Planning and Optimization

E4. Abstractions: Formal Definition and Heuristics

Malte Helmert and Gabriele Roger

Universitat Basel

November 5, 2025

Content of the Course

— Prelude

— Foundations

— Approaches -
-
— Delete Relaxation | [Pattern Databases
-« Merge & Shrink
— Constraints L Cartesian
Abstractions

Transition Systems

©000000

Reminder: Transition Systems

Transition Systems / ons 4 rac ¢ and Refinements

0O@00000

Transition Systems

Reminder from Chapter B1:

Definition (Transition System)

A transition system is a 6-tuple 7 = (S, L, ¢, T, so, Sx) where

m S is a finite set of states,

L is a finite set of (transition) labels,

[
mc:lL—]Rar is a label cost function,
m 7T CSxLxSis the transition relation,
m sp € S is the initial state, and
m S, C S is the set of goal states.
We say that T has the transition (s,¢,s’) if (s,£,s') € T.

) : i) .
We also write this as s — s’, or s — s’ when not interested in /.

Note: Transition systems are also called state spaces.

Transition Systems ons 4 on Heuristics ¢ and Refinements Summary

[e]e] lele]e]e)

Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.

Transition Systems
000@000

Abstraction Heuristics Cos and Refinements Summary

Mapping Planning Tasks to Transition Systems

Reminder from Chapters B3 and E1:

Definition (Transition System Induced by a Planning Task)

The planning task I = (V, I, O,~) induces
the transition system 7 (1) = (S, L, c, T, sp, S«), where

S is the set of all states over state variables V/,

L is the set of operators O,

c(0) = cost(o) for all operators o € O,

T ={(s,0,5') | s€S, o applicable in s, s’ = s[o]},
so =/, and

S,={seS|skE=~}

(same definition for propositional and finite-domain representation)

y

Transition Systems / ons 4 rac ¢ and Refinements

0000e00

Tasks in Finite-Domain Representation

Notes:

m We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

m All concepts apply equally to propositional planning tasks.

m However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

m Useless states can hurt the efficiency of abstraction-based
algorithms.

Transition Systems Abstractions Abs: o se s ml Refinements

Summary

0000080

Example Task: One Package, Two Trucks

Example (One Package, Two Trucks)

Consider the following FDR planning task (V,/, O,~):
m V ={p, ta,tg} with
m dom(p) = {L,R,A,B}
m dom(ta) = dom(tg) = {L,R}
m/={p—Lta— R tg — R}
m 0= {pICkUp,J | S {Aa B}a./ € {L7 R}}
U {dropi,j ‘ S {A7 B}a./ € {L7 R}}
U{move; ;i | i € {A,B},j,j/ € {L,R},j # j'}, where
m pickup; ; = (ti=jAp=j,p:=1i1)
m drop; ;= (ti=jAp=1i, P —J,1>
m move;j i = (ti = j, tj :=j',1)

= v=(p=R)

Transition Systems / ractions rac Co s and Refinements Summary

000000

m State {p > i, ta — j, tg — k} is depicted as ijk.

m Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupy | .

Abstractions
©00000

Abstractions

n Systems Abstractions tion Heuristics . and Refinements

O@0000

Abstractions

Definition (Abstraction)
Let 7 =(S,L,c, T,sp, Si) be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function o : S — S® defined on the states of T,
where S¢ is an arbitrary set.

Without loss of generality, we require that « is surjective.

Intuition: o maps the states of 7 to another (usually smaller)
abstract state space.

Transition Systems Abstractions Abstraction Heuristics Coars and Refinements Summary

[e]e] lele]e}

Abstract Transition System

Definition (Abstract Transition System)
Let 7 =(S,L,c, T,so, Si) be a transition system,
and let a: S — 5% be an abstraction of 7.
The abstract transition system induced by «, in symbols 7,
is the transition system 7% = (5%, L,c, T%, s§, SZ) defined by:
m 7%= {{afs), £, a(t)) | (s, 4, t) € T}
m sg = oso)
m SO ={a(s)|se S}

Abstractions
00000

Concrete and Abstract State Space

Let 7 be a transition system and « be an abstraction of 7.
m 7 is called the concrete transition system.
m 7% is called the abstract transition system.

m Similarly: concrete/abstract state space,
concrete/abstract transition, etc.

n Systems Abstractions tion Heuristics . and Refinements

0000e0

Abstraction: Example

concrete transition system

Abstractions
000000

Abstraction: Example

abstract transition system

()
m @ ARL
@ RRL
@ ARRJ«<—
~ o D
@ BRR}«—
@ RLR
@ BLR

Note: Most arcs represent many parallel transitions.

Abstractions 4 on Heuristics ¢ and Refinements

0O0000e

Strict Homomorphisms

m The abstraction mapping « that transforms 7 to T¢
is also called a strict homomorphism from 7T to 7.

m Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

m A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by a.

Abstraction Heuristics
©0000

Abstraction Heuristics

n Systems / ons Abstraction Heuristics g and Refinements

0@000

Abstraction Heuristics

Definition (Abstraction Heuristic)
Let «: S — S be an abstraction of a transition system 7.

The abstraction heuristic induced by «, written h®,
is the heuristic function h® : S — R} U {oc} defined as

h“(s) = hFa(a(s)) forall s e S,

where hZ-, denotes the goal distance function in 7.

Notes:
m h%(s) = oo if no goal state of T is reachable from af(s)

m We also apply abstraction terminology to planning tasks [T,
which stand for their induced transition systems.
For example, an abstraction of 1 is an abstraction of 7 ().

Abstraction Heuristics
00®00

Abstraction Heuristics: Example

ALR ARL

< BLL BRR}e—;

& (B EP
€)
&

BRL BLR

h“({p— L, ta— R, tg — R}) =3

n Systems

Abstraction Heuristics ¢ and Refinements
00080

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h®)

Let o be an abstraction of a transition system T .
Then h® is safe, goal-aware, admissible and consistent.

We prove goal-awareness and consistency;
the other properties follow from these two.
Let T=(S,L,c, T,sp, Si)-

Let 7% = (5% L,c, T%, s, S¢).

Transition Systems Ab ons Abstraction Heuristics Coa and Refinements

[e]e]e] lo}

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h*)

Let o be an abstraction of a transition system T .
Then h® is safe, goal-aware, admissible and consistent.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let T=(S,L,c, T,sp, Si)-

Let 7% = (5% L,c, T%, s, S¢).

Goal-awareness: We need to show that h®(s) =0 for all s € S,,

so let s € S,. Then a(s) € S by the definition of abstract
transition systems, and hence h%(s) = h%-.(a(s)) = 0.

Transition Systems Abstractions Abstraction Heuristics ¢ gs and Refinements

[e]e]e]e] }

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h*(s) < c(¢) + h*(t).

Transition Systems Ab ons Abstraction Heuristics Coa and Refinements

[e]e]e]e] }

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h“(s) < c(¢) + h*(t).

By the definition of 7%, we get «(s) EN a(t) e T
Hence, a(t) is a successor of a(s) in T via the label .

Abstraction Heuristics sel nd Refinements Summary

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h“(s) < c(¢) + h*(t).

By the definition of 7%, we get «(s) EN a(t) e T
Hence, a(t) is a successor of a(s) in T via the label .

We get:
h?(s) = hra(a(s))
< c(0) + hira(a(t))
= c(£) + h*(t),

where the inequality holds because perfect goal distances hi.

are consistent in 7.

(The shortest path from a(s) to the goal in T cannot be longer
than the shortest path from «(s) to the goal via a(t).) O

4

nings and Refinements

Coarser
©0000000

Coarsenings and Refinements

ction Heuristics Coarsenings and Refinements

0O@000000

Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

m Using a first abstraction a: S — S’, map 7 to T*.
m Using a second abstraction 3 : S’ — S”, map T to (T°)".

The result is the same as directly using the abstraction (8 o «):
m Let v: S — S” be defined as y(s) = (B o a)(s) = B(a(s)).
m Then 77 = (T%).

ction Heuristics Coarsenings and Refinements Summar

0O0e00000

transition system T

Coarsenings and Refinements
000®0000

Abstractions of Abstractions: Example (2)

Transition system 77 as an abstraction of T

Coarsenings and Refinements
000®0000

Abstractions of Abstractions: Example (2)

Transition system 7 as an abstraction of T

Coarsenings and Refinements
00008000

Abstractions of Abstractions: Example (3)

ALR ARL
LLR je— <—>
ALL ARR
eNe)@
BLL BLR
LRL je— <—>
BRL BRR

Transition system 7" as an abstraction of 7’

Coarsenings and Refinements
00008000

Abstractions of Abstractions: Example (3)

ALR ARL
LLR }e— <—>
ALL ARR
G @ @
BLL BRR
LRL je— <—>
BRL BLR

Transition system 7" as an abstraction of T

Coarsenings and Refinements
00000800

Coarsenings and Refinements

Definition (Coarsening and Refinement)

Let a and v be abstractions of the same transition system
such that v = 8 o « for some function .

Then ~y is called a coarsening of «
and « is called a refinement of ~.

00000080

n Systems A ons A tion Heuristics Coarsenings and Refinements Summar

Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)

Let o and «y be abstractions of the same transition system
such that « is a refinement of ~y.

Then h® dominates h”.

In other words, h7(s) < h*(s) < h*(s) for all states s.

Transition Systems Ab: ons A ction Heuristics Coarsenings and Refinements

O000000e

Heuristic Quality of Refinements: Proof

Since « is a refinement of ~,
there exists a function 8 with v = 5o a.

For all states s of 1, we get:

h'(s) = h+(7(s))
= h1-(B(a(s)))
(a(s))
< hra(a(s))
= h%(s),

= h.

where the inequality holds because hg-a is an admissible heuristic
in the transition system 7. O

4

Summan
0

Summary

n Systems / ons A action Heuristics c and Refinements Summary
fe 00000 0 o

Summary

m An abstraction is a function a that maps the states S
of a transition system to another (usually smaller) set S¢.

m This induces an abstract transition system 7%, which behaves
like the original transition system T except that states
mapped to the same abstract state cannot be distinguished.

m Abstractions « induce abstraction heuristics h*: h*(s)

is the goal distance of a(s) in the abstract transition system.
m Abstraction heuristics are safe, goal-aware, admissible

and consistent.

m Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those
for coarser ones.

	Reminder: Transition Systems
	

	Abstractions
	

	Abstraction Heuristics
	

	Coarsenings and Refinements
	

	Summary
	

