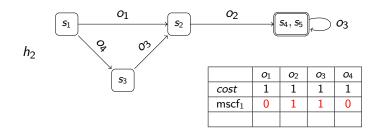
Saturated Cost Partitioning

Example

Consider the abstraction heuristics h_1 and h_2

3 Compute minimal saturated cost function $mscf_i$ for h_i

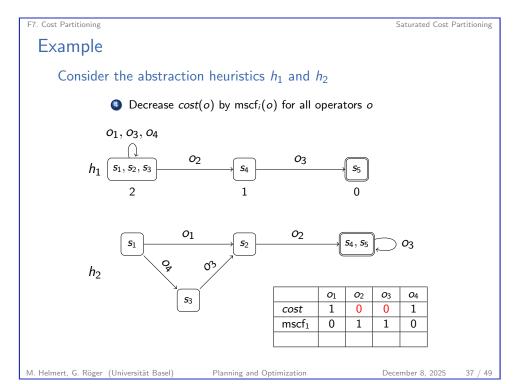


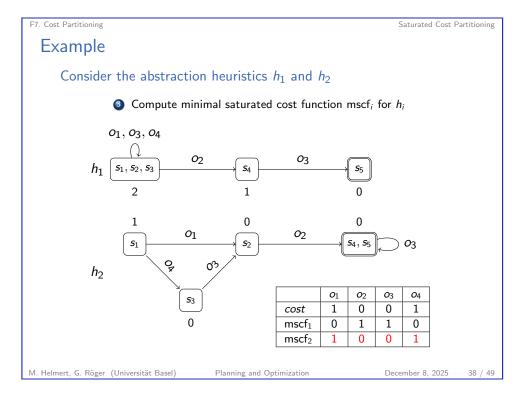


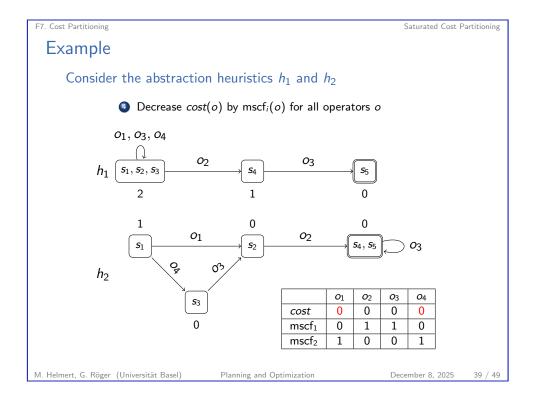
M. Helmert, G. Röger (Universität Basel)

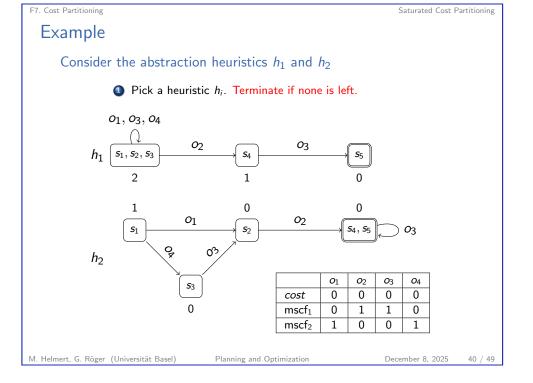
Planning and Optimization

December 8, 2025









Influence of Selected Order

- quality highly susceptible to selected order
- ▶ there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- but there are also often orders where SCP performs worse

M. Helmert, G. Röger (Universität Basel)

Saturated Cost Partitioning: Order

01, 03, 04

 s_1, s_2, s_3

Consider the abstraction heuristics h_1 and h_2

02

01

F7. Cost Partitioning

Planning and Optimization

03

02

cost

 $mscf_2$

 $mscf_1$

December 8, 2025

Saturated Cost Partitioning

Saturated Cost Partitioning Saturated Cost Partitioning: Order Consider the abstraction heuristics h_1 and h_2 o_1, o_3, o_4 $h_1 \mid s_1, s_2, s_3$ 01 02 **O**4 1 1 1 1 cost $mscf_2$ 1 1 1 0 M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 8, 2025

F7. Cost Partitioning Saturated Cost Partitioning

Influence of Selected Order

- quality highly susceptible to selected order
- ▶ there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- but there are also often orders where SCP performs worse

Maximizing over multiple orders good solution in practice

M. Helmert, G. Röger (Universität Basel)

 h_2

Planning and Optimization

December 8, 2025

O4

0

0

1

1

0

1

0

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for \mathcal{L} is

$$\mathsf{mscf}(o) = egin{cases} \mathsf{min}_{o \in \mathcal{L}} \mathit{cost}(o) & \mathsf{if} \ o \in \mathcal{L} \\ 0 & \mathsf{otherwise} \end{cases}$$

Does this look familiar?

M. Helmert, G. Röger (Universität Basel)

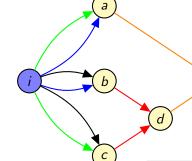
Planning and Optimization

December 8, 2025

45 / 4

F7. Cost Partitioning

Reminder: LM-Cut



 $O_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$ $O_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$

Saturated Cost Partitioning

 $o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$ $o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle$

 $O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

 $\begin{array}{c|cccc} \text{round} & P(\textcolor{red}{o_{\text{orange}}}) & P(\textcolor{red}{o_{\text{red}}}) & \text{landmark} & \text{cost} \\ \hline 1 & \text{d} & \text{b} & \{\textcolor{red}{o_{\text{red}}}\} & 2 \\ \hline 2 & \text{a} & \text{b} & \{\textcolor{red}{o_{\text{green}}}, \textcolor{red}{o_{\text{blue}}}\} & 4 \\ \hline 3 & \text{d} & \text{c} & \{\textcolor{red}{o_{\text{green}}}, \textcolor{red}{o_{\text{black}}}\} & 1 \\ \hline & \textcolor{red}{h^{\text{LM-cut}}(I)} & 7 \\ \hline \end{array}$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

46 / 49

F7. Cost Partitioning

Saturated Cost Partitioning

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks, where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and $\mathcal L$ be a disjunctive action landmark. The minimal saturated cost function for $\mathcal L$ is

$$mscf(o) = \begin{cases} min_{o \in \mathcal{L}} cost(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks

F7. Cost Partitioning Summary

F7.5 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 8, 2025

48 / 49

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

F7. Cost Partitioning Summary

Summary

Cost partitioning allows to admissibly add up estimates of several heuristics.

- ► This can be better or worse than the best individual heuristic on the original problem, depending on the cost partitioning.
- ▶ Uniform cost partitioning distributes the cost of each operator uniformly among all heuristics that account for it.
- ► Saturated cost partitioning offers a good tradeoff between computation time and heuristic guidance.
- ► LM-Cut computes a SCP over disjunctive action landmarks.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

