
Planning and Optimization
C8. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Röger

Universität Basel

October 15, 2025

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 1 / 46

Planning and Optimization
October 15, 2025 — C8. Symbolic Search: Full Algorithm

C8.1 Basic BDD Operations

C8.2 Formulas and Singletons

C8.3 Renaming

C8.4 Symbolic Breadth-first Search

C8.5 Discussion

C8.6 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 2 / 46

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 3 / 46

Devising a Symbolic Search Algorithm

▶ We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.

▶ use BDDs as a black box data structure:
▶ care about provided operations and their time complexity
▶ do not care about their internal implementation

▶ Efficient implementations are available as libraries, e.g.:
▶ CUDD, a high-performance BDD library
▶ libbdd, shipped with Ubuntu Linux

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 4 / 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

C8.1 Basic BDD Operations

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 5 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations: Preliminaries

▶ All BDDs work on a fixed and totally ordered
set of propositional variables.

▶ Complexity of operations given in terms of:
▶ k, the number of BDD variables
▶ ∥B∥, the number of nodes in the BDD B

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 6 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (1)

BDD operations: logical/set atoms
▶ bdd-fullset(): build BDD representing all assignments

▶ in logic: ⊤
▶ time complexity: O(1)

▶ bdd-emptyset(): build BDD representing ∅
▶ in logic: ⊥
▶ time complexity: O(1)

▶ bdd-atom(v): build BDD representing {s | s(v) = T}
▶ in logic: v
▶ time complexity: O(1)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 7 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (2)

BDD operations: logical/set connectives

▶ bdd-complement(B): build BDD representing r(B)
▶ in logic: ¬φ
▶ time complexity: O(∥B∥)

▶ bdd-union(B, B ′): build BDD representing r(B) ∪ r(B ′)
▶ in logic: (φ ∨ ψ)
▶ time complexity: O(∥B∥ · ∥B ′∥)

▶ bdd-intersection(B, B ′): build BDD representing r(B)∩ r(B ′)
▶ in logic: (φ ∧ ψ)
▶ time complexity: O(∥B∥ · ∥B ′∥)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 8 / 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (3)

BDD operations: Boolean tests
▶ bdd-includes(B, I ): return true iff I ∈ r(B)

▶ in logic: I |= φ?
▶ time complexity: O(k)

▶ bdd-equals(B, B ′): return true iff r(B) = r(B ′)
▶ in logic: φ ≡ ψ?
▶ time complexity: O(1) (due to canonical representation)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 9 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula φ to T or F,
written φ[T/v ] or φ[F/v ], means restricting v
to a particular truth value:

Examples:

▶ (A ∧ (B ∨ ¬C ))[T/B] = (A ∧ (⊤ ∨ ¬C )) ≡ A

▶ (A ∧ (B ∨ ¬C ))[F/B] = (A ∧ (⊥ ∨ ¬C )) ≡ A ∧ ¬C

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 10 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S :
S [F/v ] and S [T/v ] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

▶ S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
⇝ S [T/B] = {{A 7→ T,C 7→ F},

S [T/B] = {

{A 7→ T,C 7→ T}}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 11 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as ∃v φ (for formulas) and ∃v S (for sets).

Formally:

▶ ∃v φ = φ[T/v ] ∨ φ[F/v ]
▶ ∃v S = S [T/v ] ∪ S [F/v ]

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 12 / 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

Forgetting: Example

Examples:

▶ S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
⇝ ∃B S = {{A 7→ F,C 7→ F},

∃B S = {

{A 7→ T,C 7→ F},

∃B S = {

{A 7→ T,C 7→ T}}
⇝ ∃C S = {{A 7→ F,B 7→ F},

∃C S = {

{A 7→ T,B 7→ T}}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 13 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (4)

BDD operations: conditioning and forgetting

▶ bdd-condition(B, v , t) where t ∈ {T,F}:
build BDD representing r(B)[t/v ]
▶ in logic: φ[t/v ]
▶ time complexity: O(∥B∥)

▶ bdd-forget(B, v):
build BDD representing ∃v r(B)
▶ in logic: ∃v φ (= φ[T/v ] ∨ φ[F/v ])
▶ time complexity: O(∥B∥2)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 14 / 46

C8. Symbolic Search: Full Algorithm Formulas and Singletons

C8.2 Formulas and Singletons

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 15 / 46

C8. Symbolic Search: Full Algorithm Formulas and Singletons

Formulas to BDDs

▶ With the logical/set operations, we can convert propositional
formulas φ into BDDs representing the models of φ.

▶ We denote this computation with bdd-formula(φ).

▶ Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2n) time.
(How is this possible?)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 16 / 46



C8. Symbolic Search: Full Algorithm Formulas and Singletons

Singleton BDDs

▶ We can convert a single truth assignment I
into a BDD representing {I} by computing
the conjunction of all literals true in I
(using bdd-atom, bdd-complement and bdd-intersection).

▶ We denote this computation with bdd-singleton(I ).

▶ When done in the correct order, this takes time O(k).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 17 / 46

C8. Symbolic Search: Full Algorithm Renaming

C8.3 Renaming

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 18 / 46

C8. Symbolic Search: Full Algorithm Renaming

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula φ, written φ[X → Y ],
means replacing all occurrences of X by Y in φ.

We require that Y is not present in φ initially.

Example:

▶ φ = (A ∧ (B ∨ ¬C ))

⇝ φ[A → D] = (D ∧ (B ∨ ¬C ))

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 19 / 46

C8. Symbolic Search: Full Algorithm Renaming

How Hard Can That Be?

▶ For formulas, renaming is a simple (linear-time) operation.

▶ For a BDD B, it is equally simple (O(∥B∥)) when renaming
between variables that are adjacent in the variable order.

▶ In general, it requires O(∥B∥2), using the equivalence
φ[X → Y ] ≡ ∃X (φ ∧ (X ↔ Y ))

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 20 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

C8.4 Symbolic Breadth-first Search

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 21 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Planning Task State Variables vs. BDD Variables

Consider propositional planning task ⟨V , I ,O, γ⟩ with states S .

In symbolic planning, we have two BDD variables v and v ′

for every state variable v ∈ V of the planning task.

▶ use unprimed variables v to describe sets of states:
{s ∈ S | some property}

▶ use combinations of unprimed and primed variables v , v ′

to describe sets of state pairs:
{⟨s, s ′⟩ | some property}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 22 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 23 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-formula.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 24 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-singleton.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 25 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-intersection, bdd-emptyset, bdd-equals.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 26 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-union.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 27 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-equals.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 28 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

How to do this?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 29 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (1)

We need an operation that

▶ for a set of states reached (given as a BDD)

▶ and a set of operators O

▶ computes the set of states (as a BDD) that result from
applying some operator o ∈ O in some state s ∈ reached.

We have seen something similar already. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 30 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.

Define τV (o) := pre(o) ∧
∧

v∈V (regr(v , eff(o)) ↔ v ′).

States that o is applicable and describes how

▶ the new value of v , represented by v ′,

▶ must relate to the old state, described by variables V .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 31 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (2)

▶ The formula τV (o) describes all transitions s
o−→ s ′

▶ induced by a single operator o
▶ in terms of variables V describing s
▶ and variables V ′ describing s ′.

▶ The formula
∨

o∈O τV (o) describes state transitions
by any operator in O.

▶ We can translate this formula to a BDD
(over variables V ∪ V ′) with bdd-formula.

▶ The resulting BDD is called the transition relation
of the planning task, written as TV (O).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 32 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 33 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs ⟨s, s ′⟩ where s ′ is a successor
of s in terms of variables V ∪ V ′.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 34 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs ⟨s, s ′⟩ where s ′ is a successor
of s and s ∈ reached in terms of variables V ∪ V ′.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 35 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V ′.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 36 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 37 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Thus, apply indeed computes the set of successors of reached
using operators O.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 38 / 46

C8. Symbolic Search: Full Algorithm Discussion

C8.5 Discussion

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 39 / 46

C8. Symbolic Search: Full Algorithm Discussion

Discussion

▶ This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

▶ We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

▶ In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 40 / 46



C8. Symbolic Search: Full Algorithm Discussion

Variable Orders

For good performance, we need a good variable ordering.

▶ Variables that refer to the same state variable
before and after operator application (v and v ′)
should be neighbors in the transition relation BDD.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 41 / 46

C8. Symbolic Search: Full Algorithm Discussion

Extensions

Symbolic search can be extended to. . .

▶ regression and bidirectional search:
this is very easy and often effective

▶ uniform-cost search:
requires some work, but not too difficult in principle

▶ heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 42 / 46

C8. Symbolic Search: Full Algorithm Discussion

Literature (1)

Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677–691, 1986.
Reduced ordered BDDs.

Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 43 / 46

C8. Symbolic Search: Full Algorithm Discussion

Literature (2)

Álvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

David Speck, Jendrik Seipp and Álvaro Torralba.
Symbolic Search for Cost-Optimal Planning
with Expressive Model Extensions.
Journal of Artificial Intelligence Research 82,
pp. 1349–1405, 2025.
More general classes of planning tasks.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 44 / 46



C8. Symbolic Search: Full Algorithm Summary

C8.6 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 45 / 46

C8. Symbolic Search: Full Algorithm Summary

Summary

▶ Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

▶ State sets and transition relations can be represented
as BDDs.

▶ Based on this, we can implement a blind breadth-first search
in an efficient way.

▶ A good variable ordering is crucial for performance.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 15, 2025 46 / 46


	Basic BDD Operations
	

	Formulas and Singletons
	

	Renaming
	

	Symbolic Breadth-first Search
	

	Discussion
	

	Summary
	


