Planning and Optimization

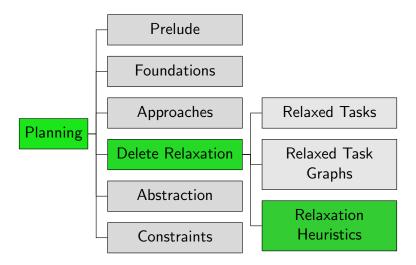
D7. Delete Relaxation: Analysis of h^{max} and h^{add}

Malte Helmert and Gabriele Röger

Universität Basel

October 29, 2025

Content of the Course



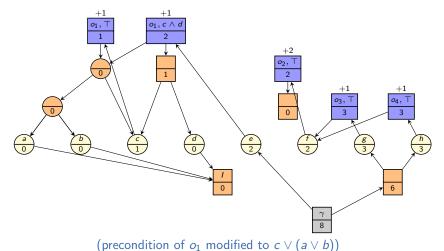
Choice Functions

Motivation

- In this chapter, we analyze the behaviour of h^{max} and h^{add} more deeply.
- Our goal is to understand their shortcomings.
 - In the next chapter we then used this understanding to devise an improved heuristic.
- As a preparation for our analysis, we need some further definitions that concern choices in AND/OR graphs.
- The key observation is that if we want to establish the value of a certain node *n*, we can to some extent choose how we want to achieve the OR nodes that are relevant to achieving *n*.

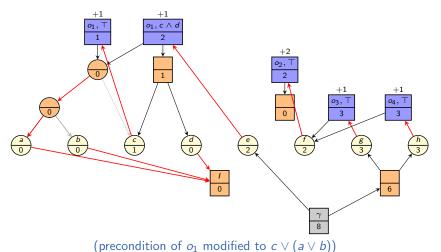
Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node, but node values may not change.



Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node, but node values may not change.



Choice Functions

Definition (Choice Function)

Let G be an AND/OR graph with nodes N and OR nodes N_{\lor} . A choice function for G is a function $f: N' \to N$ defined on

A choice function for G is a function $f: N' \to N$ defined or some set $N' \subseteq N_{\lor}$ such that $f(n) \in succ(n)$ for all $n \in N'$.

- In words, choice functions select (at most) one successor for each OR node of *G*.
- Intuitively, f(n) selects by which disjunct n is achieved.
- If f(n) is undefined for a given n, the intuition is that n is not achieved.

Reduced Graphs

Once we have decided how to achieve an OR node, we can remove the other alternatives:

Definition (Reduced Graph)

Let G be an AND/OR graph, and let f be a choice function for G defined on nodes N'.

The reduced graph for f is the subgraph of G where all outgoing arcs of OR nodes are removed except for the chosen arcs $\langle n, f(n) \rangle$ with $n \in N'$.

Best Achievers

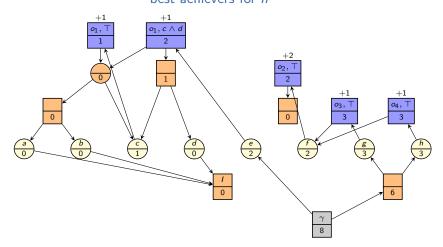
Choice Functions Induced by h^{max} and h^{add}

Which choices do h^{max} and h^{add} make?

- At every OR node *n*, we set the cost of *n* to the minimum of the costs of the successors of *n*.
- The motivation for this is to achieve *n* via the successor that can be achieved most cheaply according to our cost estimates.
- This corresponds to defining a choice function f with $f(n) \in \arg\min_{n' \in N'} n'.cost$ for all reached OR nodes n, where $N' \subseteq succ(n)$ are all successors of n processed before n.
 - The successors chosen by this cost function are called best achievers (according to h^{max} or h^{add}).
 - Note that the best achiever function *f* is in general not well-defined because there can be multiple minimizers. We assume that ties are broken arbitrarily.

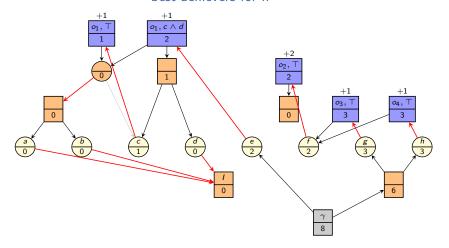
Example: Best Achievers (1)

best achievers for h^{add}



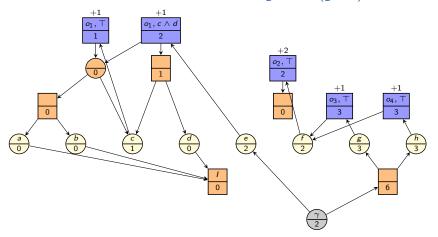
Example: Best Achievers (1)

best achievers for h^{add}



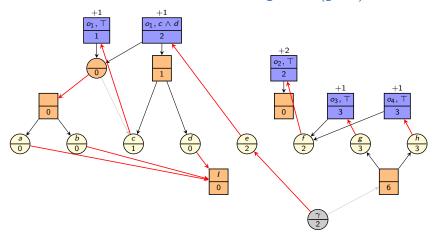
Example: Best Achievers (2)

best achievers for h^{add} ; modified goal $e \lor (g \land h)$



Example: Best Achievers (2)

best achievers for h^{add} ; modified goal $e \lor (g \land h)$



Best Achiever Graphs

- **Observation**: The $h^{\text{max}}/h^{\text{add}}$ costs of nodes remain the same if we replace the RTG by the reduced graph for the respective best achiever function.
- The AND/OR graph that is obtained by removing all nodes with infinite cost from this reduced graph is called the best achiever graph for $h^{\text{max}}/h^{\text{add}}$.
 - We write G^{max} and G^{add} for the best achiever graphs.
- G^{\max} (G^{add}) is always acyclic: for all arcs $\langle n, n' \rangle$ it contains, n is processed by h^{\max} (by h^{add}) after n'.

Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.

Let N_{eff} be the set of effect nodes of the best achiever graph.

The cost of an effect node is the cost of the associated operator. The cost of a path in the best achiever graph is the sum of costs

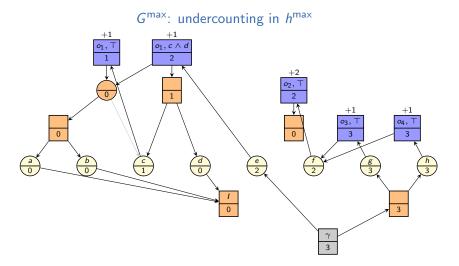
of all effect nodes on the path.

The following properties can be shown by induction:

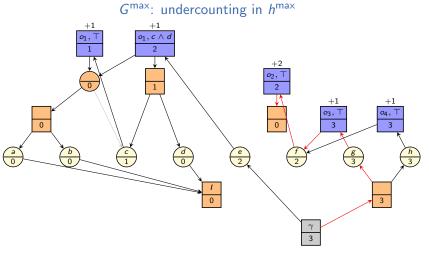
- $h^{\text{max}}(n)$ is the maximum cost of all paths originating from n in G^{max} . A path achieving this maximum is called a critical path.
- $h^{\text{add}}(n)$ is the sum, over all effect nodes n', of the cost of n' multiplied by the number of paths from n to n' in G^{add} .

In particular, these properties hold for the goal node n_{γ} if it is reachable.

Example: Undercounting in h^{max}

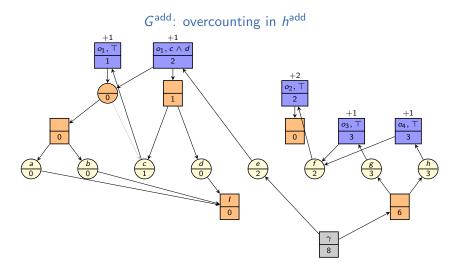


Example: Undercounting in h^{max}

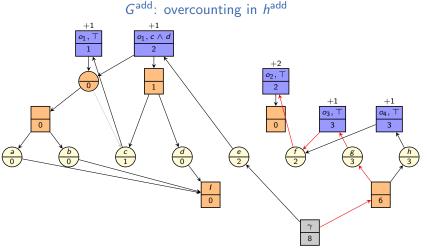


 \rightsquigarrow o_1 and o_4 not counted because they are off the critical path

Example: Overcounting in h^{add}

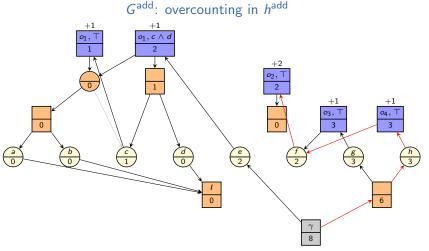


Example: Overcounting in h^{add}



 \rightarrow o_2 counted twice because there are two paths to $n_{o_2}^{\top}$

Example: Overcounting in h^{add}



 $\rightsquigarrow o_2$ counted twice because there are two paths to $n_{o_2}^{\top}$

Summary

Summary

- h^{max} and h^{add} can be used to decide how to achieve OR nodes in a relaxed task graph
 - → best achievers
- Best achiever graphs help identify shortcomings of h^{max} and h^{add} compared to the perfect delete relaxation heuristic h^+ .
 - h^{max} underestimates h^+ because it only considers the cost of a critical path for the relaxed planning task.
 - h^{add} overestimates h^+ because it double-counts operators occurring on multiple paths in the best achiever graph.