
Planning and Optimization
C5. SAT Planning: Core Idea and Sequential Encoding

Malte Helmert and Gabriele Röger

Universität Basel

October 13, 2025



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Introduction



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Solvers

SAT solvers (algorithms that find satisfying assignments
to CNF formulas) are one of the major success stories
in solving hard combinatorial problems.

Can we leverage them for classical planning?

⇝ SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:
⇝ Foundations of Artificial Intelligence Course, Ch. E4–E5



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Complexity Mismatch

The SAT problem is NP-complete,
while PlanEx is PSPACE-complete.

⇝ one-shot polynomial reduction from PlanEx to SAT
not possible (unless NP = PSPACE)



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Solution: Iterative Deepening

We can generate a propositional formula that tests
if task Π has a plan with horizon (length bound) T
in time O(∥Π∥k · T ) (⇝ pseudo-polynomial reduction).

Use as building block of algorithm that probes
increasing horizons (a bit like IDA∗).

Can be efficient if there exist plans
that are not excessively long.



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Planning: Main Loop

basic SAT planning algorithm:

SAT Planning

def satplan(Π):
for T ∈ {0, 1, 2, . . . }:

φ := build sat formula(Π,T )
I = sat solver(φ) ▷ returns a model or none
if I is not none:

return extract plan(Π,T , I )

Termination criterion for unsolvable tasks?



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Formula Overview



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: CNF?

SAT solvers require conjunctive normal form (CNF), i.e.,
formulas expressed as collection of clauses.

We will make sure that our SAT formulas are in CNF
when our input is a STRIPS task.

We do allow fully general propositional tasks, but then
the formula may need additional conversion to CNF.



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Variables

given propositional planning task Π = ⟨V , I ,O, γ⟩
given horizon T ∈ N0

Variables of the SAT Formula

propositional variables v i for all v ∈ V , 0 ≤ i ≤ T
encode state after i steps of the plan

propositional variables o i for all o ∈ O, 1 ≤ i ≤ T
encode operator(s) applied in i-th step of the plan



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Formulas with Time Steps

Definition (Time-Stamped Formulas)

Let φ be a propositional logic formula over the variables V .
Let 0 ≤ i ≤ T .

We write φi for the formula obtained from φ
by replacing each v ∈ V with v i .

Example: ((a ∧ b) ∨ ¬c)3 = (a3 ∧ b3) ∨ ¬c3



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Motivation

We want to express a formula whose models
are exactly the plans/traces with T steps.

For this, the formula must express four things:

The variables v0 (v ∈ V ) define the initial state.

The variables vT (v ∈ V ) define a goal state.

We select exactly one operator variable o i (o ∈ O)
for each time step 1 ≤ i ≤ T .

If we select o i , then variables v i−1 and v i (v ∈ V )
describe a state transition from the (i − 1)-th state of the plan
to the i-th state of the plan (that uses operator o).

The final formula is the conjunction of all these parts.



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Initial State, Goal, Operator Selection



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Initial State

SAT Formula: Initial State

initial state clauses:

v0 for all v ∈ V with I (v) = T

¬v0 for all v ∈ V with I (v) = F



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Goal

SAT Formula: Goal

goal clauses:

γT

For STRIPS, this is a conjunction of unit clauses.
For general goals, this may not be in clause form.



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Operator Selection

Let O = {o1, . . . , on}.

SAT Formula: Operator Selection

operator selection clauses:

o i1 ∨ · · · ∨ o in for all 1 ≤ i ≤ T

operator exclusion clauses:

¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Transitions



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Transitions

We now get to the interesting/challenging bit:
encoding the transitions.

Key observations: if we apply operator o at time i ,

its precondition must be satisfied at time i − 1:
o i → pre(o)i−1

variable v is true at time i iff its regression is true at i − 1:
o i → (v i ↔ regr(v , eff(o))i−1)

Question: Why regr(v , eff(o)), not regr(v , o)?



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Simplifications and Abbreviations

Let us pick the last formula apart to understand it better
(and also get a CNF representation along the way).

Let us call the formula τ (“transition”):
τ = o i → (v i ↔ regr(v , eff(o))i−1).

First, some abbreviations:

Let e = eff(o).
Let ρ = regr(v , e) (“regression”).
We have ρ = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Let α = effcond(v , e) (“added”).
Let δ = effcond(¬v , e) (“deleted”).

⇝ τ = o i → (v i ↔ ρi−1) with ρ = α ∨ (v ∧ ¬δ)



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (1)

Reminder: τ = o i → (v i ↔ ρi−1) with ρ = α ∨ (v ∧ ¬δ)

τ = o i → (v i ↔ ρi−1)

≡ o i → ((v i → ρi−1) ∧ (ρi−1 → v i ))

≡ (o i → (v i → ρi−1))︸ ︷︷ ︸
τ1

∧ (o i → (ρi−1 → v i ))︸ ︷︷ ︸
τ2

⇝ consider this two separate constraints τ1 and τ2



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (2)

Reminder: τ1 = o i → (v i → ρi−1) with ρ = α ∨ (v ∧ ¬δ)

τ1 = o i → (v i → ρi−1)

≡ o i → (¬ρi−1 → ¬v i )
≡ (o i ∧ ¬ρi−1) → ¬v i

≡ (o i ∧ ¬(αi−1 ∨ (v i−1 ∧ ¬δi−1))) → ¬v i

≡ (o i ∧ (¬αi−1 ∧ (¬v i−1 ∨ δi−1))) → ¬v i

≡ ((o i ∧ ¬αi−1 ∧ ¬v i−1) → ¬v i )︸ ︷︷ ︸
τ11

∧ ((o i ∧ ¬αi−1 ∧ δi−1) → ¬v i )︸ ︷︷ ︸
τ12

⇝ consider this two separate constraints τ11 and τ12



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (1)

Can we give an intuitive description of τ11 and τ12?
⇝ Yes!

τ11 = (o i ∧ ¬αi−1 ∧ ¬v i−1) → ¬v i

“When applying o, if v is false and o does not add it,

“

it remains false.”

called negative frame clause
in clause form: ¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i

τ12 = (o i ∧ ¬αi−1 ∧ δi−1) → ¬v i

“When applying o, if o deletes v and does not add it,

“

it is false afterwards.” (Note the add-after-delete semantics.)

called negative effect clause
in clause form: ¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i

For STRIPS tasks, these are indeed clauses. (And in general?)



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (1)

Can we give an intuitive description of τ11 and τ12?
⇝ Yes!

τ11 = (o i ∧ ¬αi−1 ∧ ¬v i−1) → ¬v i

“When applying o, if v is false and o does not add it,

“

it remains false.”

called negative frame clause
in clause form: ¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i

τ12 = (o i ∧ ¬αi−1 ∧ δi−1) → ¬v i

“When applying o, if o deletes v and does not add it,

“

it is false afterwards.” (Note the add-after-delete semantics.)

called negative effect clause
in clause form: ¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i

For STRIPS tasks, these are indeed clauses. (And in general?)



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (3)

Almost done!

Reminder: τ2 = o i → (ρi−1 → v i ) with ρ = α ∨ (v ∧ ¬δ)

τ2 = o i → (ρi−1 → v i )

≡ (o i ∧ ρi−1) → v i

≡ (o i ∧ (αi−1 ∨ (v i−1 ∧ ¬δi−1))) → v i

≡ ((o i ∧ αi−1) → v i )︸ ︷︷ ︸
τ21

∧ ((o i ∧ v i−1 ∧ ¬δi−1) → v i )︸ ︷︷ ︸
τ22

⇝ consider this two separate constraints τ21 and τ22



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (3)

Almost done!

Reminder: τ2 = o i → (ρi−1 → v i ) with ρ = α ∨ (v ∧ ¬δ)

τ2 = o i → (ρi−1 → v i )

≡ (o i ∧ ρi−1) → v i

≡ (o i ∧ (αi−1 ∨ (v i−1 ∧ ¬δi−1))) → v i

≡ ((o i ∧ αi−1) → v i )︸ ︷︷ ︸
τ21

∧ ((o i ∧ v i−1 ∧ ¬δi−1) → v i )︸ ︷︷ ︸
τ22

⇝ consider this two separate constraints τ21 and τ22



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (2)

How about an intuitive description of τ21 and τ22?

τ21 = (o i ∧ αi−1) → v i

“When applying o, if o adds v , it is true afterwards.”

called positive effect clause
in clause form: ¬o i ∨ ¬αi−1 ∨ v i

τ22 = (o i ∧ v i−1 ∧ ¬δi−1) → v i

“When applying o, if v is true and o does not delete it,

“

it remains true.”

called positive frame clause
in clause form: ¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i

For STRIPS tasks, these are indeed clauses. (But not in general.)



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (2)

How about an intuitive description of τ21 and τ22?

τ21 = (o i ∧ αi−1) → v i

“When applying o, if o adds v , it is true afterwards.”

called positive effect clause
in clause form: ¬o i ∨ ¬αi−1 ∨ v i

τ22 = (o i ∧ v i−1 ∧ ¬δi−1) → v i

“When applying o, if v is true and o does not delete it,

“

it remains true.”

called positive frame clause
in clause form: ¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i

For STRIPS tasks, these are indeed clauses. (But not in general.)



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Transitions

SAT Formula: Transitions

precondition clauses:

¬o i ∨ pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

¬o i ∨ ¬αi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

For STRIPS, all except the precondition clauses are in clause form.

The precondition clauses are easily convertible to CNF
(one clause ¬o i ∨ v i−1 for each precondition atom v of o).



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)

initial state clauses:

v0 for all v ∈ V with I (v) = T

¬v0 for all v ∈ V with I (v) = F

goal clauses:

γT

operator selection clauses:

o i1 ∨ · · · ∨ o in for all 1 ≤ i ≤ T

operator exclusion clauses:

¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)

precondition clauses:

¬o i ∨ pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

¬o i ∨ ¬αi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).



Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary

SAT planning (planning as satisfiability) expresses a sequence
of bounded-horizon planning tasks as SAT formulas.

Plans can be extracted from satisfying assignments;
unsolvable tasks are challenging for the algorithm.

For each time step, there are propositions encoding
which state variables are true and which operators are applied.

We describe a basic sequential encoding
where one operator is applied at every time step.

The encoding produces a CNF formula for STRIPS tasks.

The encoding follows naturally (with some work) from using
regression to link state variables in adjacent time steps.


	Introduction
	

	Formula Overview
	

	Initial State, Goal, Operator Selection
	

	Transitions
	

	Summary
	


