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Devising a Symbolic Search Algorithm

> We now put the pieces together to build

a symbolic search algorithm for propositional planning tasks.

» use BDDs as a black box data structure:

> care about provided operations and their time complexity
> do not care about their internal implementation

> Efficient implementations are available as libraries, e.g.:

» CUDD, a high-performance BDD library
» libbdd, shipped with Ubuntu Linux
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(8.1 Basic BDD Operations
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BDD Operations: Preliminaries

> All BDDs work on a fixed and totally ordered
set of propositional variables.
» Complexity of operations given in terms of:

» k, the number of BDD variables
> ||B]|, the number of nodes in the BDD B
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BDD Operations (1)

BDD operations: logical /set atoms

» bdd-fullset(): build BDD representing all assignments
» in logic: T
> time complexity: O(1)

» bdd-emptyset(): build BDD representing ()
> in logic: L
> time complexity: O(1)

» bdd-atom(v): build BDD representing {s | s(v) = T}
> in logic: v
> time complexity: O(1)
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BDD Operations (2)

BDD operations: logical/set connectives
» bdd-complement(B): build BDD representing r(B)
> in logic: —p
> time complexity: O(||B]|)
» bdd-union(B, B’): build BDD representing r(B) U r(B’)

> in logic: (¢ V)
> time complexity: O(||B| - [|1B’]l)

» bdd-intersection(B, B’): build BDD representing r(B) N r(B’)

> in logic: (¢ A )
> time complexity: O(||B| - ||B’|])
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BDD Operations (3)

BDD operations: Boolean tests
» bdd-includes(B, I): return true iff | € r(B)
> in logic: | E ¢?
> time complexity: O(k)
» bdd-equals(B, B’): return true iff r(B) = r(B’)
> in logic: ¢ =7
> time complexity: O(1) (due to canonical representation)
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Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written [T /v| or ¢[F/v], means restricting v
to a particular truth value:

Examples:
> (AN(BV=Q))[T/Bl=(AA(TV=C)=A
» (AN(BV-Q))F/Bl=(AAN(LV-C)=AA-C
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C8. Symbolic Search: Full Algorithm

Conditioning: Sets of Assignments

Basic BDD Operations

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

» S={{A—=F,B—F, C—F},
{A=T,B—T,C+— F},
{A=T,B—>T,C—T}}

~ S[T/B]={{A—T,C — F},

{A-T,C—T}}
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Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and v S (for sets).

Formally:
> v =o[T/v]V¢[F/v]
» JvS = S[T/v]US[F/v]
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Forgetting: Example

Examples:
» S={{A—F,B—F,C— F},
{A-T,B—T,C+— F},
{A=-T,B—»T,C—T}}

~ dBS ={{A— F,C — F},
{A—T,C+— F},
{A=>T,C—T}}

~ 3CS={{A— F,B+— F},
{A—T,B—T}}
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BDD Operations (4)

BDD operations: conditioning and forgetting
» bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]
> in logic: p[t/v]
> time complexity: O(||B]|)
» bdd-forget(B, v):
build BDD representing 3v r(B)

> inlogic: v (= [T/v]V ¢[F/v])
> time complexity: O(||B||?)
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C8.2 Formulas and Singletons
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Formulas to BDDs

Formulas and Singletons

» With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of .

» We denote this computation with bdd-formula(yp).

» Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2") time.
(How is this possible?)
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Singleton BDDs

> We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

» We denote this computation with bdd-singleton(/).
» When done in the correct order, this takes time O(k).
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C8.3 Renaming
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C8. Symbolic Search: Full Algorithm

Renaming

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written ¢[X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
> p= (A/\(B\/—'C))
~ p[A— D] = (DA (BV-C))
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How Hard Can That Be?

» For formulas, renaming is a simple (linear-time) operation.

» For a BDD B, it is equally simple (O(]|B||)) when renaming
between variables that are adjacent in the variable order.

> In general, it requires O(||B||?), using the equivalence
e[ X = Y]=3IX(p A (X < Y))
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C8.4 Symbolic Breadth-first Search
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Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V/, /1, O,~) with states S.
In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.

> use unprimed variables v to describe sets of states:
{s € S | some property}

» use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:
{(s,s’) | some property}
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1
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C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-formula.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-singleton.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy = {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-emptyset, bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-union.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy = {I}
i:=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy = {I}
i:=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

How to do this?
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The apply Function (1)

We need an operation that
> for a set of states reached (given as a BDD)
» and a set of operators O

> computes the set of states (as a BDD) that result from
applying some operator o € O in some state s € reached.

We have seen something similar already. ..
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Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.

Define 1v(0) := pre(o) A \,cy (regr(v, eff0)) < v').

States that o is applicable and describes how
» the new value of v, represented by v/,
> must relate to the old state, described by variables V.
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C8. Symbolic Search: Full Algorithm

The apply Function (2)

» The formula 7y/(0) describes all transitions s = s’
» induced by a single operator o
> in terms of variables V' describing s
» and variables V// describing s’.
» The formula \/ .o Tv(0) describes state transitions
by any operator in O.
» We can translate this formula to a BDD
(over variables V U V') with bdd-formula.
» The resulting BDD is called the transition relation
of the planning task, written as Ty(O).
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
Thus, apply indeed computes the set of successors of reached
using operators O.
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C8.5 Discussion
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Discussion

» This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

> We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

P In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.
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Variable Orders

For good performance, we need a good variable ordering.

» Variables that refer to the same state variable
before and after operator application (v and v/)
should be neighbors in the transition relation BDD.
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Extensions

Symbolic search can be extended to...

P regression and bidirectional search:
this is very easy and often effective
» uniform-cost search:
requires some work, but not too difficult in principle

» heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search
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C8.6 Summary
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Summary

» Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

> State sets and transition relations can be represented
as BDDs.

» Based on this, we can implement a blind breadth-first search
in an efficient way.

» A good variable ordering is crucial for performance.
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