# Planning and Optimization

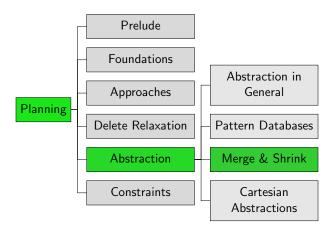
E12. Merge-and-Shrink: Merge Strategies & Outlook

Malte Helmert and Gabriele Röger

Universität Basel

November 19, 2025

#### Content of the Course



Merge Strategies

# Merge Strategies

Merge Strategies

### Reminder: Generic Algorithm Template

#### Generic Merge & Shrink Algorithm for planning task Π

```
F := F(\Pi)
while |F| > 1:
          select type \in \{merge, shrink\}
          if type = merge:
                     select \mathcal{T}_1, \mathcal{T}_2 \in F
                     F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
          if type = shrink:
                     select \mathcal{T} \in \mathcal{F}
                     choose an abstraction mapping \beta on \mathcal{T}
                     F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}
return the remaining factor \mathcal{T}^{\alpha} in F
```

#### Remaining Question:

■ Which abstractions to select for merging? ~> merge strategy

# Linear vs. Non-linear Merge Strategies

#### Linear Merge Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as  $\mathcal{T}_1$ .

Rationale: only maintains one "complex" abstraction at a time

- Fully defined by an ordering of atomic projections/variables.
- Each merge-and-shrink heuristic computed with a non-linear merge strategy can also be computed with a linear merge strategy.
- However, linear merging can require a super-polynomial blow-up of the final representation size.
- Recent research turned from linear to non-linear strategies, also because better label reduction techniques (later in this chapter) enabled a more efficient computation.

# Classes of Merge Strategies

Merge Strategies

#### We can distinguish two major types of merge strategies:

- precomputed merge strategies fix a unique merge order up-front.
  - One-time effort but cannot react to other transformations applied to the factors.
- stateless merge strategies only consider the current FTS and decide what factors to merge.
  - Typically computing a score for each pair of factors and naturally non-linear; easy to implement but cannot capture dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless strategies.

# Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of  $h_{HHH}$ 

#### h<sub>HHH</sub>: Ordering of atomic projections

- Start with a goal variable.
- Add variables that appear in preconditions of operators affecting previous variables.
- If that is not possible, add a goal variable.

Rationale: increases h quickly

# Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first merge variables within each cluster.

Example: MIASM ("maximum intermediate abstraction size minimizing merging strategy")

#### MIASM strategy

- Measure interaction by ratio of unnecessary states in the merged system (= states not traversed by any abstract plan).
- Best-first search to identify interesting variable sets.
- Disjoint variable sets chosen by a greedy algorithm for maximum weighted set packing.

Rationale: increase power of pruning (later in this chapter)

# Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize on labels that occur close to a goal state.

Example: DFP (named after Dräger, Finkbeiner and Podelski)

#### DFP strategy

- $labelrank(\ell, \mathcal{T}) = min\{h^*(t) \mid \langle s, \ell, t \rangle \text{ transition in } \mathcal{T}\}$
- $score(\mathcal{T}, \mathcal{T}') = \min\{\max\{labelrank(\ell, \mathcal{T}), labelrank(\ell, \mathcal{T}')\} \mid \ell \text{ label in } \mathcal{T} \text{ and } \mathcal{T}'\}$
- Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region, which is likely to be searched by  $A^*$ .

# Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected component of the causal graph.

Example: SCC framework

#### SCC strategy

- Compute strongly connected components of causal graph
- Secondary strategies for order in which
  - the SCCs are considered (e.g. topologic order),
  - the factors within an SCC are merged, and
  - the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art: SCC+DFP or a stateless MIASM variant

# Outlook: Label Reduction and Pruning

#### **Further Transformations**

State-of-the-art Merge & Shrink uses two further transformations:

- Label reduction
- Pruning

Do no longer distinguish certain labels, similar to abstraction that does not distinguish certain states.

- Do no longer distinguish certain labels, similar to abstraction that does not distinguish certain states.
- A label reduction  $\langle \lambda, c' \rangle$  for a FTS F with label set L is given by a function  $\lambda: L \to L'$ , where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all  $\ell \in L$ ,  $c'(\lambda(\ell)) \leq c(\ell)$ .

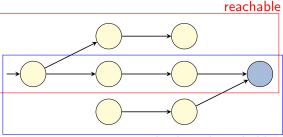
The label-reduced TSs have L' and c' for the labels and cost, and in each transition the original label  $\ell$  is replaced with  $\lambda(\ell)$ .

- Do no longer distinguish certain labels, similar to abstraction that does not distinguish certain states.
- A label reduction  $\langle \lambda, c' \rangle$  for a FTS F with label set L is given by a function  $\lambda: L \to L'$ , where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all  $\ell \in L$ ,  $c'(\lambda(\ell)) \leq c(\ell)$ .
  - The label-reduced TSs have L' and c' for the labels and cost, and in each transition the original label  $\ell$  is replaced with  $\lambda(\ell)$ .
- Label reduction is a conservative transformation.

- Do no longer distinguish certain labels, similar to abstraction that does not distinguish certain states.
- A label reduction  $\langle \lambda, c' \rangle$  for a FTS F with label set L is given by a function  $\lambda: L \to L'$ , where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all  $\ell \in L$ ,  $c'(\lambda(\ell)) \leq c(\ell)$ .
  - The label-reduced TSs have L' and c' for the labels and cost, and in each transition the original label  $\ell$  is replaced with  $\lambda(\ell)$ .
- Label reduction is a conservative transformation.
- There are also clear criteria when label reduction is exact.

- Do no longer distinguish certain labels, similar to abstraction that does not distinguish certain states.
- A label reduction  $\langle \lambda, c' \rangle$  for a FTS F with label set L is given by a function  $\lambda: L \to L'$ , where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all  $\ell \in L$ ,  $c'(\lambda(\ell)) \leq c(\ell)$ .
  - The label-reduced TSs have L' and c' for the labels and cost, and in each transition the original label  $\ell$  is replaced with  $\lambda(\ell)$ .
- Label reduction is a conservative transformation.
- There are also clear criteria when label reduction is exact.
- Reduces the time and memory requirement for merge and shrink steps and enables coarser bisimulation abstractions.

#### Alive States



backward-reachable

- state s is reachable if we can reach it from the initial state
- $\blacksquare$  state s is backward-reachable if we can reach the goal from s
- state s is alive if it is reachable and backward-reachable
  → only alive states can be traversed by a solution
- a state s is dead if it is not alive.

# Pruning States (1)

- If in a factor, state s is dead/not backward-reachable then all states that "cover" s in a synchronized product are dead/not backward-reachable in the synchronized product.
- Removing such states and all adjacent transitions in a factor does not remove any solutions from the synchronized product.
- This pruning leads to states in the original state space for which the merge-and-shrink abstraction does not define an abstract state.
  - $\rightarrow$  use heuristic estimate  $\infty$

# Pruning States (2)

- Keeping exactly all backward-reachable states we still obtain safe, consistent, goal-aware and admissible (with conservative transformations) or perfect heuristics (with exact transformations).
- Pruning unreachable, backward-reachable states can render the heuristic unsafe because pruned states lead to infinite estimates.
- However, all reachable states in the original state space will have admissible estimates, so we can use the heuristic like an admissible one in a forward state-space search such as A\*(but not in other contexts like such as orbit search).
  We usually prupe all dead states to keep the factors small.
  - We usually prune all dead states to keep the factors small.

Summary •O

# Summary

## Summary

- There is a wide range of merge strategies. We only covered some important ones.
- Label reduction is crucial for the performance of the merge-and-shrink algorithm, especially when using bisimilarity for shrinking.
- Pruning is used to keep the size of the factors small. It depends on the intended application how aggressive the pruning can be.

# Literature

# Literature (1)

#### References on merge-and-shrink abstractions:



Klaus Dräger, Bernd Finkbeiner and Andreas Podelski.

Directed Model Checking with Distance-Preserving Abstractions.

*Proc. SPIN 2006*, pp. 19–34, 2006.

Introduces merge-and-shrink abstractions (for model checking) and DFP merging strategy.



Malte Helmert, Patrik Haslum and Jörg Hoffmann. Flexible Abstraction Heuristics for Optimal Sequential Planning.

Proc. ICAPS 2007, pp. 176-183, 2007.

Introduces merge-and-shrink abstractions for planning.

# Literature (2)



Raz Nissim, Jörg Hoffmann and Malte Helmert.

Computing Perfect Heuristics in Polynomial Time: On Bisimulation and Merge-and-Shrink Abstractions in Optimal Planning.

*Proc. IJCAI 2011*, pp. 1983–1990, 2011. Introduces bisimulation-based shrinking.



Malte Helmert, Patrik Haslum, Jörg Hoffmann and Raz Nissim.

Merge-and-Shrink Abstraction: A Method for Generating Lower Bounds in Factored State Spaces.

Journal of the ACM 61 (3), pp. 16:1–63, 2014. Detailed journal version of the previous two publications.

# Literature (3)



Silvan Sievers, Martin Wehrle and Malte Helmert. Generalized Label Reduction for Merge-and-Shrink Heuristics. *Proc. AAAI 2014*, pp. 2358–2366, 2014.

Introduces modern version of label reduction. (There was a more complicated version before.)



Gaojian Fan, Martin Müller and Robert Holte. Non-linear merging strategies for merge-and-shrink based on variable interactions.

Proc. SoCS 2014, pp. 53–61, 2014. Introduces UMC and MIASM merging strategies

# Literature (4)



Malte Helmert, Gabriele Röger and Silvan Sievers.

On the Expressive Power of Non-Linear Merge-and-Shrink Representations.

Proc. ICAPS 2015, pp. 106-114, 2015.

Shows that linear merging can require a super-polynomial blow-up in representation size.



Silvan Sievers and Malte Helmert.

Merge-and-Shrink: A Compositional Theory of Transformations of Factored Transition Systems.

JAIR 71, pp. 781-883, 2021.

Detailed theoretical analysis of task transformations as sequence of transformations.

# Literature (5)



Silvan Sievers, Florian Pommerening , Thomas Keller and Malte Helmert.

Cost-Partitioned Merge-and-Shrink Heuristics for Optimal Classical Planning.

Proc. IJCAI 2020, pp. 4152-4160, 2020.

Extends saturated cost partitioning to merge-and-shrink.