Planning and Optimization
D3. Delete Relaxation: Finding Relaxed Plans

Malte Helmert and Gabriele Roger

Universitat Basel

October 22, 2025

Content of the Course

— Prelude

— Foundations

Graphs

- Abstraction

Relaxation
- Constraints Heuristics

Greedy Algorithm

@00000

Greedy Algorithm

Greedy Algorithm Optimal Relaxe Summary

0O@0000

The Story So Far

m A general way to come up with heuristics is to solve
a simplified version of the real problem.

m delete relaxation: given a task in positive normal form,
discard all delete effects

m relaxation lemma: solutions for a state s
also work for any dominating state s’
m monotonicity lemma: s[o] dominates s

Greedy Algorithm Optimal Relaxed Plans

[e]e] lele]e})() (

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for (V, I, O, ~)

s:=1

=)

loop forever:
if s =~

return 7
else if there is an operator o™ € O™ applicable in s
with s[o™] # s:
Append such an operator ot to 7.
s:=s[o"]
else:
return unsolvable

Greedy Algorithm Optimal Relaxed Plans

000e00)(C)(

Correctness of the Greedy Algorithm

The algorithm is sound:

m If it returns a plan, this is indeed a correct solution.
m If it returns “unsolvable”, the task is indeed unsolvable

m Upon termination, there clearly is no relaxed plan from s.
m By iterated application of the monotonicity lemma,
s dominates /.

m By the relaxation lemma, there is no solution from /.

What about completeness (termination) and runtime?
m Each iteration of the loop adds at least one atom to on(s).
m This guarantees termination after at most |V/| iterations.

m Thus, the algorithm can clearly be implemented
to run in polynomial time.

m A good implementation runs in O(]|M]]).

Greedy Algorithm Optimal Relaxed Plans

0000e0)(C)(

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:
m When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.
m When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal ¢.
m Set h(s) to the cost of the generated relaxed plan.

m in general not well-defined:
different choices of o™ in the algorithm lead to different h(s)

Is this admissible /safe/goal-aware/consistent?

Greedy Algorithm Summar

O0000e

Properties of the Greedy Algorithm as a Heuristic

Is this an admissible heuristic?

m Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

m However, usually they are not, because the greedy algorithm
can make poor choices of which operators to apply.

How hard is it to find optimal relaxed plans?

Optimal Relaxed Plans

@0000

Optimal Relaxed Plans

Igorithm Optimal Relaxed Plans Summary

0O@000

Optimal Relaxation Heuristic

Definition (h™ heuristic)

Let M= (V,I,O,~) be a planning task in positive normal form
with states S.

The optimal delete relaxation heuristic h* for I

is the function h: S — R} U {oo}

where h(s) is the cost of an optimal relaxed plan for s,
i.e., of an optimal plan for M = (V,s, OT,).

(can analogously define a heuristic for regression)

admissible /safe /goal-aware/consistent?

Optimal Relaxed Plans Summar,

[e]e] le]e}

The Set Cover Problem

Can we compute ht efficiently?
This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {Cy,..., Cy}
with C; C U for all i € {1,...,n}, and a natural number K.
Question: Is there a set cover of size at most K, i.e.,

a subcollection S = {S1,...,5m} C C

with SiU---US,=Uand m< K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.

Optimal Relaxed Plans Summary
000®0 00

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPLANEX problem restricted to delete-relaxed
planning tasks is NP-complete.

For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V/|
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem.

y Algorithm Optimal Relaxed Plans Summary
ole 00000 00

Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance (U, C, K), we generate the following
relaxed planning task Mt = (V 1, O 4):

mV=U

m/={v—>F|veV}

= 0F = {<T:/\veC,- v,1) | G e C}

" 7= Aveu?
If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets

corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K.

Moreover, N can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction. [

Summan
0

Summary

Igorithm Optimal Relaxed Plans Summary
00000 o

Summary

m Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

m However, the solution quality of this algorithm is poor.

m For an informative heuristic, we would ideally want to find
optimal relaxed plans.

m The solution cost of an optimal relaxed plan
is the estimate of the h" heuristic.

m However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

	Greedy Algorithm
	

	Optimal Relaxed Plans
	

	Summary
	

