Planning and Optimization

E11. Merge-and-Shrink: Properties and Shrink Strategies

Malte Helmert and Gabriele Röger

Universität Basel

November 19, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

1 / 29

Planning and Optimization

November 19, 2025 — E11. Merge-and-Shrink: Properties and Shrink Strategies

E11.1 Heuristic Properties

E11.2 Shrink Strategies

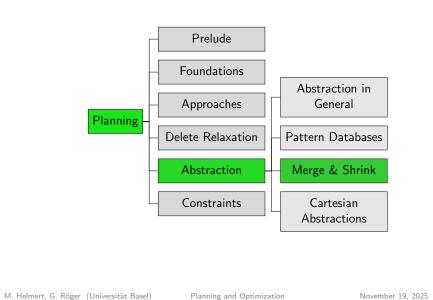
E11.3 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

Content of the Course



Reminder: Generic Algorithm Template

```
Generic Merge & Shrink Algorithm for planning task \Pi F := F(\Pi) while |F| > 1:
   select type \in \{\text{merge}, \text{shrink}\}
   if type = \text{merge}:
        select \mathcal{T}_1, \mathcal{T}_2 \in F
        F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
   if type = \text{shrink}:
        select \mathcal{T} \in F
        choose an abstraction mapping \beta on \mathcal{T}
        F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^\beta\}
   return the remaining factor \mathcal{T}^\alpha in F
```

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

25 4

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Properties of Merge-and-Shrink Heuristics

To understand merge-and-shrink abstractions better, we are interested in the properties of the resulting heuristic:

- ls it admissible $(h^{\alpha}(s) < h^*(s))$ for all states s?
- ls it consistent $(h^{\alpha}(s) \leq c(o) + h^{\alpha}(t))$ for all trans. $s \stackrel{o}{\to} t$?
- ls it perfect $(h^{\alpha}(s) = h^*(s))$ for all states s?

Because merge-and-shrink is a generic procedure, the answers may depend on how exactly we instantiate it:

- size limits
- merge strategy
- shrink strategy

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Merge-and-Shrink as Sequence of Transformations

- ► Consider a run of the merge-and-shrink construction algorithm with n iterations of the main loop.
- ▶ Let F_i (0 ≤ i ≤ n) be the FTS F after i loop iterations.
- Let \mathcal{T}_i (0 < i < n) be the transition system represented by F_i , i.e., $\mathcal{T}_i = \bigotimes F_i$.
- ▶ In particular, $F_0 = F(\Pi)$ and $F_n = \{\mathcal{T}_n\}$.
- ▶ For SAS⁺ tasks Π , we also know $\mathcal{T}_0 = \mathcal{T}(\Pi)$.

For a formal study, it is useful to view merge-and-shrink construction as a sequence of transformations from \mathcal{T}_i to \mathcal{T}_{i+1} .

(We do it in a bit more general fashion than necessary for merge and shrink steps only, to also cover some improvements we will see later.) E11. Merge-and-Shrink: Properties and Shrink Strategies

Heuristic Properties

Transformations

Definition (Transformation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ and $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_{\star} \rangle$ be transition systems.

Let $\sigma: S \to S'$ map the states of \mathcal{T} to the states of \mathcal{T}' and $\lambda: L \to L'$ map the labels of \mathcal{T} to the labels of \mathcal{T}' .

The tuple $\tau = \langle \mathcal{T}, \sigma, \lambda, \mathcal{T}' \rangle$ is called a transformation from \mathcal{T} to \mathcal{T}' . We also write it as $\mathcal{T} \xrightarrow{\sigma,\lambda} \mathcal{T}'$.

The transformation τ induces the heuristic h^{τ} for Tdefined as $h^{\tau}(s) = h_{\tau}^*(\sigma(s))$.

Example: If α is an abstraction mapping for transition system \mathcal{T} , then $\mathcal{T} \xrightarrow{\alpha, \mathsf{id}} \mathcal{T}^{\alpha}$ is a transformation.

Conservative Transformations

Definition (Conservative Transformation)

Let \mathcal{T} and \mathcal{T}' be transition systems with label sets L and L' and cost functions c and c', respectively.

A transformation $\langle \mathcal{T}, \sigma, \lambda, \mathcal{T}' \rangle$ is conservative if

- $ightharpoonup c'(\lambda(\ell)) < c(\ell)$ for all $\ell \in L$,
- for all transitions $\langle s, \ell, t \rangle$ of \mathcal{T} there is a transition $\langle \sigma(s), \lambda(\ell), \sigma(t) \rangle$ of \mathcal{T}' , and
- \blacktriangleright for all goal states s of \mathcal{T} , state $\sigma(s)$ is a goal state of \mathcal{T}' .

Example: If α is an abstraction mapping for transition system \mathcal{T} , then $\mathcal{T} \xrightarrow{\alpha, \mathsf{id}} \mathcal{T}^{\alpha}$ is a conservative transformation.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Conservative Transformations: Heuristic Properties (1)

Theorem

If τ is a conservative transformation from transition system \mathcal{T} to transition system \mathcal{T}' then h^{τ} is a safe, consistent, goal-aware and admissible heuristic for T.

Proof

We prove goal-awareness and consistency, the other properties follow from these two.

Goal-awareness: For all goal states s_{+} of \mathcal{T} , state $\sigma(s_{+})$ is a goal state of \mathcal{T}' and therefore $h^{\tau}(s_{\star}) = h_{\tau'}^{*}(\sigma(s_{\star})) = 0$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Conservative Transformations: Heuristic Properties (2)

Proof (continued).

Consistency: Let c and c' be the label cost functions of \mathcal{T} and \mathcal{T}' . respectively. Consider state s of \mathcal{T} and transition $\langle s, \ell, t \rangle$. As \mathcal{T}' has a transition $\langle \sigma(s), \lambda(\ell), \sigma(t) \rangle$, it holds that

$$egin{aligned} h^{ au}(s) &= h^*_{\mathcal{T}'}(\sigma(s)) \ &\leq c'(\lambda(\ell)) + h^*_{\mathcal{T}'}(\sigma(t)) \ &= c'(\lambda(\ell)) + h^{ au}(t) \ &\leq c(\ell) + h^{ au}(t) \end{aligned}$$

The second inequality holds due to the requirement on the label costs.

E11. Merge-and-Shrink: Properties and Shrink Strategies

Heuristic Properties

Exact Transformations

Definition (Exact Transformation)

Let \mathcal{T} and \mathcal{T}' be transition systems with label sets L and L' and cost functions c and c', respectively.

A transformation $\langle \mathcal{T}, \sigma, \lambda, \mathcal{T}' \rangle$ is exact if it is conservative and

- if $\langle s', \ell', t' \rangle$ is a transition of \mathcal{T}' then for all $s \in \sigma^{-1}(s')$ there is a transition $\langle s, \ell, t \rangle$ of \mathcal{T} with $t \in \sigma^{-1}(t')$ and $\ell \in \lambda^{-1}(\ell')$,
- ② if s' is a goal state of \mathcal{T}' then all states $s \in \sigma^{-1}(s')$ are goal states of \mathcal{T} , and
- 3 $c(\ell) = c'(\lambda(\ell))$ for all $\ell \in L$.

→ no "new" transitions and goal states, no cheaper labels

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Heuristic Properties with Exact Transformations (1)

Theorem

If τ is an exact transformation from transition system \mathcal{T} to transition system \mathcal{T}' then h^{τ} is the perfect heuristic h^* for \mathcal{T} .

Proof.

As the transformation is conservative, h^{τ} is admissible for \mathcal{T} and therefore $h_{\mathcal{T}}^*(s) \geq h^{\tau}(s)$.

For the other direction, we show that for every state s' of \mathcal{T}' and goal path π' for s', there is for each $s \in \sigma^{-1}(s')$ a goal path in \mathcal{T} that has the same cost.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

13 / 29

Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of π' .

 $|\pi'|=0$: If s' is a goal state of \mathcal{T}' then each $s\in\sigma^{-1}(s')$ is a goal state of \mathcal{T} and the empty path is a goal path for s in \mathcal{T} .

 $|\pi'|=i+1\text{: Let }\pi'=\langle s',\ell',t'\rangle\pi'_{t'}\text{, where }\pi'_{t'}\text{ is a goal path of length }i\text{ from }t'\text{. Then there is for each }t\in\sigma^{-1}(t')\text{ a goal path }\pi_t$ of the same cost in $\mathcal T$ (by ind. hypothesis). Furthermore, for all $s\in\sigma^{-1}(s')$ there is a state $t\in\sigma^{-1}(t')$ and a label $\ell\in\lambda^{-1}(\ell')$ such that $\mathcal T$ has a transition $\langle s,\ell,t\rangle$. The path $\pi=\langle s,\ell,t\rangle\pi_t$ is a solution for s in $\mathcal T$. As ℓ and ℓ' must have the same cost and π_t and $\pi'_{t'}$ have the same cost, π has the same cost as π' . \square

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Heuristic Properties

Composing Transformations

Merge-and-shrink performs many transformations in sequence. We can formalize this with a notion of composition:

- ▶ Given $\tau = \mathcal{T} \xrightarrow{\sigma, \lambda} \mathcal{T}'$ and $\tau' = \mathcal{T}' \xrightarrow{\sigma', \lambda'} \mathcal{T}''$, their composition $\tau'' = \tau' \circ \tau$ is defined as $\tau'' = \mathcal{T} \xrightarrow{\sigma' \circ \sigma, \lambda' \circ \lambda} \mathcal{T}''$.
- ▶ If τ and τ' are conservative, then $\tau' \circ \tau$ is conservative.
- ▶ If τ and τ' are exact, then $\tau' \circ \tau$ is exact.

E11. Merge-and-Shrink: Properties and Shrink Strategies

Heuristic Properties

Merge-and-Shrink Transformations

F: factored transition system

Replacement with Synchronized Product is Conservative and Exact

Let $\mathcal{T}_1, \mathcal{T}_2 \in F$ with $\mathcal{T}_1 \neq \mathcal{T}_2$.

Let $F' := (X \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}.$

Then there is an exact transformation $\langle \otimes F, \sigma, id, \otimes F' \rangle$.

Up to the isomorphism we know from the synchronized product, we can use $\sigma=\mathrm{id}$.

Abstraction is Conservative

Let α be an abstraction of $\mathcal{T}_i \in F$ and let $F' := (F \setminus \{\mathcal{T}_i\}) \cup \{\mathcal{T}_i^{\alpha}\}$. The transformation $\langle \otimes F, \sigma, \mathrm{id}, \otimes F' \rangle$ with $\sigma(\langle s_1, \ldots, s_n \rangle) = \langle s_1, \ldots, s_{i-1}, \alpha(s_i), s_{i+1}, \ldots, s_n \rangle$ is conservative.

(Proofs omitted.)

15 / 20

M. Helmert, G. Röger (Universität Basel)

lanning and Optimization

November 19, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

E11. Merge-and-Shrink: Properties and Shrink Strategies

Heuristic Properties

Properties of Merge-and-Shrink Heuristics

We can conclude the following properties of merge-and-shrink heuristics for SAS⁺ tasks:

- ► The heuristic is always admissible and consistent (because it is induced by a a composition of conservative transformations).
- ► If all shrink transformation used are exact, the heuristic is perfect (because it is induced by a composition of exact transformations).

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

17 / 20

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

E11.2 Shrink Strategies

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

10 / 29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

Reminder: Generic Algorithm Template

```
F := F(\Pi)
while |F| > 1:
select \ type \in \{ merge, shrink \} \}
if type = merge:
select \ \mathcal{T}_1, \mathcal{T}_2 \in F
F := (F \setminus \{ \mathcal{T}_1, \mathcal{T}_2 \}) \cup \{ \mathcal{T}_1 \otimes \mathcal{T}_2 \} \}
if type = shrink:
select \ \mathcal{T} \in F
choose \ an \ abstraction \ mapping \ \beta \ on \ \mathcal{T}
F := (F \setminus \{ \mathcal{T} \}) \cup \{ \mathcal{T}^\beta \}
return the remaining factor \mathcal{T}^\alpha in F
```

Remaining Questions:

- ► Which abstractions to select for merging? → merge strategy
- ► How to shrink an abstraction? ~> shrink strategy

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

Shrink Strategies

How to shrink an abstraction?

We cover two common approaches:

- f-preserving shrinking
- bisimulation-based shrinking

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

f-preserving Shrink Strategy

f-preserving Shrink Strategy

Repeatedly combine abstract states with identical abstract goal distances (h values) and identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where g + h is high. In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be explored by A*, so inaccuracies there matter less

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

Bisimulation

Definition (Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system. An equivalence relation \sim on S is a bisimulation for T if for every $\langle s, \ell, s' \rangle \in T$ and every $t \sim s$ there is a transition $\langle t, \ell, t' \rangle \in T$ with $t' \sim s'$.

A bisimulation \sim is goal-respecting if $s \sim t$ implies that either $s, t \in S_{\star}$ or $s, t \notin S_{\star}$.

M. Helmert, G. Röger (Universität Basel)

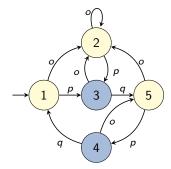
Planning and Optimization

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

Bisimulation: Example



 \sim with equivalence classes $\{\{1, 2, 5\}, \{3, 4\}\}\$ is a goal-respecting bisimulation.

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

Bisimulation Abstractions

Definition (Abstractions as Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system and $\alpha : S \to S'$ be an abstraction of \mathcal{T} . The abstraction induces the equivalence relation \sim_{α} as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$.

We say that α is a (goal-respecting) bisimulation for $\mathcal T$ if \sim_{α} is a (goal-respecting) bisimulation for \mathcal{T} .

M. Helmert, G. Röger (Universität Basel)

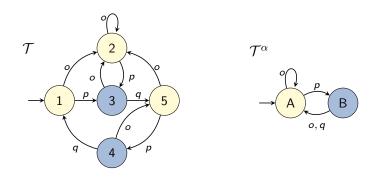
Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Abstraction as Bisimulations: Example

Abstraction α with $\alpha(1) = \alpha(2) = \alpha(5) = A$ and $\alpha(3) = \alpha(4) = B$ is a goal-respecting bisimulation for \mathcal{T} .



M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

Theorem

Let F be a factored transition system and α be an abstraction of $\mathcal{T}_i \in \mathcal{F}$.

If α is a goal-respecting bisimulation then the transformation $\langle \otimes F, \sigma, id, \otimes F' \rangle$ with

Goal-respecting Bisimulations are Exact

- $ightharpoonup \sigma(\langle s_1,\ldots,s_n\rangle)=\langle s_1,\ldots,s_{i-1},\alpha(s_i),s_{i+1},\ldots,s_n\rangle$ and
- $F' := (F \setminus \{\mathcal{T}_i\}) \cup \{\mathcal{T}_i^{\alpha}\}$

is exact.

(Proofs omitted.)

Shrinking with bisimulation preserves the heuristic estimates.

M. Helmert, G. Röger (Universität Basel)

November 19, 2025

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

Bisimulations: Discussion

- ► As all bisimulations preserve all relevant information, we are interested in the coarsest such abstraction (to shrink as much as possible).
- ightharpoonup There is always a unique coarsest bisimulation for ${\mathcal T}$ and it can be computed efficiently (from the explicit representation).
- In some cases, computing the bisimulation is still too expensive or it cannot sufficiently shrink a transition system.

E11. Merge-and-Shrink: Properties and Shrink Strategies

E11.3 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

E11. Merge-and-Shrink: Properties and Shrink Strategies

Summary

- ► Merge-and-shrink abstractions can be analyzed by viewing them as a sequence of transformations.
- ► We only use conservative transformations, and hence merge-and-shrink heuristics for SAS^+ tasks are admissible and consistent.
- ► Merge-and-shrink heuristics for SAS⁺ tasks that only use exact transformations are perfect.
- ▶ Bisimulation is an exact shrinking method.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 19, 2025 29 / 29

