Planning and Optimization
E12. Merge-and-Shrink: Merge Strategies & Outlook

Malte Helmert and Gabriele Roger

Universitat Basel

November 19, 2025

Content of the Course

— Prelude
- Foundations

Abstraction in
— Approaches General
- Delete Relaxation | H Pattern Databases
— Constraints || Cartesian

Abstractions

Merge Strategies
©0000000

Merge Strategies

Merge Strategies 0 ok: Label Reduction and Pruning Summary

0O@000000

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F()
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\{T1, 2}) U{TL ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F=(F\{T}Hu{T"}

return the remaining factor 7% in F

Remaining Question:
m Which abstractions to select for merging? ~~ merge strategy

Merge Strategies 0 ok: Label Reduction and Pruning Summary

[e]e] lele]elele)

Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as 7;.

Rationale: only maintains one “complex” abstraction at a time

m Fully defined by an ordering of atomic projections/variables.

m Each merge-and-shrink heuristic computed with a non-linear
merge strategy can also be computed with a linear merge
strategy.

m However, linear merging can require a super-polynomial
blow-up of the final representation size.

m Recent research turned from linear to non-linear strategies,
also because better label reduction techniques (later in this
chapter) enabled a more efficient computation.

Merge Strategies
000®0000

Classes of Merge Strategies

We can distinguish two major types of merge strategies:

m precomputed merge strategies fix a unique merge order
up-front.
One-time effort but cannot react to other transformations
applied to the factors.

m stateless merge strategies only consider the current FTS and
decide what factors to merge.
Typically computing a score for each pair of factors and
naturally non-linear; easy to implement but cannot capture
dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless
strategies.

Merge Strategies
00008000

ok: Label Reduction and Pruning Summary

Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of hypn

hynny: Ordering of atomic projections

m Start with a goal variable.

m Add variables that appear in preconditions of operators
affecting previous variables.

m If that is not possible, add a goal variable.

Rationale: increases h quickly

Merge Strategies 0 abel Reduction and Pruning Summary

[e]e]e]e]e] lele) [e] (e] OO

Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first
merge variables within each cluster.

Example: MIASM (“maximum intermediate abstraction size
minimizing merging strategy")

MIASM strategy

m Measure interaction by ratio of unnecessary states in the
merged system (= states not traversed by any abstract plan).

m Best-first search to identify interesting variable sets.

m Disjoint variable sets chosen by a greedy algorithm for
maximum weighted set packing.

Rationale: increase power of pruning (later in this chapter)

Merge Strategies Outlook: Label Reduction and Pruning Summary

[e]e]e]ele]e] Jo)

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize
on labels that occur close to a goal state.

Example: DFP (named after Drager, Finkbeiner and Podelski)

DFP strategy

m labelrank(¢,T) = min{h*(t) | (s, ¢, t) transition in 7T}
m score(T,T') = min{max{labelrank(¢, T), labelrank(¢, T")} |
¢ label in T and 7'}

m Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region,
which is likely to be searched by A*.

Merge Strategies 0 abel Reduction and Pruning Summary

0000000

Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected
component of the causal graph.

Example: SCC framework

SCC strategy

m Compute strongly connected components of causal graph
m Secondary strategies for order in which

m the SCCs are considered (e.g. topologic order),
m the factors within an SCC are merged, and
m the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art;: SCC+DFP or a stateless MIASM variant

Outlook: Label Reduction and Pruning

®00000

Outlook: Label Reduction and
Pruning

Outlook: Label Reduction and Pruning Summary

O@0000

Further Transformations

State-of-the-art Merge & Shrink uses two further transformations:
m Label reduction

m Pruning

Outlook: Label Reduction and Pruning Summary

00@000

Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

Outlook: Label Reduction and Pruning Summary

00@000

Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

Outlook: Label Reduction and Pruning Summary

00@000

Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

m Label reduction is a conservative transformation.

Outlook: Label Reduction and Pruning Summary

00@000

Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

m Label reduction is a conservative transformation.

m There are also clear criteria when label reduction is exact.

Outlook: Label Reduction and Pruning Summary

00@000

Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

m Label reduction is a conservative transformation.
m There are also clear criteria when label reduction is exact.

m Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.

Outlook: Label Reduction and Pruning Summary

000e00

Alive States

reachable

-OF—0O0—0O—@

backward-reachable

m state s is reachable if we can reach it from the initial state
m state s is backward-reachable if we can reach the goal from s

m state s is alive if it is reachable and backward-reachable
— only alive states can be traversed by a solution

m a state s is dead if it is not alive.

Outlook: Label Reduction and Pruning Summary

000080

Pruning States (1)

m If in a factor, state s is dead/not backward-reachable then all
states that “cover” s in a synchronized product are dead/not
backward-reachable in the synchronized product.

m Removing such states and all adjacent transitions in a factor
does not remove any solutions from the synchronized product.

m This pruning leads to states in the original state space for
which the merge-and-shrink abstraction does not define an
abstract state.

— use heuristic estimate oo

Outlook: Label Reduction and Pruning Summary

00000e

Pruning States (2)

m Keeping exactly all backward-reachable states we still obtain
safe, consistent, goal-aware and admissible (with conservative
transformations) or perfect heuristics (with exact
transformations).

m Pruning unreachable, backward-reachable states can render
the heuristic unsafe because pruned states lead to infinite
estimates.

m However, all reachable states in the original state space will
have admissible estimates, so we can use the heuristic like an
admissible one in a forward state-space search such as A*(but
not in other contexts like such as orbit search).

We usually prune all dead states to keep the factors small.

Summary

abel Reduction and Pruning Summary

(] J

Summary

m There is a wide range of merge strategies. We only covered
some important ones.

m Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.

m Pruning is used to keep the size of the factors small. It
depends on the intended application how aggressive the
pruning can be.

Literature
©00000

Literature

Literature
0@0000

Literature (1)

References on merge-and-shrink abstractions:

@ Klaus Drager, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.

Proc. SPIN 2006, pp. 19-34, 2006.
Introduces merge-and-shrink abstractions (for model checking)
and DFP merging strategy.

@ Malte Helmert, Patrik Haslum and Jorg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.

Proc. ICAPS 2007, pp. 176-183, 2007.
Introduces merge-and-shrink abstractions for planning.

Literature
00@000

Literature (2)

ﬁ Raz Nissim, Jorg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.

Proc. IJCAI 2011, pp. 1983-1990, 2011.
Introduces bisimulation-based shrinking.

@ Malte Helmert, Patrik Haslum, Jorg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1-63, 2014,
Detailed journal version of the previous two publications.

Literature
[e]eleY Yole}

Literature (3)

@ Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358-2366, 2014.

Introduces modern version of label reduction.
(There was a more complicated version before.)

[@ Gaojian Fan, Martin Miiller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.

Proc. SoCS 2014, pp. 53-61, 2014.
Introduces UMC and MIASM merging strategies

Literature
000080

Literature (4)

@ Malte Helmert, Gabriele Roger and Silvan Sievers.
On the Expressive Power of Non-Linear Merge-and-Shrink
Representations.
Proc. ICAPS 2015, pp. 106-114, 2015.
Shows that linear merging can require a super-polynomial
blow-up in representation size.

[@ Silvan Sievers and Malte Helmert.
Merge-and-Shrink: A Compositional Theory of
Transformations of Factored Transition Systems.
JAIR 71, pp. 781-883, 2021.
Detailed theoretical analysis of task transformations as
sequence of transformations.

Literature (5)

@ Silvan Sievers, Florian Pommerening , Thomas Keller and
Malte Helmert.

Cost-Partitioned Merge-and-Shrink Heuristics for Optimal
Classical Planning.

Proc. 1JCAI 2020, pp. 4152-4160, 2020.

Extends saturated cost partitioning to merge-and-shrink.

	Merge Strategies
	

	Outlook: Label Reduction and Pruning
	

	Summary
	

	Literature
	

