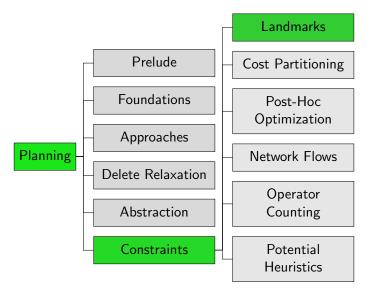
Planning and Optimization F2. Landmarks: RTG Landmarks

Malte Helmert and Gabriele Röger

Universität Basel

November 26, 2025

Content of the Course



Landmarks •000000000000

Landmarks

Landmarks

Basic Idea: Something that must happen in every solution

For example

- some operator must be applied (action landmark)
- some atomic proposition must hold (fact landmark)
- some formula must be true (formula landmark)
- → Derive heuristic estimate from this kind of information.

Landmarks

Landmarks

Basic Idea: Something that must happen in every solution

For example

- some operator must be applied (action landmark)
- some atomic proposition must hold (fact landmark)
- some formula must be true (formula landmark)
- → Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.

Reminder: Terminology

Landmarks 000000000000

> Consider sequence of transitions $s^0 \xrightarrow{\ell_1} s^1, \dots, s^{n-1} \xrightarrow{\ell_n} s^n$ such that $s^0 = s$ and $s^n = s'$.

- s^0, \ldots, s^n is called (state) path from s to s'
- ℓ_1, \ldots, ℓ_n is called (label) path from s to s'

Disjunctive Action Landmarks

Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A disjunctive action landmark for s is a set of operators $L \subseteq O$ such that every label path from s to a goal state contains an operator from L.

The cost of landmark L is $cost(L) = min_{o \in L} cost(o)$.

If we talk about landmarks for the initial state, we omit "for I".

Fact and Formula Landmarks

Landmarks 000000000

Definition (Formula and Fact Landmark)

Let s be a state of a propositional or FDR planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A formula landmark for s is a formula λ over V such that every state path from s to a goal state contains a state s'with $s' \models \lambda$.

If λ is an atomic proposition then λ is a fact landmark.

If we talk about landmarks for the initial state, we omit "for I".

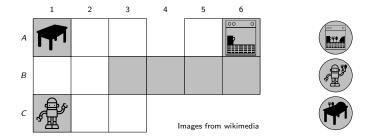
Example

Consider a FDR planning task $\langle V, I, O, \gamma \rangle$ with

- $V = \{robot-at, dishes-at\}$ with
 - \bullet dom(robot-at) = {A1, ..., C3, B4, A5, ..., B6}
 - dom(dishes-at) = {Table, Robot, Dishwasher}
- $I = \{ robot-at \mapsto C1, dishes-at \mapsto Table \}$
- operators
 - move-x-y to move from cell x to adjacent cell y
 - pickup dishes, and
 - load dishes into the dishwasher.
- $\gamma = (robot-at = B6) \land (dishes-at = Dishwasher)$

Fact and Formula Landmarks: Example

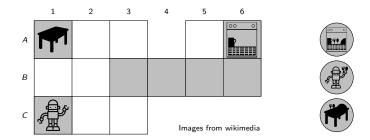
Landmarks



Each fact in gray is a fact landmark:

- robot-at = x for $x \in \{A1, A6, B3, B4, B5, B6, C1\}$
- dishes-at = x for $x \in \{Dishwasher, Robot, Table\}$

Fact and Formula Landmarks: Example



Each fact in gray is a fact landmark:

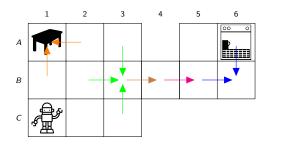
- robot-at = x for $x \in \{A1, A6, B3, B4, B5, B6, C1\}$
- dishes-at = x for $x \in \{Dishwasher, Robot, Table\}$

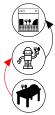
Formula landmarks:

Landmarks

- $dishes-at = Robot \land robot-at = B4$
- robot-at = $B1 \lor robot-at = A2$

Disjunctive Action Landmarks: Example





Actions of same color form disjunctive action landmark:

- {pickup}
- {load}
- {move-B3-B4}
- {move-B4-B5}

- {move-A6-B6, move-B5-B6}
- {move-A3-B3, move-B2-B3, move-C3-B3}
- {move-B1-A1, move-A2-A1}
- **.** . . .

Remarks

Landmarks 0000000000000

- Not every landmark is informative. Some examples:
 - The set of all operators is a disjunctive action landmark unless the initial state is already a goal state.
 - Every variable that is initially true is a fact landmark.
 - The goal formula is a formula landmark.
- Every fact landmark v that is initially false induces a disjunctive action landmark consisting of all operators that possibly make v true.

Theorem

Landmarks

Deciding whether a given operator set is a disjunctive action landmark is as hard as the plan existence problem.

Proof.

Given a propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$, create a new planning task Π' with goal $g \notin V$ as $\Pi' = \langle V \cup \{g\}, I \cup \{g \mapsto \mathbf{F}\}, O \cup \{o_{\gamma}, o_{\top}\}, g\rangle$, where

$$o_{\gamma} = \langle \gamma, g, 0
angle$$
, and $o_{\top} = \langle \top, g, 0
angle$.

If $\gamma = \top$ then Π is trivially solvable. Otherwise Π is solvable iff $\{o_{\top}\}$ is not a disjunctive action landmark of Π' .

Complexity: Fact Landmarks

Theorem

Deciding whether a given atomic proposition is a fact landmark is as hard as the plan existence problem.

Proof.

Given a propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$, let $p, g \notin V$ be new atomic propositions and create a new planning

task $\Pi' = \langle V \cup \{p,g\}, I \cup \{p \mapsto F, g \mapsto F\}, O \cup \{o,o'\}, g \rangle$, where

$$o = \langle \gamma, g, 0 \rangle$$
, and $o' = \langle \top, g \wedge p, 0 \rangle$.

Then p is a fact landmark of Π' iff Π is not solvable.

Complexity: Discussion

Does this mean that the idea of exploiting landmarks is fruitless?

Complexity: Discussion

Landmarks 000000000000

> Does this mean that the idea of exploiting landmarks is fruitless?- No!

Complexity: Discussion

Landmarks 000000000000

- Does this mean that the idea of exploiting landmarks is fruitless?- No!
- We do not need to know all landmarks, so we can use incomplete methods to identify landmarks.
 - The way we generate the landmarks guarantees that they are indeed landmarks.
 - Efficient landmark generation methods do not guarantee to generate all possible landmarks.

Computing Landmarks

Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:

- RHW landmarks: Richter, Helmert & Westphal. Landmarks Revisited. (AAAI 2008)
- LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009)
- h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010)

Today we will discuss the special case of h^m landmarks for m = 1, restricted to STRIPS planning tasks.

Set Representation

Set Representation of STRIPS Planning Tasks

In this (and the following) sections, we only consider STRIPS. For a more convenient notation, we will use a set representation of STRIPS planning task. . .

Three differences:

- Represent conjunctions of variables as sets of variables.
- Use two sets to represent add and delete effects of operators separately.
- Represent states as sets of the true variables.

STRIPS Operators in Set Representation

Every STRIPS operator is of the form

$$\langle v_1 \wedge \cdots \wedge v_p, a_1 \wedge \cdots \wedge a_q \wedge \neg d_1 \wedge \cdots \wedge \neg d_r, c \rangle$$

where v_i , a_i , d_k are state variables and c is the cost.

- The same operator o in set representation is $\langle pre(o), add(o), del(o), cost(o) \rangle$, where
 - $pre(o) = \{v_1, \dots, v_p\}$ are the preconditions,
 - $add(o) = \{a_1, \dots, a_a\}$ are the add effects,
 - $del(o) = \{d_1, \dots, d_r\}$ are the delete effects, and
 - cost(o) = c is the operator cost.
- Since STRIPS operators must be conflict-free, $add(o) \cap del(o) = \emptyset$

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple $\langle V, I, O, G \rangle$, where

- V is a finite set of state variables.
- $I \subset V$ is the initial state.
- O is a finite set of STRIPS operators in set representation,
- ullet $G \subseteq V$ is the goal.

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple $\langle V, I, O, G \rangle$, where

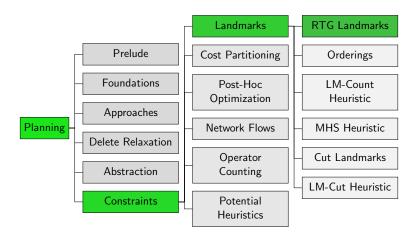
- V is a finite set of state variables.
- $I \subset V$ is the initial state.
- O is a finite set of STRIPS operators in set representation,
- $G \subseteq V$ is the goal.

The corresponding planning task in the previous notation is $\langle V, I', O', \gamma \rangle$, where

- $I'(v) = T \text{ iff } v \in I$
- $O' = \{ \langle \land \lor \lor, \land \lor \lor \land \land \neg \lor, cost(o) \rangle \mid o \in O \},$ $v \in pre(o)$ $v \in add(o)$ $v \in del(o)$
- $\mathbf{v} = \mathbf{v}$

Landmarks from RTGs

Content of the Course



Incidental Landmarks: Example

Example (Incidental Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

 $I = \{a, b, e\},$
 $o_1 = \langle \{a\}, \{c, d, e\}, \{b\} \rangle,$
 $o_2 = \langle \{d, e\}, \{f\}, \{a\} \rangle,$ and
 $G = \{e, f\}.$

Single solution: $\langle o_1, o_2 \rangle$

- All variables are fact landmarks.
- Variable *b* is initially true but irrelevant for the plan.
- Variable *c* gets true as "side effect" of *o*₁ but it is not necessary for the goal or to make an operator applicable.

Causal Landmarks (1)

Definition (Causal Formula Landmark)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a propositional or FDR planning task.

A formula λ over V is a causal formula landmark for I if $\gamma \models \lambda$ or if for all plans $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $pre(o_i) \models \lambda$.

Causal Landmarks (2)

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task (in set representation).

A variable $v \in V$ is a causal fact landmark for I

- if $v \in G$ or
- if for all plans $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.

Landmarks from RTGs

Causal Landmarks: Example

Example (Causal Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

 $I = \{a, b, e\},$
 $o_1 = \langle \{a\}, \{c, d, e\}, \{b\} \rangle,$
 $o_2 = \langle \{d, e\}, \{f\}, \{a\} \rangle,$ and
 $G = \{e, f\}.$

Landmarks from RTGs

Single solution: $\langle o_1, o_2 \rangle$

- All variables are fact landmarks for the initial state.
- Only a, d, e and f are causal landmarks.

What We Are Doing Next

- Causal landmarks are the desirable landmarks.
- We can use a simplified version of RTGs for STRIPS to compute causal landmarks for STRIPS planning tasks.
- We will define landmarks of AND/OR graphs, . . .
- and show how they can be computed.
- Afterwards we establish that these are landmarks of the planning task.

Simplified Relaxed Task Graph

Definition

For a STRIPS planning task $\Pi = \langle V, I, O, G \rangle$ (in set representation), the simplified relaxed task graph $sRTG(\Pi^+)$ is the AND/OR graph $\langle N_{and} \cup N_{or}, A, type \rangle$ with

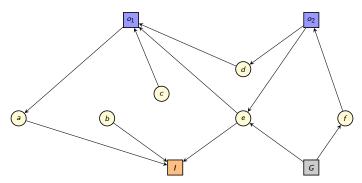
- $N_{\text{and}} = \{n_o \mid o \in O\} \cup \{v_I, v_G\}$ with $type(n) = \land$ for all $n \in N_{\text{and}}$,
- $N_{\text{or}} = \{n_v \mid v \in V\}$ with $type(n) = \forall$ for all $n \in N_{\text{or}}$, and
- $A = \{\langle n_a, n_o \rangle \mid o \in O, a \in add(o)\} \cup \{\langle n_o, n_p \rangle \mid o \in O, p \in pre(o)\} \cup \{\langle n_v, n_I \rangle \mid v \in I\} \cup \{\langle n_G, n_v \rangle \mid v \in G\}$

Like RTG but without extra nodes to support arbitrary conditions.

Landmarks from RTGs

Simplified RTG: Example

The simplified RTG for our example task is:



Justification

Definition (Justification)

Let $G = \langle N, A, type \rangle$ be an AND/OR graph.

A subgraph $J = \langle N^J, A^J, type^J \rangle$ with $N^J \subseteq N$ and $A^J \subseteq A$ and $type^J = type|_{N^J}$ justifies $n_\star \in N$ iff

- $\mathbf{n}_{\star} \in N^{J}$,
- $\forall n \in N^J$ with $type(n) = \land$: $\forall \langle n, n' \rangle \in A : n' \in N^J$ and $\langle n, n' \rangle \in A^J$
- $\forall n \in N^J$ with $type(n) = \lor$: $\exists \langle n, n' \rangle \in A : n' \in N^J$ and $\langle n, n' \rangle \in A^J$, and
- *J* is acyclic.

[&]quot;Proves" that n_{+} is forced true.

Landmarks from RTGs

Landmarks in AND/OR Graphs

Definition (Landmarks in AND/OR Graphs)

Let $G = \langle N, A, type \rangle$ be an AND/OR graph.

A node $n \in N$ is a landmark for reaching $n_* \in N$ if $n \in V^J$ for all justifications J for n_* .

But: exponential number of possible justifications

Characterizing Equation System

Theorem

Landmarks

Let $G = \langle N, A, type \rangle$ be an AND/OR graph. Consider the following system of equations:

$$LM(n) = \{n\} \cup \bigcap_{\langle n, n' \rangle \in A} LM(n') \quad type(n) = \lor$$

 $LM(n) = \{n\} \cup \bigcup_{\langle n, n' \rangle \in A} LM(n') \quad type(n) = \land$

The equation system has a unique maximal solution (maximal with regard to set inclusion), and for this solution it holds that

 $n' \in LM(n)$ iff n' is a landmark for reaching n in G.

Computation of Maximal Solution

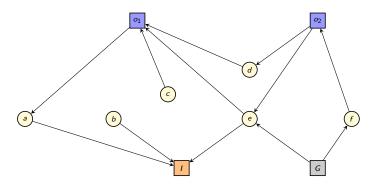
Theorem

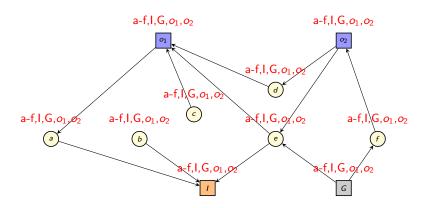
Let $G = \langle N, A, type \rangle$ be an AND/OR graph. Consider the following system of equations:

$$LM(n) = \{n\} \cup \bigcap_{\langle n, n' \rangle \in A} LM(n') \quad type(n) = \lor$$
 $LM(n) = \{n\} \cup \bigcup_{\langle n, n' \rangle \in A} LM(n') \quad type(n) = \land$

The equation system has a unique maximal solution (maximal with regard to set inclusion).

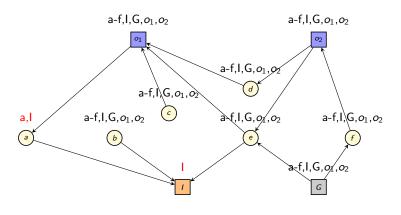
Computation: Initialize landmark sets as LM(n) = N and apply equations as update rules until fixpoint.



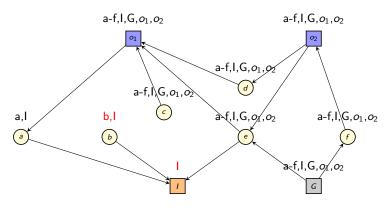


Initialize with all nodes

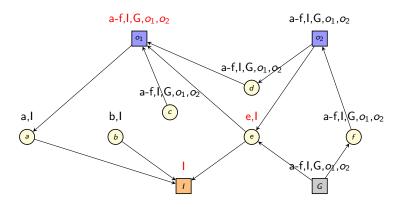




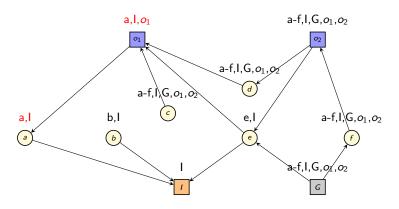
$$LM(a) = \{a\} \cup LM(I)$$



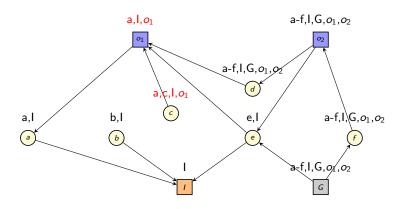
$$LM(b) = \{b\} \cup LM(I)$$



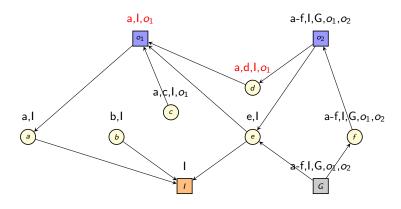
$$LM(e) = \{e\} \cup (LM(I) \cap LM(o_1))$$



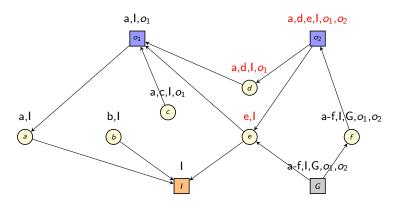
$$LM(o_1) = \{o_1\} \cup LM(a)$$



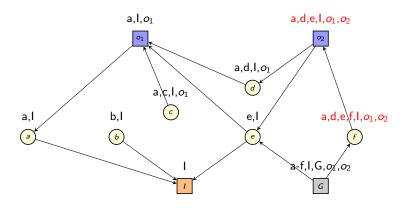
$$LM(c) = \{c\} \cup LM(o_1)$$



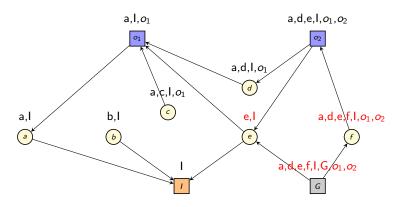
$$LM(d) = \{d\} \cup LM(o_1)$$



$$LM(o_2) = \{o_2\} \cup LM(d) \cup LM(e)$$



$$LM(f) = \{f\} \cup LM(o_2)$$



$$LM(G) = \{G\} \cup LM(e) \cup LM(f)$$

Relation to Planning Task Landmarks

$\mathsf{Theorem}$

Landmarks

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task and let \mathcal{L} be the set of landmarks for reaching n_G in $sRTG(\Pi^+)$.

The set $\{v \in V \mid n_v \in \mathcal{L}\}$ is exactly the set of causal fact landmarks in Π^+

For operators $o \in O$, if $n_o \in \mathcal{L}$ then $\{o\}$ is a disjunctive action landmark in Π^+ . There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)

Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

 $I = \{a, b, e\},$
 $o_1 = \langle \{a\}, \{c, d, e\}, \{b\} \rangle,$
 $o_2 = \langle \{d, e\}, \{f\}, \{a\} \rangle,$ and
 $G = \{e, f\}.$

- $LM(n_G) = \{a, d, e, f, I, G, o_1, o_2\}$
- \blacksquare a, d, e, and f are causal fact landmarks of Π^+ .
- $\{o_1\}$ and $\{o_2\}$ are disjunctive action landmarks of Π^+ .

(Some) Landmarks of Π^+ Are Landmarks of Π

$\mathsf{Theorem}$

Let Π be a STRIPS planning task.

All fact landmarks of Π^+ are fact landmarks of Π and all disjunctive action landmarks of Π^+ are disjunctive action landmarks of Π .

Proof.

Let L be a disjunctive action landmark of Π^+ and π be a plan for Π . Then π is also a plan for Π^+ and, thus, π contains an operator from I.

Let f be a fact landmark of Π^+ . If f is already true in the initial state, then it is also a landmark of Π . Otherwise, every plan for Π^+ contains an operator that adds f and the set of all these operators is a disjunctive action landmark of Π^+ . Therefore, also each plan of Π contains such an operator, making f a fact landmark of Π .

Not All Landmarks of Π^+ are Landmarks of Π

Example

Consider STRIPS task $\langle \{a, b, c\}, \emptyset, \{o_1, o_2\}, \{c\} \rangle$ with $o_1 = \langle \{\}, \{a\}, \{\}, 1 \rangle$ and $o_2 = \langle \{a\}, \{c\}, \{a\}, 1 \rangle$.

 $a \wedge c$ is a formula landmark of Π^+ but not of Π .

Summary

Summary

- Fact landmark: atomic proposition that is true in each state path to a goal
- Disjunctive action landmark: set L of operators such that every plan uses some operator from L
- We can efficiently compute all causal fact landmarks of a delete-free STRIPS task from the (simplified) RTG.
- Fact landmarks of the delete relaxed task are also landmarks of the original task.