Planning and Optimization

F1. Constraints: Introduction

Malte Helmert and Gabriele Röger

Universität Basel

November 26, 2025

M. Helmert, G. Röger (Universität Basel)

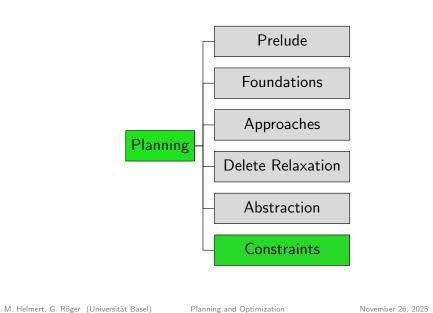
Planning and Optimization

November 26, 2025 1 / 24

Planning and Optimization November 26, 2025 — F1. Constraints: Introduction

F1.1 Constraint-based Heuristics

F1.2 Multiple Heuristics


F1.3 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

Content of the Course

F1. Constraints: Introduction

Constraint-based Heuristics

F1.1 Constraint-based Heuristics

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

Constraint-based Heuristics

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

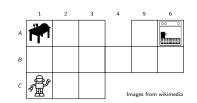
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

- delete relaxation
- abstraction
- critical paths
- landmarks
- network flows
- potential heuristic

Landmarks, network flows and potential heuristics are based on constraints that can be specified for a planning task.

M. Helmert, G. Röger (Universität Basel)


Planning and Optimization

November 26, 2025

F1. Constraints: Introduction

Constraint-based Heuristics

Constraints: Example

FDR planning task $\langle V, I, O, \gamma \rangle$ with

- \triangleright $V = \{robot-at, dishes-at\}$ with
 - $ightharpoonup dom(robot-at) = \{A1, ..., C3, B4, A5, ..., B6\}$
 - ▶ dom(dishes-at) = {Table, Robot, Dishwasher}
- ▶ $I = \{robot\text{-}at \mapsto C1, dishes\text{-}at \mapsto Table\}$
- operators
 - move-x-y to move from cell x to adjacent cell y
 - pickup dishes, and
 - load dishes into the dishwasher.
- $\gamma = (robot-at = B6) \land (dishes-at = Dishwasher)$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

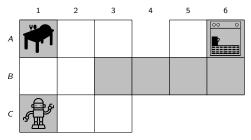
F1. Constraints: Introduction

Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that


a variable takes a certain value in at least one visited state. (a fact landmark constraint)

F1. Constraints: Introduction

Constraint-based Heuristics

Fact Landmarks: Example

Which values do *robot-at* and *dishes-at* take in every solution?

- ▶ robot-at = C1, dishes-at = Table (initial state)
- ▶ robot-at = B6, dishes-at = Dishwasher (goal state)
- ightharpoonup robot-at = A1, robot-at = B4, robot-at = B5, robot-at = A6, dishes-at = Robot

F1. Constraints: Introduction

Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state.
 (a fact landmark constraint)
- an action must be applied.(an action landmark constraint)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

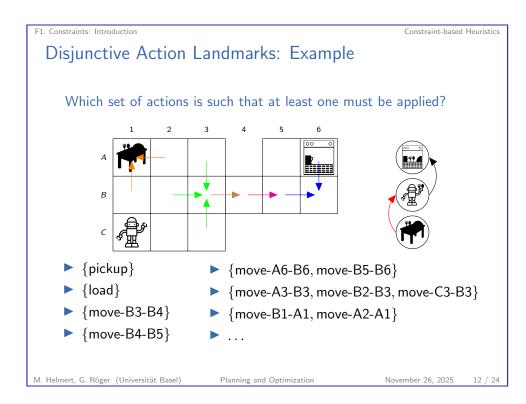
9 / 24

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

F1. Constraints: Introduction


Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state.(a fact landmark constraint)
- an action must be applied.(an action landmark constraint)
- at least one action from a set of actions must be applied. (a disjunctive action landmark constraint)

F1. Constraints: Introduction

Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- ▶ a variable takes some value in at least one visited state.(a fact landmark constraint)
- at least one action from a set of actions must be applied.
 (a disjunctive action landmark constraint)
- ► fact consumption and production is "balanced". (a network flow constraint)

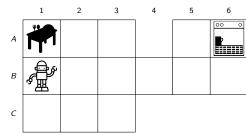
M. Helmert, G. Röger (Universität Basel)

F1. Constraints: Introduction

Planning and Optimization

November 26, 2025

Multiple Heuristics


F1.2 Multiple Heuristics

F1. Constraints: Introduction

Constraint-based Heuristics

Network Flow: Example

Consider the fact robot-at = B1. How often are actions used that enter this cell?

Answer: as often as actions that leave this cell

If Count_o denotes how often operator o is applied, we have:

$$\begin{split} &\mathsf{Count}_{\mathsf{move-A1-B1}} + \mathsf{Count}_{\mathsf{move-B2-B1}} + \mathsf{Count}_{\mathsf{move-C1-B1}} = \\ &\mathsf{Count}_{\mathsf{move-B1-A1}} + \mathsf{Count}_{\mathsf{move-B1-B2}} + \mathsf{Count}_{\mathsf{move-B1-C1}} \end{split}$$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

14 / 24

F1. Constraints: Introduction

Multiple Heuristics

Combining Admissible Heuristics Admissibly

Major ideas to combine heuristics admissibly:

- maximize
- canoncial heuristic (for abstractions)
- minimum hitting set (for landmarks)
- cost partitioning
- operator counting

Often computed as solution to a (integer) linear program.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

16 / 24

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with $V = \{v_1, v_2, v_3\}$ with $dom(v_1) = \{A, B\}$ and $dom(v_2) = dom(v_3) = \{A, B, C\}, I = \{v_1 \mapsto A, v_2 \mapsto A, v_3 \mapsto A\},\$

$$o_1 = \langle v_1 = \mathsf{A}, v_1 := \mathsf{B}, 1 \rangle$$

$$o_2 = \langle v_2 = A \wedge v_3 = A, v_2 := B \wedge v_3 := B, 1 \rangle$$

$$o_3 = \langle v_2 = \mathsf{B}, v_2 := \mathsf{C}, 1 \rangle$$

$$o_4 = \langle v_3 = B, v_3 := C, 1 \rangle$$

and
$$\gamma = (v_1 = B) \land (v_2 = C) \land (v_3 = C)$$
.

Let $\mathcal C$ be the pattern collection that contains all atomic projections. What is the canonical heuristic function $h^{\mathcal{C}}$?

Answer: Let $h_i := h^{v_i}$. Then $h^{\mathcal{C}} = \max\{h_1 + h_2, h_1 + h_3\}$.

M. Helmert, G. Röger (Universität Basel)

November 26, 2025

Reminder: Orthogonality and Additivity

Why can we add h_1 and h_2 (h_1 and h_3) admissibly?

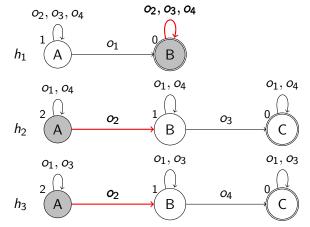
Theorem (Additivity for Orthogonal Abstractions)

Let $h^{\alpha_1}, \ldots, h^{\alpha_n}$ be abstraction heuristics of the same transition system such that α_i and α_i are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^{n} h^{\alpha_i}$ is a safe, goal-aware, admissible and consistent heuristic for Π .

The proof exploits that every concrete transition induces state-changing transition in at most one abstraction.

M. Helmert, G. Röger (Universität Basel)


November 26, 2025

F1. Constraints: Introduction

Multiple Heuristics

Combining Heuristics (In)admissibly: Example

Let $h = h_1 + h_2 + h_3$.

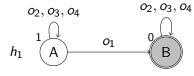
 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but h(s) = 4. Heuristics h_2 and h_3 both account for the single application of o_2 . F1. Constraints: Introduction

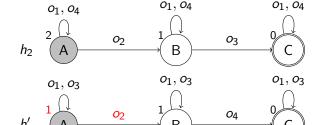
Multiple Heuristics

Prevent Inadmissibility

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Is there anything we can do about this?


Solution: We can ignore the cost of o_2 in one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).


M. Helmert, G. Röger (Universität Basel)

November 26, 2025

Combining Heuristics Admissibly: Example

Let $h' = h_1 + h_2 + h'_3$, where $h'_3 = h^{v_3}$ assuming $cost_3(o_2) = 0$.

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and h'(s) = 3 an admissible estimate.

M. Helmert, G. Röger (Universität Basel)

F1. Constraints: Introduction

Planning and Optimization

November 26, 2025

November 26, 2025

21 / 2

Summany

F1.3 Summary

F1. Constraints: Introduction Multiple Heuristics

Cost partitioning

Using the cost of every operator only in one heuristic is called a zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are distributed in a way that the sum of the individual costs is no larger than the cost of the operator.

This can also be expressed as a constraint, the cost partitioning constraint:

$$\sum_{i=1}^{n} cost_{i}(o) \leq cost(o) \text{ for all } o \in O$$

(more details later)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 26, 2025

F1. Constraints: Introduction

Summary

Summary

- ► Landmarks and network flows are constraints that describe something that holds in every solution of the task.
- ► Heuristics can be combined admissibly if the cost partitioning constraint is satisfied.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimizati

November 26, 2025

24 / 2