Planning and Optimization
C8. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Roger

Universitat Basel

October 15, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 15, 2025

1/



Planning and Optimization
October 15, 2025 — C8. Symbolic Search: Full Algorithm

(8.1 Basic BDD Operations

C8.2 Formulas and Singletons
C8.3 Renaming

C8.4 Symbolic Breadth-first Search
(8.5 Discussion

C8.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 2 /46



Content of the Course

— Prelude

—  Foundations —  Introduction

-— Explicit Search
-— Delete Relaxation | H  SAT Planning

— Abstraction _

— Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 3 /46



Devising a Symbolic Search Algorithm

> We now put the pieces together to build

a symbolic search algorithm for propositional planning tasks.

» use BDDs as a black box data structure:

> care about provided operations and their time complexity
> do not care about their internal implementation

> Efficient implementations are available as libraries, e.g.:

» CUDD, a high-performance BDD library
» libbdd, shipped with Ubuntu Linux

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

4



C8. Symbolic Search: Full Algorithm Basic BDD Operations

(8.1 Basic BDD Operations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 5/ 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations: Preliminaries

> All BDDs work on a fixed and totally ordered
set of propositional variables.
» Complexity of operations given in terms of:

» k, the number of BDD variables
> ||B]|, the number of nodes in the BDD B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 6 / 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (1)

BDD operations: logical /set atoms

» bdd-fullset(): build BDD representing all assignments
» in logic: T
> time complexity: O(1)

» bdd-emptyset(): build BDD representing ()
> in logic: L
> time complexity: O(1)

» bdd-atom(v): build BDD representing {s | s(v) = T}
> in logic: v
> time complexity: O(1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 7/ 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (2)

BDD operations: logical/set connectives
» bdd-complement(B): build BDD representing r(B)
> in logic: —p
> time complexity: O(||B]|)
» bdd-union(B, B’): build BDD representing r(B) U r(B’)

> in logic: (¢ V)
> time complexity: O(||B| - [|1B’]l)

» bdd-intersection(B, B’): build BDD representing r(B) N r(B’)

> in logic: (¢ A )
> time complexity: O(||B| - ||B’|])

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 8/ 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (3)

BDD operations: Boolean tests
» bdd-includes(B, I): return true iff | € r(B)
> in logic: | E ¢?
> time complexity: O(k)
» bdd-equals(B, B’): return true iff r(B) = r(B’)
> in logic: ¢ =7
> time complexity: O(1) (due to canonical representation)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 9/ 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written [T /v| or ¢[F/v], means restricting v
to a particular truth value:

Examples:
> (AN(BV=Q))[T/Bl=(AA(TV=C)=A
» (AN(BV-Q))F/Bl=(AAN(LV-C)=AA-C

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 10 / 46



C8. Symbolic Search: Full Algorithm

Conditioning: Sets of Assignments

Basic BDD Operations

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

» S={{A—=F,B—F, C—F},
{A=T,B—T,C+— F},
{A=T,B—>T,C—T}}

~ S[T/B]={{A—T,C — F},

{A-T,C—T}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 11 / 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and v S (for sets).

Formally:
> v =o[T/v]V¢[F/v]
» JvS = S[T/v]US[F/v]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 12 / 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

Forgetting: Example

Examples:
» S={{A—F,B—F,C— F},
{A-T,B—T,C+— F},
{A=-T,B—»T,C—T}}

~ dBS ={{A— F,C — F},
{A—T,C+— F},
{A=>T,C—T}}

~ 3CS={{A— F,B+— F},
{A—T,B—T}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 13 / 46



C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (4)

BDD operations: conditioning and forgetting
» bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]
> in logic: p[t/v]
> time complexity: O(||B]|)
» bdd-forget(B, v):
build BDD representing 3v r(B)

> inlogic: v (= [T/v]V ¢[F/v])
> time complexity: O(||B||?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

14 / 46



C8. Symbolic Search: Full Algorithm Formulas and Singletons

C8.2 Formulas and Singletons

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 15 / 46



C8. Symbolic Search: Full Algorithm

Formulas to BDDs

Formulas and Singletons

» With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of .

» We denote this computation with bdd-formula(yp).

» Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2") time.
(How is this possible?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 16 / 46



C8. Symbolic Search: Full Algorithm Formulas and Singletons

Singleton BDDs

> We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

» We denote this computation with bdd-singleton(/).
» When done in the correct order, this takes time O(k).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 17 / 46



C8. Symbolic Search: Full Algorithm Renaming

C8.3 Renaming

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 18 / 46



C8. Symbolic Search: Full Algorithm

Renaming

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written ¢[X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
> p= (A/\(B\/—'C))
~ p[A— D] = (DA (BV-C))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 19 / 46



C8. Symbolic Search: Full Algorithm Renaming

How Hard Can That Be?

» For formulas, renaming is a simple (linear-time) operation.

» For a BDD B, it is equally simple (O(]|B||)) when renaming
between variables that are adjacent in the variable order.

> In general, it requires O(||B||?), using the equivalence
e[ X = Y]=3IX(p A (X < Y))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 20 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

C8.4 Symbolic Breadth-first Search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 21 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V/, /1, O,~) with states S.
In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.

> use unprimed variables v to describe sets of states:
{s € S | some property}

» use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:
{(s,s’) | some property}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 22 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 23 /46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-formula.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

24 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-singleton.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

25 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy = {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-emptyset, bdd-equals.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

26 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-union.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

27 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy = {I}
i:=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-equals.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

28 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy = {I}
i:=0
loop:
if reached; N goal_states # (:
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

How to do this?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

29 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (1)

We need an operation that
> for a set of states reached (given as a BDD)
» and a set of operators O

> computes the set of states (as a BDD) that result from
applying some operator o € O in some state s € reached.

We have seen something similar already. ..

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 30 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.

Define 1v(0) := pre(o) A \,cy (regr(v, eff0)) < v').

States that o is applicable and describes how
» the new value of v, represented by v/,
> must relate to the old state, described by variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 31/ 46



C8. Symbolic Search: Full Algorithm

The apply Function (2)

» The formula 7y/(0) describes all transitions s = s’
» induced by a single operator o
> in terms of variables V' describing s
» and variables V// describing s’.
» The formula \/ .o Tv(0) describes state transitions
by any operator in O.
» We can translate this formula to a BDD
(over variables V U V') with bdd-formula.
» The resulting BDD is called the transition relation
of the planning task, written as Ty(O).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 32

Symbolic Breadth-first Search

46



C8. Symbolic Search: Full Algorithm

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 33

Symbolic Breadth-first Search

/ 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

34 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

35 /46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 36 / 46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 37 /46



C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B
Thus, apply indeed computes the set of successors of reached
using operators O.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 38 / 46



C8. Symbolic Search: Full Algorithm Discussion

C8.5 Discussion

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 39 / 46



C8. Symbolic Search: Full Algorithm Discussion

Discussion

» This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

> We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

P In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 40 / 46



C8. Symbolic Search: Full Algorithm Discussion

Variable Orders

For good performance, we need a good variable ordering.

» Variables that refer to the same state variable
before and after operator application (v and v/)
should be neighbors in the transition relation BDD.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 41 / 46



C8. Symbolic Search: Full Algorithm Discussion

Extensions

Symbolic search can be extended to...

P regression and bidirectional search:
this is very easy and often effective
» uniform-cost search:
requires some work, but not too difficult in principle

» heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

42 /

46



C8. Symbolic Search: Full Algorithm Discussion

Literature (1)

@ Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677—691, 1986.
Reduced ordered BDDs.

@ Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 43 / 46



C8. Symbolic Search: Full Algorithm Discussion

Literature (2)

B Alvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

[@ David Speck, Jendrik Seipp and Alvaro Torralba.
Symbolic Search for Cost-Optimal Planning
with Expressive Model Extensions.

Journal of Artificial Intelligence Research 82,
pp. 1349-1405, 2025.
More general classes of planning tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 44 / 46



C8. Symbolic Search: Full Algorithm Summary

C8.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 45 / 46



C8. Symbolic Search: Full Algorithm Summary

Summary

» Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

> State sets and transition relations can be represented
as BDDs.

» Based on this, we can implement a blind breadth-first search
in an efficient way.

» A good variable ordering is crucial for performance.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 46 / 46



	Basic BDD Operations
	

	Formulas and Singletons
	

	Renaming
	

	Symbolic Breadth-first Search
	

	Discussion
	

	Summary
	


