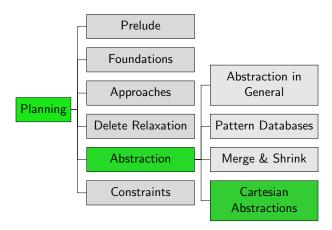
Planning and Optimization E13. Cartesian Abstractions

Malte Helmert and Gabriele Röger

Universität Basel

November 24, 2025

Content of the Course



Introduction 00000

Introduction

Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is an approach to compute a tailored abstraction for a task (or to solve it).

- Start with a very coarse abstraction.
- Iteratively compute an (optimal) abstract solution and check whether it works for the concrete tasks.
 - If yes, the task is solved.
 - If not, refine the abstraction so that the same flaw will not be encountered in future iterations.

CEGAR is another technique originally introduced for model checking.

Introduction

- For a certain class of abstractions (the Cartesian abstractions), CEGAR can be efficiently implemented.
- In this chapter, we get to know this class of abstractions and the necessary foundations.
- In the next chapter, we see how they can be used within CEGAR.

Remarks

- In Ch. E13 and E14 we continue to only consider SAS⁺ tasks.
- To facilitate notation, we will use an arbitrary (but fixed) order on the variables.
 - → Tuple of variables instead of set of variables.
- These chapters are based on: Jendrik Seipp and Malte Helmert. Counterexample-Guided Cartesian Abstraction Refinement for Classical Planning. Journal of Artificial Intelligence Research 62, pp. 535-577. 2018.

Example Task: Two Packages, One Truck

In E13 and E14 we use the following running example.

Example (Two Packages, One Truck)

Consider the following FDR planning task $\langle V, I, O, \gamma \rangle$:

- $V = \{p_A, p_B, t\}$ with
 - $\mod(p)_{\mathsf{A}} = \dim(p_{\mathsf{B}}) = \{\mathsf{L},\mathsf{I},\mathsf{R}\}$
 - $\mod(t) = \{\mathsf{L},\mathsf{R}\}$
- $\blacksquare I = \{p_{\mathsf{A}} \mapsto \mathsf{L}, p_{\mathsf{B}} \mapsto \mathsf{L}, t \mapsto \mathsf{L}\}$
- $O = \{ \mathsf{pickup}_{i,j} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\} \}$ $\cup \{ \mathsf{drop}_{i,i} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\} \}$
 - $\cup \{\mathsf{move}_{i,j} \mid i,j \in \{\mathsf{L},\mathsf{R}\}, i \neq j\}$, where
 - \blacksquare pickup_{i,j} = $\langle p_i = j \land t = j, p_i := l, 1 \rangle$
 - \blacksquare drop_{i,j} $\stackrel{\circ}{=} \langle p_i = 1 \land t = j, p_i := j, 1 \rangle$
 - \blacksquare move $i,j = \langle t = i, t := j, 1 \rangle$
- $\gamma = (p_A = R \wedge p_B = R)$

Cartesian Sets

Cartesian Sets

Definition

A set of states for a planning task with variables $\langle v_1, \ldots, v_n \rangle$ is called Cartesian if it is of the form $A_1 \times \cdots \times A_n$, where $A_i \subseteq \text{dom}(v_i)$ for all $1 \le i \le n$.

$$\{L, I\} \times \{R\} \times \{L, R\} = \{(L, R, L), (L, R, R), (I, R, L), (I, R, R)\}$$
 for variables $\langle p_A, p_B, t \rangle$

For a conjunction φ of atoms, the set of all states s with $s \models \varphi$ is Cartesian and can be defined as follows:

Definition

Let φ be a conjunction of atoms over finite domain variables $V = \langle v_1, \dots, v_n \rangle$. The Cartesian set induced by φ is $Cartesian(\varphi) = A_1 \times \dots \times A_n$, where

$$A_i = \begin{cases} \mathsf{dom}(v_i) & \text{if } \varphi \text{ contains no atom } v_i = d, \\ \{d\} & \text{if } \varphi \text{ contains an atom } v_i = d \text{ and} \\ & \text{no atom } v_i = d' \text{ with } d \neq d' \\ \emptyset & \text{otherwise (conflicting atoms for } v_i). \end{cases}$$

Conjunctions of Atoms as Cartesian Sets: Examples

In the running example with variables $\langle p_A, p_B, t \rangle$

- Cartesian($p_A = R \land t = L$) = $\{R\} \times \{L, I, R\} \times \{L\}$
- $Cartesian(p_A = R \land t = L \land t = R) = \{R\} \times \{L, I, R\} \times \emptyset$

Theorem

Let $\Pi = \langle V, O, I, \gamma \rangle$ be a SAS⁺ planning task.

- The set of goal states of Π is Cartesian.
- **②** For all $o \in O$, the set of states in which o is applicable is Cartesian.
- 3 The intersection of Cartesian sets over the same variables is Cartesian.
- For all operators o, the regression of a Cartesian set wrt. o is Cartesian.

From the proofs we will see that the corresponding Cartesian sets are easy to determine.

Properties of Cartesian Sets

Proof Sketch.

1 The set of goal states is $Cartesian(\gamma)$.

. .

Properties of Cartesian Sets

Proof Sketch.

- **①** The set of goal states is $Cartesian(\gamma)$.
- ② For $o \in O$, the set of states in which o is applicable is Cartesian(pre(o)).

. .

•

Proof Sketch.

- **1** The set of goal states is $Cartesian(\gamma)$.
- ② For $o \in O$, the set of states in which o is applicable is Cartesian(pre(o)).
- **3** The intersection of Cartesian sets $A_1 \times \cdots \times A_n$ and $B_1 \times \cdots \times B_n$ is $(A_1 \cap B_1) \times \cdots \times (A_n \cap B_n)$.

. . .

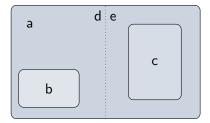
Properties of Cartesian Sets

Proof Sketch (continued).

• With variables $\langle v_1, \ldots, v_n \rangle$, the regression of Cartesian set $b = B_1 \times \cdots \times B_n$ wrt. o is $regr(b, o) = A_1 \times \cdots \times A_n$, where

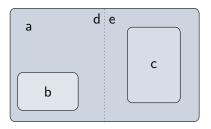
$$A_i = \begin{cases} B_i & \text{if } v_i \text{ does not occur in } \textit{pre}(o) \text{ and } \textit{eff}(o) \\ \emptyset & \text{if } o \text{ has an effect setting } v_i \text{ to } d' \notin B_i \\ & \text{or if } o \text{ has no effect on } v_i \\ & \text{but a precondition } v_i = d \text{ with } d \notin B_i. \end{cases}$$

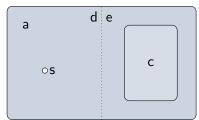
$$dom(v_i) & \text{if } o \text{ has no precondition on } v_i \text{ and} \\ & \text{an effect setting } v_i \text{ to } d' \in B_i \\ \{d\} & \text{if } o \text{ has a precondition } v_i = d \text{ and} \\ & \text{an effect setting } v_i \text{ to } d' \in B_i \\ & \text{or if } o \text{ has precondition } v_i = d \text{ with } d \in B_i \\ & \text{and no effect on } v_i \end{cases}$$



Theorem (Splits)

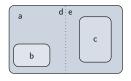
• If $b \subseteq a$ and $c \subseteq a$ are disjoint Cartesian subsets of the Cartesian set a, then a can be partitioned into Cartesian sets d and e with $b \subseteq d$ and $c \subseteq e$.





Theorem (Splits)

- If $b \subseteq a$ and $c \subseteq a$ are disjoint Cartesian subsets of the Cartesian set a, then a can be partitioned into Cartesian sets d and e with $b \subseteq d$ and $c \subseteq e$.
- 2 If $c \subseteq a$ is a Cartesian subset of the Cartesian set a and $s \in a \setminus c$, then a can be partitioned into Cartesian sets d and e with $s \in d$ and $c \subseteq e$.



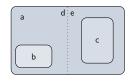
Proof.

For 1), let
$$a = A_1 \times \cdots \times A_n$$
, $b = B_1 \times \cdots \times B_n$ and $c = C_1 \times \cdots \times C_n$.

Let j be such that B_j and C_j are disjoint. It must exist because otherwise b and c are not disjoint (we could select for each variable v_i a value in $B_i \cap C_i$).

Partition A_j into D_j and E_j with $B_j \subseteq D_j$ and $C_j \subseteq E_j$, e.g. $E_j = C_j$ and $D_j = A_j \setminus C_j$.

Then
$$d = A_1 \times \cdots \times A_{j-1} \times D_j \times A_{j+1} \times \cdots \times A_n$$
 and $e = A_1 \times \cdots \times A_{j-1} \times E_j \times A_{j+1} \times \cdots \times A_n$



Proof.

For 1), let $a = A_1 \times \cdots \times A_n$, $b = B_1 \times \cdots \times B_n$ and $c = C_1 \times \cdots \times C_n$

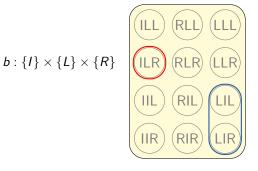
Let j be such that B_i and C_i are disjoint. It must exist because otherwise b and c are not disjoint (we could select for each variable v_i a value in $B_i \cap C_i$).

Partition A_i into D_i and E_i with $B_i \subseteq D_i$ and $C_i \subseteq E_i$, e.g. $E_i = C_i$ and $D_i = A_i \setminus C_i$.

Then $d = A_1 \times \cdots \times A_{i-1} \times D_i \times A_{i+1} \times \cdots \times A_n$ and $e = A_1 \times \cdots \times A_{i-1} \times E_i \times A_{i+1} \times \cdots \times A_n$

2) follows from 1) by setting $b = \{s\}$ (a Cartesian set).

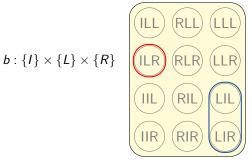
$$a: \{I, R, L\} \times \{L, I\} \times \{L, R\}$$



 $c:\{L\}\times\{I\}\times\{L,R\}$

On which variable(s) can we split?

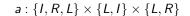
$$a: \{I, R, L\} \times \{L, I\} \times \{L, R\}$$

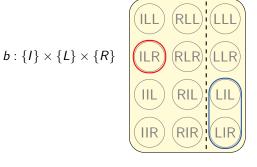


$$c: \{L\} \times \{I\} \times \{L, R\}$$

On which variable(s) can we split? \rightsquigarrow first or second. What are the two Cartesian sets d and e in each case?

Splitting Cartesian Sets: Example



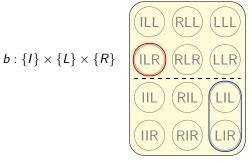


$$c:\{L\}\times\{I\}\times\{L,R\}$$

Split on first variable:

$$d = \{I, R\} \times \{L, I\} \times \{L, R\} \text{ and } e = \{L\} \times \{L, I\} \times \{L, R\}$$

$$a: \{I, R, L\} \times \{L, I\} \times \{L, R\}$$



$$c: \{L\} \times \{I\} \times \{L, R\}$$

Split on second variable:

$$d = \{I, R, L\} \times \{L\} \times \{L, R\}$$
 and $e = \{I, R, L\} \times \{I\} \times \{L, R\}$

Cartesian Abstractions

Reminder: Abstractions as Equivalence Relations

An abstraction α induces the equivalence relation \sim_{α} over the set of (concrete) states as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$.

Reminder: Abstractions as Equivalence Relations

- An abstraction α induces the equivalence relation \sim_{α} over the set of (concrete) states as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$.
- The equivalence class $[s]_{\alpha}$ of state s is the set of all concrete states that are mapped to the same abstract state as s.

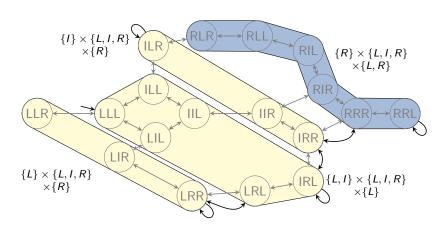
Reminder: Abstractions as Equivalence Relations

- An abstraction α induces the equivalence relation \sim_{α} over the set of (concrete) states as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$.
- The equivalence class $[s]_{\alpha}$ of state s is the set of all concrete states that are mapped to the same abstract state as s.
- We write \sim and [s], if α is clear from context.

Cartesian Abstraction

Definition

An abstraction α is called Cartesian if all equivalence classes of \sim_{α} are Cartesian sets.



Labels omitted for clarity.

Relationship to other Classes of Abstractions

- Cartesian abstractions generalize projections (PDBs): the equivalence classes of projections are Cartesian.
- Merge & Shrink abstractions are more general than Cartesian abstractions (every abstraction can be represented as Merge & Shrink abstraction).
- Merge & Shrink and Cartesian abstractions are incomparable in representation size: there are compact Cartesian abstractions that do not have a compact Merge & Shrink representation and vice versa.

Summary

Summary

- Cartesian sets are sets of states that can be represented as a Cartesian product of possible values for each variable.
- In Cartesian abstractions the sets of states that do not get distinguished must be Cartesian.