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Devising a Symbolic Search Algorithm

▶ We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.

▶ use BDDs as a black box data structure:
▶ care about provided operations and their time complexity
▶ do not care about their internal implementation

▶ Efficient implementations are available as libraries, e.g.:
▶ CUDD, a high-performance BDD library
▶ libbdd, shipped with Ubuntu Linux
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C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations: Preliminaries

▶ All BDDs work on a fixed and totally ordered
set of propositional variables.

▶ Complexity of operations given in terms of:
▶ k, the number of BDD variables
▶ ∥B∥, the number of nodes in the BDD B
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BDD Operations (1)

BDD operations: logical/set atoms
▶ bdd-fullset(): build BDD representing all assignments

▶ in logic: ⊤
▶ time complexity: O(1)

▶ bdd-emptyset(): build BDD representing ∅
▶ in logic: ⊥
▶ time complexity: O(1)

▶ bdd-atom(v): build BDD representing {s | s(v) = T}
▶ in logic: v
▶ time complexity: O(1)
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BDD Operations (2)

BDD operations: logical/set connectives

▶ bdd-complement(B): build BDD representing r(B)
▶ in logic: ¬φ
▶ time complexity: O(∥B∥)

▶ bdd-union(B, B ′): build BDD representing r(B) ∪ r(B ′)
▶ in logic: (φ ∨ ψ)
▶ time complexity: O(∥B∥ · ∥B ′∥)

▶ bdd-intersection(B, B ′): build BDD representing r(B)∩ r(B ′)
▶ in logic: (φ ∧ ψ)
▶ time complexity: O(∥B∥ · ∥B ′∥)
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BDD Operations (3)

BDD operations: Boolean tests
▶ bdd-includes(B, I ): return true iff I ∈ r(B)

▶ in logic: I |= φ?
▶ time complexity: O(k)

▶ bdd-equals(B, B ′): return true iff r(B) = r(B ′)
▶ in logic: φ ≡ ψ?
▶ time complexity: O(1) (due to canonical representation)
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Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula φ to T or F,
written φ[T/v ] or φ[F/v ], means restricting v
to a particular truth value:

Examples:

▶ (A ∧ (B ∨ ¬C ))[T/B] = (A ∧ (⊤ ∨ ¬C )) ≡ A

▶ (A ∧ (B ∨ ¬C ))[F/B] = (A ∧ (⊥ ∨ ¬C )) ≡ A ∧ ¬C
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Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S :
S [F/v ] and S [T/v ] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

▶ S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
⇝ S [T/B] = {{A 7→ T,C 7→ F},

S [T/B] = {

{A 7→ T,C 7→ T}}
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Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as ∃v φ (for formulas) and ∃v S (for sets).

Formally:

▶ ∃v φ = φ[T/v ] ∨ φ[F/v ]
▶ ∃v S = S [T/v ] ∪ S [F/v ]
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Forgetting: Example

Examples:

▶ S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
⇝ ∃B S = {{A 7→ F,C 7→ F},

∃B S = {

{A 7→ T,C 7→ F},

∃B S = {

{A 7→ T,C 7→ T}}
⇝ ∃C S = {{A 7→ F,B 7→ F},

∃C S = {

{A 7→ T,B 7→ T}}
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BDD Operations (4)

BDD operations: conditioning and forgetting

▶ bdd-condition(B, v , t) where t ∈ {T,F}:
build BDD representing r(B)[t/v ]
▶ in logic: φ[t/v ]
▶ time complexity: O(∥B∥)

▶ bdd-forget(B, v):
build BDD representing ∃v r(B)
▶ in logic: ∃v φ (= φ[T/v ] ∨ φ[F/v ])
▶ time complexity: O(∥B∥2)
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C8.2 Formulas and Singletons
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Formulas to BDDs

▶ With the logical/set operations, we can convert propositional
formulas φ into BDDs representing the models of φ.

▶ We denote this computation with bdd-formula(φ).

▶ Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2n) time.
(How is this possible?)
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Singleton BDDs

▶ We can convert a single truth assignment I
into a BDD representing {I} by computing
the conjunction of all literals true in I
(using bdd-atom, bdd-complement and bdd-intersection).

▶ We denote this computation with bdd-singleton(I ).

▶ When done in the correct order, this takes time O(k).
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C8.3 Renaming

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 18 / 46

C8. Symbolic Search: Full Algorithm Renaming

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula φ, written φ[X → Y ],
means replacing all occurrences of X by Y in φ.

We require that Y is not present in φ initially.

Example:

▶ φ = (A ∧ (B ∨ ¬C ))

⇝ φ[A → D] = (D ∧ (B ∨ ¬C ))
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How Hard Can That Be?

▶ For formulas, renaming is a simple (linear-time) operation.

▶ For a BDD B, it is equally simple (O(∥B∥)) when renaming
between variables that are adjacent in the variable order.

▶ In general, it requires O(∥B∥2), using the equivalence
φ[X → Y ] ≡ ∃X (φ ∧ (X ↔ Y ))
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C8.4 Symbolic Breadth-first Search
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Planning Task State Variables vs. BDD Variables

Consider propositional planning task ⟨V , I ,O, γ⟩ with states S .

In symbolic planning, we have two BDD variables v and v ′

for every state variable v ∈ V of the planning task.

▶ use unprimed variables v to describe sets of states:
{s ∈ S | some property}

▶ use combinations of unprimed and primed variables v , v ′

to describe sets of state pairs:
{⟨s, s ′⟩ | some property}
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-formula.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-singleton.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 25 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-intersection, bdd-emptyset, bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-union.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

How to do this?
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The apply Function (1)

We need an operation that

▶ for a set of states reached (given as a BDD)

▶ and a set of operators O

▶ computes the set of states (as a BDD) that result from
applying some operator o ∈ O in some state s ∈ reached.

We have seen something similar already. . .
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Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.

Define τV (o) := pre(o) ∧
∧

v∈V (regr(v , eff(o)) ↔ v ′).

States that o is applicable and describes how

▶ the new value of v , represented by v ′,

▶ must relate to the old state, described by variables V .
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The apply Function (2)

▶ The formula τV (o) describes all transitions s
o−→ s ′

▶ induced by a single operator o
▶ in terms of variables V describing s
▶ and variables V ′ describing s ′.

▶ The formula
∨

o∈O τV (o) describes state transitions
by any operator in O.

▶ We can translate this formula to a BDD
(over variables V ∪ V ′) with bdd-formula.

▶ The resulting BDD is called the transition relation
of the planning task, written as TV (O).
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The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B
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The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs ⟨s, s ′⟩ where s ′ is a successor
of s in terms of variables V ∪ V ′.
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The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs ⟨s, s ′⟩ where s ′ is a successor
of s and s ∈ reached in terms of variables V ∪ V ′.
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The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V ′.
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The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
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def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
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of some state s ∈ reached in terms of variables V .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 37 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Thus, apply indeed computes the set of successors of reached
using operators O.
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C8. Symbolic Search: Full Algorithm Discussion

Discussion

▶ This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

▶ We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

▶ In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.
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Variable Orders

For good performance, we need a good variable ordering.

▶ Variables that refer to the same state variable
before and after operator application (v and v ′)
should be neighbors in the transition relation BDD.
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Extensions

Symbolic search can be extended to. . .

▶ regression and bidirectional search:
this is very easy and often effective

▶ uniform-cost search:
requires some work, but not too difficult in principle

▶ heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search
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C8.6 Summary
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C8. Symbolic Search: Full Algorithm Summary

Summary

▶ Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

▶ State sets and transition relations can be represented
as BDDs.

▶ Based on this, we can implement a blind breadth-first search
in an efficient way.

▶ A good variable ordering is crucial for performance.
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