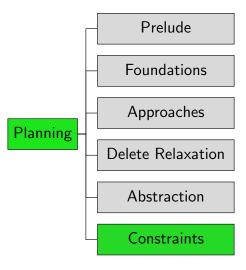
Planning and Optimization F1. Constraints: Introduction

Malte Helmert and Gabriele Röger

Universität Basel

November 26, 2025

Content of the Course



Constraint-based Heuristics

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

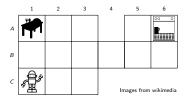
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

- delete relaxation
- abstraction
- critical paths
- landmarks
- network flows
- potential heuristic

Landmarks, network flows and potential heuristics are based on constraints that can be specified for a planning task.

Constraints: Example



FDR planning task $\langle V, I, O, \gamma \rangle$ with

- $lackbox{ }V=\{\textit{robot-at},\textit{dishes-at}\}\ \text{with}$
 - $dom(robot-at) = \{A1, ..., C3, B4, A5, ..., B6\}$
 - $\bullet dom(\textit{dishes-at}) = \{Table, Robot, Dishwasher\}$
- $I = \{ robot\text{-}at \mapsto C1, dishes\text{-}at \mapsto Table \}$
- operators
 - move-x-y to move from cell x to adjacent cell y
 - pickup dishes, and
 - load dishes into the dishwasher.
- $\gamma = (robot-at = B6) \land (dishes-at = Dishwasher)$

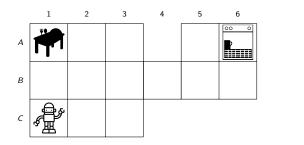
Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

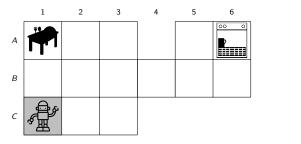
For instance, every solution is such that

a variable takes a certain value in at least one visited state. (a fact landmark constraint)

Which values do robot-at and dishes-at take in every solution?

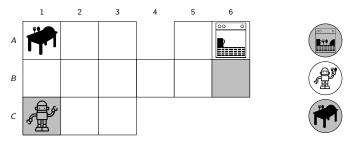


Which values do robot-at and dishes-at take in every solution?



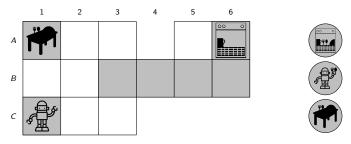
■ robot-at = C1, dishes-at = Table (initial state)

Which values do robot-at and dishes-at take in every solution?



- robot-at = C1, dishes-at = Table (initial state)
- robot-at = B6, dishes-at = Dishwasher (goal state)

Which values do robot-at and dishes-at take in every solution?



- robot-at = C1, dishes-at = Table (initial state)
- robot-at = B6, dishes-at = Dishwasher (goal state)
- robot-at = A1, robot-at = B3, robot-at = B4, robot-at = B5, robot-at = A6, dishes-at = Robot

Constraints

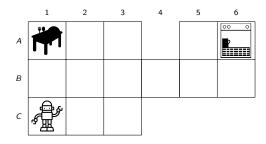
Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state.
 (a fact landmark constraint)
- an action must be applied.(an action landmark constraint)

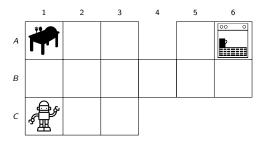
Action Landmarks: Example

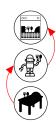
Which actions must be applied in every solution?



Action Landmarks: Example

Which actions must be applied in every solution?

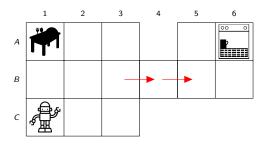


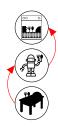


- pickup
- load

Action Landmarks: Example

Which actions must be applied in every solution?





- pickup
- load
- move-B3-B4
- move-B4-B5

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state.
 (a fact landmark constraint)
- an action must be applied.(an action landmark constraint)

Constraints

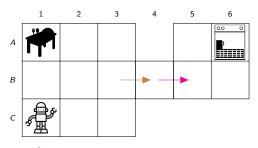
Some heuristics exploit constraints that describe something that holds in every solution of the task.

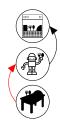
For instance, every solution is such that

- a variable takes some value in at least one visited state.
 (a fact landmark constraint)
- at least one action from a set of actions must be applied.
 (a disjunctive action landmark constraint)

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?





- {pickup}
- {load}
- {move-B3-B4}
- {move-B4-B5}

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?



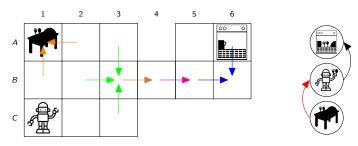
{pickup}

■ {move-A6-B6, move-B5-B6}

- {load}
- {move-B3-B4}
- {move-B4-B5}

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?



- {pickup}
- {load}
- {move-B3-B4}
- {move-B4-B5}

- {move-A6-B6, move-B5-B6}
- {move-A3-B3, move-B2-B3, move-C3-B3}
- {move-B1-A1, move-A2-A1}
- **...**

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state.
 (a fact landmark constraint)
- at least one action from a set of actions must be applied.
 (a disjunctive action landmark constraint)
- fact consumption and production is "balanced".
 (a network flow constraint)

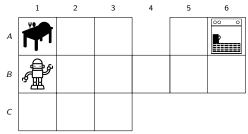
Network Flow: Example

Consider the fact robot-at = B1. How often are actions used that enter this cell?

	1	2	3	4	5	6
Α						00 0 P
В						
С						

Network Flow: Example

Consider the fact robot-at = B1. How often are actions used that enter this cell?



Answer: as often as actions that leave this cell

If Count $_o$ denotes how often operator o is applied, we have:

$$\begin{split} \mathsf{Count}_{\mathsf{move-A1-B1}} + \mathsf{Count}_{\mathsf{move-B2-B1}} + \mathsf{Count}_{\mathsf{move-C1-B1}} = \\ \mathsf{Count}_{\mathsf{move-B1-A1}} + \mathsf{Count}_{\mathsf{move-B1-B2}} + \mathsf{Count}_{\mathsf{move-B1-C1}} \end{split}$$

Multiple Heuristics

Combining Admissible Heuristics Admissibly

Major ideas to combine heuristics admissibly:

- maximize
- canoncial heuristic (for abstractions)
- minimum hitting set (for landmarks)
- cost partitioning
- operator counting

Often computed as solution to a (integer) linear program.

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with $V = \{v_1, v_2, v_3\}$ with $dom(v_1) = \{A, B\}$ and $dom(v_2) = dom(v_3) = \{A, B, C\}, I = \{v_1 \mapsto A, v_2 \mapsto A, v_3 \mapsto A\},$ $o_1 = \langle v_1 = A, v_1 := B, 1 \rangle$

$$o_1 = \langle v_1 - A, v_1 := B, 1 \rangle$$
 $o_2 = \langle v_2 = A \land v_3 = A, v_2 := B \land v_3 := B, 1 \rangle$
 $o_3 = \langle v_2 = B, v_2 := C, 1 \rangle$
 $o_4 = \langle v_3 = B, v_3 := C, 1 \rangle$

and
$$\gamma = (v_1 = B) \land (v_2 = C) \land (v_3 = C)$$
.

Let C be the pattern collection that contains all atomic projections. What is the canonical heuristic function h^{C} ?

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with $V = \{v_1, v_2, v_3\}$ with $dom(v_1) = \{A, B\}$ and $dom(v_2) = dom(v_3) = \{A, B, C\}, I = \{v_1 \mapsto A, v_2 \mapsto A, v_3 \mapsto A\},$

$$o_1 = \langle v_1 = A, v_1 := B, 1 \rangle$$

 $o_2 = \langle v_2 = A \land v_3 = A, v_2 := B \land v_3 := B, 1 \rangle$
 $o_3 = \langle v_2 = B, v_2 := C, 1 \rangle$
 $o_4 = \langle v_3 = B, v_3 := C, 1 \rangle$

and
$$\gamma = (v_1 = B) \land (v_2 = C) \land (v_3 = C)$$
.

Let C be the pattern collection that contains all atomic projections. What is the canonical heuristic function h^C ?

Answer: Let $h_i := h^{v_i}$. Then $h^C = \max\{h_1 + h_2, h_1 + h_3\}$.

Reminder: Orthogonality and Additivity

Why can we add h_1 and h_2 (h_1 and h_3) admissibly?

Theorem (Additivity for Orthogonal Abstractions)

Let $h^{\alpha_1}, \ldots, h^{\alpha_n}$ be abstraction heuristics of the same transition system such that α_i and α_j are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^{n} h^{\alpha_i}$ is a safe, goal-aware, admissible and consistent heuristic for Π .

The proof exploits that every concrete transition induces state-changing transition in at most one abstraction.

Combining Heuristics (In)admissibly: Example

Let
$$h = h_1 + h_2 + h_3$$
.
 o_2, o_3, o_4
 o_2, o_3, o_4
 h_1
 O_1, O_4
 O_1, O_2
 O_1, O_2
 O_1, O_2
 O_1, O_2
 O_1, O_2
 O_2, O_3, O_4
 O_1, O_2
 O_1, O_2
 O_1, O_2
 O_1, O_2
 O_2, O_3
 O_1, O_3
 O_1, O_3
 O_1, O_2
 O_2, O_3
 O_1, O_2
 O_1, O_2
 O_2, O_3
 O_1, O_2
 O_1, O_2
 O_2, O_3
 O_1, O_3
 O_1, O_3
 O_2, O_3
 O_1, O_3
 O_1, O_3
 O_1, O_2
 O_2, O_3
 O_1, O_3
 O_1, O_3
 O_1, O_2
 O_2, O_3
 O_1, O_3
 O_1, O_3
 O_1, O_2
 O_2, O_3
 O_1, O_3
 O_1, O_3
 O_1, O_2
 O_2, O_3
 $O_1,$

 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but h(s) = 4.

Combining Heuristics (In)admissibly: Example

Let
$$h = h_1 + h_2 + h_3$$
.

 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_4
 o_1, o_4
 o_1, o_4
 o_1, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_4
 o_1, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2

 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but h(s) = 4. Heuristics h_2 and h_3 both account for the single application of o_2 .

Prevent Inadmissibility

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Is there anything we can do about this?

Prevent Inadmissibility

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Is there anything we can do about this?

Solution: We can ignore the cost of o_2 in one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

Combining Heuristics Admissibly: Example

Let
$$h' = h_1 + h_2 + h'_3$$
, where $h'_3 = h^{v_3}$ assuming $cost_3(o_2) = 0$.

 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_4
 o_1, o_4
 o_1, o_4
 o_1, o_4
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_1, o_2
 o_2, o_3, o_4
 o_1, o_4

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and h'(s) = 3 an admissible estimate.

Cost partitioning

Using the cost of every operator only in one heuristic is called a zero-one cost partitioning.

Cost partitioning

Using the cost of every operator only in one heuristic is called a zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are distributed in a way that the sum of the individual costs is no larger than the cost of the operator.

This can also be expressed as a constraint, the cost partitioning constraint:

$$\sum_{i=1}^n cost_i(o) \leq cost(o) \text{ for all } o \in O$$

(more details later)

Summary

Summary

- Landmarks and network flows are constraints that describe something that holds in every solution of the task.
- Heuristics can be combined admissibly if the cost partitioning constraint is satisfied.